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ABSTRACT. It is established that the multivalued quasi variational inequalities in uniformly
smooth Banach spaces are equivalent to the fixed-point problem. We use this equivalence to
suggest and analyze some iterative algorithms for quasi variational inequalities with noncom-
pact sets in Banach spaces. Our results are new and represent a significant improvement of the
previously known results.
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1. I NTRODUCTION

Multivalued quasi variational inequalities, which were introduced and studied by Noor [9] –
[12], provide us with a unified, natural, novel, innovative and general approach to study a wide
class of problems arising in different branches of mathematical, physical and engineering sci-
ence. In this paper, we consider the multivalued quasi variational inequalities in the setting of
real Banach spaces. Using the retraction properties of the projection operator, we establish the
equivalence between the quasi variational inequalities and the fixed-point problems. This alter-
native equivalent formulation is used to suggest and analyze an iterative methods for studying
multivalued quasi variational inequalities in Banach spaces. Since multivalued quasi variational
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inequalities include quasi variational inequalities, complementarity problems and nonconvex
programming problems studied in [1] – [15] as special cases, the results obtained in this paper
continue to hold for these problems. Our results represent an improvement and refinement of
the previous results.

2. FORMULATION AND BASIC RESULTS

Let X be a real Banach space with its topological dual spaceX∗. Let 〈·, ·〉 be the dual pair
betweenX∗ andX. Let 2Xbe the family of all subsets ofX andCB(X) the family of all
nonempty closed and bounded subsets ofX. Let T, V : X −→ CB(X) be two multivalued
mappings and letg : X −→ X be a single-valued mapping. For given point-to-set mapping
K : u −→ K(u), which associates a closed convex set ofX with any element ofX, and
N(·, ·) : X ×X −→ X, we consider the problem of findingu ∈ X, w ∈ T (u), y ∈ V (u) such
that

(2.1) 〈N(w, y), J(g(v)− g(u))〉 ≥ 0, ∀g(v) ∈ K(u),

whereJ : X −→ X∗ is the normalized duality mapping.
Problem (2.1) is called the multivalued quasi variational inequality in Banach spaces, which

has many applications in pure and applied sciences, [1, 2, 4, 5].

I. If X is a real Hilbert space, then the duality mapJ reduces to the identity mapping and
problem (2.1) is equivalent to findingu ∈ X, w ∈ T (u), y ∈ V (u), g(u) ∈ K(u) such
that

(2.2) 〈N(w, y), g(v)− g(u)〉 ≥ 0, ∀g(v) ∈ K(u),

a problem introduced and studied by Noor [9] using the projection and Wiener-Hopf
equations techniques. For the applications, numerical methods and generalizations of
problem (2.1), see [6, 7], [9] – [12] and the references therein.

II. If K∗(u) is the polar cone of a closed convex-valued coneK(u) in X, then problem
(2.1) is equivalent to findingu ∈ X,w ∈ T (u), y ∈ V (u) such that

(2.3) g(u) ∈ K(u) and N(w, y) ∈ J(K(u)− g(u))∗

which is called the multivalued co-complementarity problem. Some special cases of
problem (2.3) has been studied by Chen, Wong and Yao [4] in Banach spaces.

For suitable and appropriate choices of the operators and the spaces, one can obtain several
new and known classes of variational inequalities and complementarity problems.

Let D(T ) ⊂ X denote the domain ofT andJ : X −→ 2X∗
be the normalized duality

mapping defined by

J(u) = {f ∈ X∗ : 〈u, f〉 = ‖u‖, ‖f‖ = ‖u‖}, u ∈ X.

Definition 2.1. [5] Let T : D(T ) ⊂ X −→ 2X be a multi-valued mapping. For allu, v ∈
D(T ), w ∈ T (u) andy ∈ T (v), the operatorT is said to be:

(a) accretive, if there existsj(u− v) ∈ J(u− v) such that

〈w − y, j(u− v)〉 ≥ 0.

(b) strongly accretive, if there existsj(u− v) ∈ J(u− v) and a constantk > 0 such that

〈w − y, j(u− v)〉 ≥ k‖u− v‖2.

We remark that ifX = X∗ = H is a real Hilbert space, then the notions of accretive,
strongly accretive andm−accretive coincide with that of monotone, strongly monotone and
maximal monotone respectively, see Deimling [5].
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Remark 2.1. Let G : X −→ CB(X), ε > 0 be any real number, then for everyu1, u2 ∈ X
andv1 ∈ G(u1), there existsv2 ∈ G(u2), such that

(2.4) ‖v1 − v2‖ ≤ M(G(u1), G(u2)) + ε‖u1 − u2‖,
whereM(·, ·) is the Hausdorff metric defined onCB(X) by

M(B, C) = max

{
sup
v∈C

d(v, B), sup
u∈B

d(u, C)

}
,

for B, C ∈ CB(X) andd(v, B) = min
u∈B

d(v, u).

We note that ifG : X −→ C(X), whereC(X) denotes the family of all nonempty compact
subsets ofX, then it is also true forε = 0.

From now onward, we assume thatX is a uniformly smooth Banach space, unless otherwise
specified.
Definition 2.2. [1, 5]. LetX be a real uniformly smooth Banach spaces andK be a nonempty
closed convex subset ofX. A mappingPK : X −→ K is said to be:

(i) retraction , if
P 2

K = PK .

(ii) nonexpansive retraction, if

‖PKu− PKv‖ ≤ ‖u− v‖, ∀u, v, X.

(iii) sunny retraction, if

PK(PK(u) + t(u− PK(u)) = PK(u), ∀u ∈ X, t ∈ R.

Lemma 2.2. [4, 5]. PK is a nonexpansive retraction if and only if

〈u− PK(u), J(PK(u)− v)〉 ≥ 0, ∀u, v ∈ X.

Note that ifX is a real Hilbert space, then Lemma 2.2 is well known [13], which has played
a fundamental and significant role in suggesting and analyzing the iterative methods for solving
variational inequalities and related optimization problems.

Invoking Lemma 2.2, we can show that the multivalued quasi variational inequalities (2.1)
are equivalent to the fixed point problem.
Lemma 2.3. The multivalued quasi variational inequalities (2.1) has a solutionu ∈ X, w ∈
T (u), y ∈ V (u), g(u) ∈ K(u) if and only ifu ∈ X, w ∈ T (u), y ∈ V (u), g(u) ∈ K(u) satisfies
the relation

(2.5) g(u) = PK(u)[g(u)− ρN(w, y)],

whereρ > 0 is a constant.

Lemma 2.3 establishes the equivalences between the variational inequalities (2.1) and the
fixed-point problem (2.5). We use this alternative equivalent formulation to suggest the fol-
lowing iterative algorithm for solving multivalued quasi variational inequalities (2.1) in Banach
spaces.
Algorithm 2.1. For givenu0 ∈ X, w0 ∈ T (u0), y0 ∈ V (u0), and0 < ε < 1, compute the
sequences{un}, {wn}, {yn} by the iterative schemes:

g(un+1) = PK(un)[g(un)− ρN(wn, yn)], n = 0, 1, 2, . . .(2.6)

wn ∈ T (un) : ‖wn+1 − wn‖ ≤ M(T (un+1), T (un)) + εn+1‖un+1 − un‖(2.7)

yn ∈ V (un) : ‖yn+1 − yn‖ ≤ M(V (un+1), V (un)) + εn+1‖yn+1 − yn‖,(2.8)

whereM(·, ·) is the Hausdorff metric defined onCB(X).
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If X = H, the real Hilbert space, andε = 0, Algorithm 2.1 is due to Noor [9] – [12] for
solving the multivalued quasi variational inequalities (2.1).

For suitable and appreciate choice of the operatorsT, V, N, g and the spaceX, one can ob-
tain a number of known and new algorithms for solving variational inclusions and variational
inequalities.

3. CONVERGENCE ANALYSIS

In this section, we study the convergence analysis of Algorithm 2.1. For this purpose, we
recall the following concepts and notions.

Definition 3.1. For allu1, u2 ∈ X, the operatorN(·, ·) is said to be

(i) β−Lipschtz continuous with respect to the first argument, if there exists a constant
β > 0 such that

‖N(w1, ·)−N(w2, ·)‖ ≤ β‖w1 − w2‖,

for all w1 ∈ T (u1), w2 ∈ T (u2), andu1, u2 ∈ X.
(ii) γ−Lipschitz continuous with respect to the second argument, if there exists constant

γ > 0 such that

‖N(·, y1)−N(·, y2)‖ ≤ γ‖y1 − y2‖,
for all y1 ∈ V (u1), y2 ∈ V (u2), andu1, u2 ∈ X.

Definition 3.2. The multi-valued mappingT : X −→ CB(X) is said to beM−Lipschitz
continuous if there exits a constantη > 0 such that

M(T (u), T (v)) ≤ η‖u− v‖, for all u, v ∈ X.

Lemma 3.1. [1, 3]. LetX be a real Banach space andJ : X −→ 2X∗
be the normalized dual

mapping. Then for allu, v ∈ X, there exitsj(u + v) ∈ J(u + v) such that

‖u + v‖2 ≤ ‖u‖2 + 2〈v, j(u + v)〉.

We also need the following condition.

Assumption 3.1.For allu, u, w ∈ X, the operatorPK(u) satisfies the condition

‖PK(u)(w)− PK(v)(w)‖ ≤ ν‖u− v‖,

whereν > 0 is a constant.

We now consider the convergence of the Algorithm 2.1 for the caseg 6= I.

Theorem 3.2. Let X be a real uniformly smooth Banach space. Let the operatorN(·, ·) be a
β−Lipschitz andγ−Lipschitz continuous with respect to the first argument and second argu-
ment respectively. Let the operatorg be Lipschitz continuous with constantδ > 0 and strongly
accretive with constantk > 1

2
. Assume that the operatorsT, V : X −→ CB(X) are M-

Lipschitz continuous with constantµ > 0 andη > 0 respectively. If the Assumption 3.1 holds
and

(3.1) 0 < ρ <

√
2k − 1− (δ + ν)

βµ + γη
,

then there existsu ∈ X, w ∈ T (u), y ∈ V (u) satisfying the (2.1) and the iterative sequences
{un}, {wn}, and{yn} generated by Algorithm 2.1 convergence tou, w, and y strongly inX,
respectively.
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Proof. From Lemma 3.1 and Algorithm 2.1, it follows that there existsj(un+1−un) ∈ J(un+1−
un) such that

‖un+1 − un‖2 = ‖g(un+1)− g(un) + un+1 − un − (g(un+1)− g(un))‖2

≤ ‖g(un+1)− g(un)‖2

+ 2〈un+1 − un − (g(un+1)− g(un)), j(un+1 − un)〉
≤ ‖g(un+1)− g(un)‖2 + 2‖un+1 − un‖2 − 2k‖un+1 − un‖2,

which implies that

‖un+1 − un‖2 ≤ 1

2k − 1
‖g(un+1)− g(un)‖2,

that is

(3.2) ‖un+1 − un‖ ≤
1√

2k − 1
‖g(un+1)− g(un)‖.

Now, using Assumption 3.1, we have

‖g(un+1)− g(un)‖
=

∥∥PK(un)[g(un)− ρN(wn, yn)]− PK(un−1)[g(un−1)− ρN(wn−1, yn−1)]
∥∥

≤ ‖PK(un)[g(un)− ρN(wn, yn)]− PK(un)[g(un−1)− ρN(wn−1, yn−1)]‖
+ ‖PK(un)[g(un−1)− ρN(wn−1, yn−1)]− PK(un−1)[g(un−1)− ρN(wn−1, yn−1)]‖

≤ ‖g(un)− g(un−1)− ρ(N(wn, yn)−N(wn−1, yn−1))‖+ ν‖un − un−1‖
≤ ‖g(un)− g(un−1)‖+ ρ‖N(wn, yn)−N(wn−1, yn−1)‖+ ν‖un − un−1‖
≤ δ‖un − un−1‖+ ρ‖N(wn, yn)−N(wn−1, yn)‖

+ ρ‖N(wn−1, yn)−N(wn−1, yn)‖+ ν‖un − un−1‖.(3.3)

Using the Lipschitz continuity ofM(·, ·) with respect to the first argument andM -Lipschitz
continuity ofT , we have

‖N(wn, yn)−N(wn−1, yn)‖ ≤ β‖wn − wn−1‖
≤ β(M(T (un), T (un−1)) + εn‖un − un−1‖)
≤ β(µ + εn)‖un − un−1‖.(3.4)

In a similar way,

‖N(wn−1, yn)−N(wn−1, yn−1)‖ ≤ γ‖yn − yn−1‖
≤ γ(M(V (un), V (un−1)) + εn‖un − un−1‖)
≤ γ(η + εn)‖un − un−1‖.(3.5)

From (3.2) – (3.5) we have

‖un+1 − un‖ ≤
(δ + γ) + ρ{βµ + γη + (β + η)εn}√

2k − 1
‖un − un−1‖

= θ(εn)‖un − un−1‖,(3.6)

where

(3.7) θ(εn) =
(δ + γ) + ρ{βµ + γη + (β + η)εn}√

2k − 1
.
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Since0 < ε < 1, it follows that

(3.8) θ(εn) −→ θ ≡ (δ + γ) + ρ(βµ + γη)√
2k − 1

, asn −→∞.

From (3.1), we haveθ < 1. Consequently, the sequence{un} is a Cauchy sequence inX. Since
X is a Banach space, there existsu ∈ X, such thatun −→ u asn −→∞.

From (3.4) and (3.5) we see thatwn, yn are Cauchy sequences inX, that is, there exist
w, y ∈ H such thatwn −→ w, yn −→ y. Now by using the continuity of the operators
N, T, V, g, PK(u) and Algorithm 2.1, we have

g(u) = PK(u)[g(u)− ρN(w, y)].

Finally, we prove thatw ∈ T (u) andy ∈ V (u). In fact, sincew ∈ T (un) we have

d(w, T (u)) ≤ ‖w − wn‖+ d(wn, T (u))

≤ ‖w − wn‖+ M(T (un), T (u))

≤ ‖w − wn‖+ µ‖un − u‖ −→ 0, asn −→∞,

which implies thatd(w, T (u)) = 0, and sinceT (u) is a closed bounded subset ofX, it follows
thatw ∈ T (u). In a similar way, we can also prove thaty ∈ V (u).

By Lemma 2.2, it follows that(u, w, y) is a solution of the multivalued quasi variational
inequalities problem (2.1), andun −→ u, wn −→ w, yn −→ y strongly inX, the required
result. �

REFERENCES

[1] Y. ALBER, Metric and generalized projection operators in Banach spaces: properties and appli-
cations, InTheory and Applications of Nonlinear Operators of Monotone and Accretive Type(A.
Kartsatos, editor ), Marcel Dekker, New York, (1996), 15–50.

[2] V. BARBU, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff Inter-
nat. Publ., Leyden, The Netherlands, 1976

[3] S.S. CHANG, Y.J. CHAO, B.S. LEEAND I.H. JUNG, Generalized set-valued variational inclusions
in Banach space,J. Math. Anal. Appl., 246(2000), 409–422.

[4] J.Y. CHEN, N.C. WONGAND J.C. YAO, Algorithm for generalized co-complementarity problems
in Banach spaces,Computers Math. Appl., 43 (2002), 49–54.

[5] K. DEIMLING, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

[6] V.E. DEMYANOV, G.E. STAVROULAKIS, L.N. POLYAKOVA AND P. D. PANAGIOTOPOU-
LOS,Quasidifferentiability and Nonsmooth Modeling in Mechanics, Engineering and Economics,
Kluwer Academic, Dordrecht, 1996.

[7] F. GIANNESSIAND A. MAUGERI, Variational Inequalities and Network Equilibrium Problems,
Plenum Press, New York, 1995.

[8] K. GOEBEL AND S. REICH,Uniform convexity, hyperbolic geometry and nonexpansive mappings,
New York, Marcell Dekker, 1984.

[9] M. ASLAM NOOR, Generalized multivalued quasi variational inequalities (II),Computers Math.
Appl., 35 (1998), 63–78.

[10] M. ASLAM NOOR, Generalized set-valued variational inequalities,Le Mathematica, 52 (1977),
3–24.

[11] M. ASLAM NOOR, Generalized quasi variational inequalities and implicit Wiener-Hopf equations,
Optimization, 45 (1999), 197–222.

J. Inequal. Pure and Appl. Math., 3(3) Art. 36, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MULTIVALUED QUASI VARIATIONAL INEQUALITIES IN BANACH SPACES 7

[12] M. ASLAM NOOR, Generalized multivalued variational inequalities (III),Nonlinear Stud., 6
(1999), 191–206.

[13] M. ASLAM NOOR, Some recent advances in variational inequalities, Part I, basic concepts,New
Zealand J. Math., 26 (1997), 53–80.

[14] M. ASLAM NOOR, Some recent advances in variational inequalities, Part II, other concepts,New
Zealand J. Math., 26 (1997), 229-255.

[15] M. ASLAM NOOR, K. INAYAT NOOR AND TH. M. RASSIAS, Some aspects of variational
inequalities,J. Math. Comput. Appl. Math., 47 (1993), 313-331.

J. Inequal. Pure and Appl. Math., 3(3) Art. 36, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Formulation and Basic Results
	3. Convergence Analysis
	References

