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ABSTRACT. Referring to previous papers on orthogonality preserving mappings we deal with
some relations, connected with orthogonality, which are preserved exactly or approximately. In
particular, we investigate the class of mappings approximately preserving the right-angle. We
show some properties similar to those characterizing mappings which exactly preserve the right-
angle. Besides, some kind of stability of the considered property is established. We study also
the property that a particular valueof the inner product is preserved. We compare the case

¢ # 0 with ¢ = 0, i.e., with orthogonality preserving property. Also here some stability results
are given.
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1. PREREQUISITES

Let X andY be real inner product spaces with the standard orthogonality relatidror a
mappingf : X — Y itis natural to consider therthogonality preserving property

(OP) Ve,y € X :xly= f(x)Lf(y).

The class of solutions of (P) contains also very irregular mappings (cf. [1, Examples 1 and
2]). On the other hand, knear solution f of (OR) has to be a linear similarity, i.e., it satisfies
(cf. [1, Theorem 1])

(1.1) If@l =lzll, 2eX
or, equivalently,
(1.2) (f@f(y) =" (zly), @yeX
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2 JACEK CHMIELINSKI

with somey > 0 (v > 0 for f # 0). (More generally, a linear mapping between real normed
spaces which preserves the Birkhoff-James orthogonality has to sptisfy (1.1) + see [5].) There-
fore, linear orthogonality preserving mappings are not far from inner product preserving map-
pings (linear isometries), i.e., solutions of the functional equation:

(1.3) Vo,y € X (f(z)|f(y) = (z]y) .

A property similar to[(OP) was introduced by Kestelman and Tissier (see [6]). One says that
f has theright-angle preserving propertyf:

(RAP) Ve,y,z € X tx—z1ly—z= f(x) — f(2)Lf(y) — f(2).

For the solutions of (RAP) it is known (see€ [6]) that they must be affine, continuous similarities
(with respect to some point).

It is easily seen that if satisfies[(RAP) then, for an arbitragy € Y, the mappingf + yo
satisfies[(RAP) as well. In particulaf, := f — f(0) satisfies[(RAP) and,(0) = 0.

Summing up we have:

Theorem 1.1. The following conditions are equivalent:
(i) f satisfies[(RAP) and(0) = 0;
(i) f satisfies[(OP) and is continuous and linear;
(i) f satisfies[(OP) and is linear;
(iv) fislinear and satisfie§l.T)for some constant > 0;
(v) f satisfieq[I.2)for some constant > 0;
(vi) f satisfies[(OP) and is additive.

Proof. (i)=(ii) follows from [6] (see above); (iB=(iii) is trivial; (iii) =(iv) follows from [1]
(see above); (iv>(v) by use of the polarization formula and €#|vi)=-(i) is trivial. OJ

In particular, one can consider a real vector sp&osith two inner products-|-), and(:|-),
and f = id|x a linear and continuous mapping betwegeq (-|-),) and (X, (-|-),). Then we
obtain from Theorern 111:

Corollary 1.2. Let X be a real vector space equipped with two inner prodydts, and(-|-),
generating the norm§ - ||1, || - |2 and orthogonality relations. ;, |, respectively. Then the
following conditions are equivalent:
() Ve,y,ze X o —zlyy—z2=>2— 21y —z

(i) Ve,y € X 1 xly = xloy;

(i) [|z|]2 = ~v||=||: for x € X with some constant > 0;

(iv) (z]y)y =~ (z|y), for z,y € X with some constant > 0;

V) Ve,y,zeX:x—zLiy—z&x— 21y — 2

(Vi) Ve,y € X :xly & xlay.

Fore € [0, 1) we define arx-orthogonality by
ulfv e | (ulv) | < ellulflv]]

(Some remarks on how to extend this definition to normed or semi-inner product spaces can be
found in [2].)
Then, it is natural to consider an approximate orthogonality preserving (a.0.p.) property:

(e-OP) Ve,y e X taxly = f(x) L5 f(y)
and the approximate right-angle preserving (a.r.a.p.) property:
(e-RAP) Ve,y,z € X tx—zly —z= f(x) — f(2) L5 f(y) — f(2).
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The class of linear mappings satisfyirig@R) has been considered by the author (cf. [1,
3]). In the present paper we are going to deal with mappings satisfy#RAD) and, in the
last section, with mappings which preserve (exactly or approximately) a given value of the
inner product. We will deal also with some stability problems. (For basic facts concerning the
background and main results in the theory of stability of functional equations we refer to [4].)
The following result establishing the stability of equatipn(1.3) has been proved in [3] and will
be used later on.

Theorem 1.3([3], Theorem 2) Let X and Y be inner product spaces and l&f be finite-
dimensional. Then, there exists a continuous mapping, — R, such thalim, .+ d(¢) =0
which satisfies the following property: For each mappihg X — Y (not necessarily linear)
satisfying

(1.4) | @) = (=ly) | <ellzllllyll,  zyeX
there exists a linear isometdy: X — Y such that
[f(x) =) < o(e)ll=ll,  zeX.

2. ADDITIVITY OF APPROXIMATELY RIGHT-ANGLE PRESERVING MAPPINGS

Tissier [6] showed that a mappingsatisfying the[(RAP) property has to be additive up to
a constantf(0). Following his idea we will show that a.r.a.p. mappings are, in some sense,
guasi-additive. We start with the following lemma.

Lemma 2.1. Let X be a real inner product space. Let a set of points, c, d,e € X satisfies
the following relations, withr € [0, 3),

(2.2) a—>blfc—0, b—cld—c, c—dlfa—d, d—altb—a;

(2.2) a—elb—e, b—elfc—e, c—eld—e, d—elfa—e.
Then,

e— 22 < Glla—c
with 6 = /2=
Proof. We have
o= el = le ~a+a—clf* = e~ al} + la — ]} + 2c ~ ala—
whence
(e —ala— ¢y = o=l —lla—el® ~la—c|?
Thus 2
e_a—i-c 2_ R 2
2 >

1
= le—al® + 7lla —cl* + (e —ala—¢)

1
=le—al®+ 7

1 1 1
Fla— el + Slle = el = Slla el = Slla - |/’

1 1 1
= Slla— el + 5l —ell* = 7lla — el
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Finally,
2
a+c 1
(2:3) e— 5| =7 @la—cl?+2lc—el? - fla— )
and, analogously,
b+d|* 1
(2.4) e— || =7 @lb—el*+2)d—e* ~ b - dI?).

Adding the equalities:
la —bl* = lla —e+e—blI* = [la —el* + [le = b]|* +2(a —ele = ).,
lo—cl*=1lb—e+e—c|*=b—ell*+lle—c|*+2(b—ele—c),
le=dll* =lle—e+e—d|* = [le—e|* + [le = d||* + 2 (c — ele — d) ,
ld—al*=|ld—e+e—al*=|ld—el*+ |le — al|* + 2 (d — e]e — a)

one gets

(2.5) [la—0bl>+[|b—c|* + [le = d||* + [|d — a|?
=2lla —e|* +2|b— el + 2|lc — e||* + 2||d — e®
+2(a—ele—0)+2(b—ele—rc)
+2(c—ele—d)+2(d—ele—a).
Similarly, adding

la—cl* =lla=b+b—c|* = lla= bl + [Ib—c|* + 2({a — b —c),
la—cl*=lla—d+d—cl*=lla—d|* + ||ld — c|* + 2{a — dld — c),
Ib—dll* =llb—a+a—d|*=b—al*+ o —d||* + 2 (b — ala — d),
Ib—dll* =llb—c+c—d|*=[b—c|*+llc—d|* + 2 (b—clc —d)

one gets

(2.6) [la—cl* +11b—dl* = lla = 0* + lla — d||* + e = b]|* + [|c — d||*
+{a—0blb—c)+ {(a —d|d — c)
+(b—ala—d)+ (b—clc—d).

Using [2.3) —[(2.6) we derive

a+c2+ b+ d||?

e— e— ——

9 9

@D 2||a —e|® + 2|lc — e]|* + 2[|b — e[|* + 2||d — e||* — |la — c||* — [|b — d|?

4
D (16— el + lle — dI> + ld — al + l}a — o]
—2(b—ele—c)—2(c—ele—d) —2(d—e|le —a)
= 2{a—ele —b) = lla - ol |Ip - d|*)
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@)_i<(a—b1b—c>—|—<a—d]d—c>+(b—a’a—d>+<b—cyc_d>

—|—2<b—e|e—c)—|—2<c—e|e—d>—|—2<d—e|e—a)+2<a—e|e—b>>.

Thus

2
a+c
e_

2

2+ b+d
e_—
2

< (e =t =)+ Ga—did =) +] b ala— d)
+{b—cle=d)[+2[(b—ele—c)[+2[({c—ele—d)|
+mu—ek—@\+mm—ek—wo.

Using the assumptions (2.1) and (2.2), we obtain

2 2
a-+c b+d
2.7 — - —
SO S B
1
SZema—bwb—dHﬂm—dwd—dkﬂw—amm—dH
+ 116 = clllle — dll + 2[[b — elllle — cl| + 2[|c — e]/[|le — d]
+HW—6W6—GW+ﬂM—€W6—MD
1
=150m—dwwm—dmwa—wmww—ﬂn
+2mb—dHﬂw—€mma—dkﬂk—em)
Fottice, that for: = 0, (2.7) yieldse = “< = 244,
e

¢ :=max{|la = bl [|b =[], lc = dl, [|d — al|, [[a — e[, [|b = el [lc — el [|d — ]}
It follows from (2.7) that

a—+c
6_

2
Then, in particular

2

2
b+d 1
4—”6—L < 15(2g~2g+2~2go2g) = 3e0”.

2

a+c
- < 3ep’

e

(2.8)

Since we do not know for which distance the valuis attained, we are going to consider a
few cases.

@ o€ {lla—bll,[b—c|.lc—dl |d—al}. B
Suppose that = ||a — b|| (other possibilities in this case are similar). Then

la—cll* = la = b+b—c[?
= |la —b|* +||b —¢c||* + 2 {a —b|b — c)
> 0° + 0 — 2¢la — b[|[|b — ¢|
> 0* —2e0® = (1 — 2¢)0°.
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Assuminge < 1,

1
2 2
0" < 7 lla—¢]
Using (2.8) we have
€_a+02 3e la— c|f?
2 12
whence
a+c 3¢
2. — < —cl|.
29) o RV

@) ¢ € {la—ellllc—e|}. -
Suppose that = ||a — ¢|| (the other possibility is similar). Then, froin (2.3), we have

1 ! 1 1

Jla—cl?+|le = 55| = Sla—elP+ Slle el > 5,
whence

1 a+c|
£ < la—dp+ 2 -
From it and[(2.B) we get
2 2
3
I §3592§§||a—c||2+65 e—a;—c

whence (assuming < )

(2.10) He_a;c

<o fa—c
—\/ 2(1 - 6¢) '
3) o€ {Ib—ell,Id - €]}

Suppose that = ||b — e]| (the other possibility is similar). We have then
Ib—al*=Ib—e+e—al
= [lb—ell* +[le —all* + 2 (b —ele — a)
> 0" +0—2¢ellb—ef[le — af
> 0% —2e0 = (1 - 2¢)¢?,
whence
b —a|®* > (1 —2¢)0°
Using this estimation we have
la—cl*=lla=b+b—c|?
= |la —b|[* +||b — ¢||* + 2 {a —b|b — c)
> (1 —2¢)0* +0 —2¢||a —b||||b — ||
> (1 —2¢)0* — 207
= (1 —4e)0”,
whence (for: < 1)

0" < la — c]|*.

1 —4e
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Using (2.8) we get

2
a-+c

e— H < 3c0® < 135

. 2
a =]

and
a-+c

(2.11) e—

3¢ ||a—
1—4e

Finally, assuming < :, we have

and it follows from [2.9) —@1)
a+c

- Clla—¢

which completes the proof.
0]

Theorem 2.2.Let X andY be real inner product spaces and lgt: X — Y satisfy [f-RAR)
withe < 1. Thenf satisfies

(2.12) \V(x+y) igé}ﬁ@HsﬂU@»—ﬂwufm ryeX
with§ = ~/1—_£45-

Moreover, if additionallyf (0) = 0, then satisfies|{-OF) and
(2.13) [[f(z+y) = f(z) = fW)l <20([[f @+ )l + [ f(z) = fWI), for z,yeX.

Proof. Fix arbitrarily x,y € X. The caser = y is obvious. Assume # y. Chooseu,v € X
such thatr, u, y, v are consecutive vertices of a square with the centéf—“atDenote

o= f), b= f),  c=f@),  d=f), e=f<x+y>

Sincer—uly—u,u—ylv—y,y—vler—v,v—xlu—=x and:L‘—ITerJ_u— 5 x+yJ_y x+y
y— Ty — 2y - 2 ) g 2 it follows f) that the condltlon{@ 1) a@ 2)
are satisfied. The assertion of Lemimd 2.1 yi€llds (2.12)

For the second assertion, it is obvious tfisatisfies[{-OR). Inequality[(2.13) follows from
(2.12). Indeed, putting = 0 we get

e

2 <alr@l wex.

Now, forz,y € X

1/ (2 +y)=f(z) = fW)l

() () H
= o)l (5)- ”2 |

< 20[|f (= + y)ll + 260]|f (=) -
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Fore = 0 we obtain that iff satisfies|(RAP) and(0) = 0, thenf is additive.
The following, reverse in a sense, statement is easily seen.

Lemma 2.3. If f satisfies|{-OF) and is additive, therf satisfies[{-RAR) andf(0) = 0.

Example 2 in[[1] shows that it is not possible to omit completely the additivity assumption
in the above lemma. However, the problem arises if additivity can be replaced by a weaker
condition (e.g. by[(2.13)). This problem remains open.

3. APPROXIMATE RIGHT-ANGLE PRESERVING MAPPINGS ARE APPROXIMATE
SIMILARITIES

As we know from[[6], a right-angle preserving mappings are similarities. Our aim is to show
that a.r.a.p. mappings behave similarly. We start with a technical lemma.

Lemma 3.1. Leta,x € X ande € [0,1). Then

(3.1) (a —z)Lf(—a—x)
if and only if
(3.2 el = "] < <=5/ NlPlel? — (ale”.
Moreover, it follows from(3.1) that
1—¢ 1+¢
. < < :
(3:3) —lall < llall < y/ 7llal

Proof. The condition[(3.1) is equivalent to:

[{a+zla—2)| <cllatzla—

llal® = llz[P| < ev/llall? + 2 (alz) + [lz]*V/]lall* - 2 {alz) + [[]2,

(= 121)* < =2(all® + o) + 2 (ala)) (lall* + 2] - 2 al2))
= 2((lall* + )2 - 4 al2)* )

= &2((lal® = 1o1)? + 4lal?llz]|* - 4 (ale)? ),
and finally
(1 =) (llall® = [|2]1*)? < 4¢* (lal*[|=]* — (al2)?)
which is equivalent td (3]2).
Inequality [3.2) implies

2e
2 2
z||” = la||”] < allllz|,
=) = llall’] < —z=lalli=|
which yields
]| llall 2
(3.4) - <
lall [l = V1 —¢2
(we assumer # 0 anda # 0, otherwise the assertion of the lemma is trivial). Denoting
t:= H%H > 0 anda := \/1257 the inequality[(3.4) can be written in the form
t—t7' <a
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with a solution

—a+Va2 <a+wmﬁ+4
5 .

S <
Therefore,
/1—5<L__ [1+¢€
14+¢e = |lal 1—¢
whence|(3.B) is satisfied. O
Theorem 3.2.1f f : X — Y is homogeneous and satisfiesRAR), then with some > 0:
3 3
1—¢e)\? 14+¢e)\?2
_ : < <k- X.
65 k(1) Il @ik (FE) hel ee

Proof. 1. For arbitraryr, y € X we have
[z =yl &z —yL -z —y.
It follows from (e-RAP) and the oddness gfthat
z]l = llyll = f(z) = f()L = f(z) = fy).

Lemméd 3.1 yields

_ = <
(3.6) 2]l = [lyll = 1+E||f( z)|| < [1f(y) ||f

2. Fix arbitrarilyz, # 0 and define for > 0, p(r) := Hf <|lm ”:p0> H Using [3.6) we have

1+¢
p— <
ol =7 =/ Toe) < 1@ <y T—e(r),

whence

(37) el < 1@ < e llel),  zex.

3. Fort > 0 and||x|| = r we have

1-— 1
1)l € w1+jmwva§§ﬂw1
and
IS € |y Tmter), [ Ttelr)
Since|| f(tx)| = t|| f(x)|| (homogeneity off),

1—¢ 1+¢
t
el ,\/1_690(7")10
Thus there exisk, u € [, /}—;z, \ /}—jﬂ such that\p(tr) = ute(r), whence

1-— 1+¢
———t < optr) < ——t¢ .
telr) < pltr) < Tte(r)

In particular, forr = 1 andk := ¢(1) we get

ﬂ]#@

(3.8)

1
)< —<kt,  t>0.
1+e¢ 1—c¢
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4. Using [3.7) and (3]8), we get

1+4+¢ +5 1+4¢
IfF @ </ y—zellel) <472 1=
and
1—-¢ 1—¢ 1—c¢
> > .
IF@I =\ elllal) =y 7o T
whence[(3.p) is proved. O

Fore = 0 we get||f(x)| = k||z| for x € X and, from [2.IB),f is additive hence linear.
Thusf is a similarity.

4. SOME STABILITY PROBLEMS
The stability of the orthogonality preserving property has been studiéd in [3]. We present the
main result from that paper which will be used in this section.

Theorem 4.1([3, Theorem 4]) Let X, Y be inner product spaces and I&tbe finite-dimensional.
Then, there exists a continuous functin|0, 1) — [0, +oc0) with the propertylim, o+ d(¢) =

0 such that for each linear mapping: X — Y satisfying [f-OF) one finds a linear, orthogo-
nality preserving ond’ : X — Y such that

1f =TI < o(e) min{|[ 1], [|T°[}}-

The mapping’ depends, actually, only on the dimension)of Immediately, we have from
the above theorem:

Corollary 4.2. Let X,Y be inner product spaces and lat be finite-dimensional. Then, for
eachd > 0 there existg > 0 such that for each linear mapping: X — Y satisfying {£-OF)
one finds a linear, orthogonality preserving ofie X — Y such that
If =TI < dmin{|[f]l, [T}
We start our considerations with the following observation.

Proposition 4.3. Let f : X — Y satisfy [RAP) andf(0) = 0. Suppose thay : X — Y
satisfies

[f(z) —g(@)| < M| f(z)l, zeX
with some constant/ < l. Theng satisfiesl{-OP) withe := a (M+)2 and
(4.1) lg(z +y) —g(z) — gl < 2ve(llg@) I+ lg@)), =y € X;
(4.2) lg(Az) = Ag(@)[| < 2vEMllg(@)],  2€X, AeR.

Proof. It follows from Theorenj 1]1 that for some > 0, f satisfies[(1]2) and (T.1). Thus we
have for arbitraryr, y € X:

| (9(2)1g(y)) = ~* (x]y) |
= [(g(z) = f(@)]g(y) — f(y)) +
+ (f(@)|g(y) — f(y)) |
<lg(x) = f@)lllgy) = fFI + lg(@) = fF@) M F W)l
+ £ @)lg(y) = fFW)
< M| F(@) @I+ MIF @)L @)+ M@ @)
= M(M +2)7*||z[l[[y]-

(g(x) = f(@)[f(v))
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Using [1, Lemma 2], we get, for arbitramyy € X, A € R:

lg(z +y) — g(z) — gW)|| <2/ MM + 2)y([|l[| + ly)
MM +2)([| f (@) + [1f@)I]);
lg(Az) — Ag(@)|| < 2/ M (M + 2)7|)\|||$||
=2/ M (M + 2)||[| f (x
Since|| f(z)|| — [lg()I| < M| f(x)],

I < bl
Therefore
[ {9(@)lg(y)) —~* (zly) | < %Hg( )Ig@)Il-
Puttinge := M(M+)2 we haver Ly = g(z) 15 ¢(y) and

lg(z +y) — g(x) — gl < 2Ve(llg(@)] + lg)Il)
lg(Ax) — Ag(@)|| < 2ve[A|||lg(2)].
O

Corollary 4.4. If f satisfies!)f = 0 (whencef is linear) andg : X — Y is a linear
mapping satisfying, withh/ <

(4.3) 1 = gll < MI|Fll,
theng is (-OF) (and linear) whencég{RAR).

The above result yields a natural question if the reverse statement is true. Namely, we may
ask if for a linear mapping : X — Y satisfying f-RAP) (with somes > 0) there exists a
(linear) mappingf satisfying [RAP) such that an estimation of the (4.3) type holds.

A particular solution to this problem follows easily from Theorenj 4.1.

Theorem 4.5.Let X be a finite-dimensional inner product space andn arbitrary one. There
exists a mapping : [0,1) — R, satisfyinglim. .o+ d(¢) = 0 and such that for each linear
mapping satisfyindstRAR)g : X — Y there existsf : X — Y satisfying[[RAP) and such that

(4.4) 1 = gll < () min[| £}, lg]l}-

Proof. If ¢ is linear and satisfieg{RAR), theng is linear and satisfieg{OR). It follows then
from Theorenj 4]1 that there exisfdinear and satisfyind (QP), whende (RAP), such thaf| (4.4)
holds. O

Corollary 4.6. Let X be a finite-dimensional inner product space aridan arbitrary one.
Then, for eachh > 0 there existss > 0 such that for each linear and satisfying-RAR)
mappingg : X — Y there existy : X — Y satisfying [[RAP) and such that

1f = gll < min[|f]], lg]l}-

Itis an open problem to verify if the above result remains true in the infinite dimensional case
or without the linearity assumption.
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5. ON MAPPINGS PRESERVING A PARTICULAR VALUE OF THE INNER PRODUCT

The following considerations have been inspired by a question of L. Reich during the 43rd
ISFE. In this sectionX andY are inner product spaces over the fi@&dof real or complex
numbers. Letf : X — Y and suppose that, for a fixed numbher K, f preserves this
particular value of the inner product, i.e.,

(5.1) Va,y € X (zly) = c= (f(2)|f(y)) =
If ¢ = 0, the condition[(5.]1) simply means thApreserves orthogonality, i.e., thAsatisfies
GH).

We will show that the solutions of (5.1) behave differently o+ 0 and forc # 0.

Obviously, if f satisfies[(1]3) therf also satisfieq (51), with an arbitrary The converse
is not true, neither withr = 0 (cf. examples mentioned in the Introduction) nor with% 0.
Indeed, ifc > 0, then fixingzy, € X such that|zo||> = ¢, a constant mapping(z) = =,
x € X satisfies[(5]1) but nof (1.3). Another example: }et= Y = C and let0 # ¢ € C.
Define

f(z) =2, 2e€C\{0}; f(0):=0.

Qo

Then, forz,w € C\ {0}

cl®

(f () f(w)) = o

and, in particular, if z|w) = ¢, then(f(z)|f(w)) = c. Thusf satisfies[(5]1) but nof (I.3).

Let us restrict our investigations to the class of linear mappings. As we will see below (Corol-
lary[5.2), a linear solution of (5.1), with=£ 0, satisfies[(1]3).

Let us discuss a stability problem. For fixeg: ¢ € K ands > 0 we consider the condition

(5.2) Ve,y e X (zly) = = [(f(@)[f(y) —d <e

Theorem 5.1. For a finite-dimensional inner product spaéé and an arbitrary inner product
spaceY there exists a continuous mapping R, — R, satisfyinglim. .o+ 6(¢) = 0 and
such that for each linear mapping : X — Y satisfying(5.2) there exists a linear isometry
I : X — Y such that

If =1l < d(e).

Proof. Let0 # d € K. If (z|y) = d, then{<z|y) = ¢ and hence, using (§.2) and homogeneity
of f, |d|| (f(z)|f(y)) — d| < e. Therefore we have (fat # 0)

d
(5.9 () = d = | @)l 0) ~ dl < e
Now, letd = 0. Let0 # d,, € K andlim,, .., d,, = 0. Suppose thatz|y) = d = 0 andy # 0.
Then<:c + @L“%|y> = d,, and thus, from[(5]3) and linearity gf

< =

(@) + )~ do] < Tl

|y
Lettingn — oo we obtain(f(z)|f(y)) = 0. Fory = 0 the latter equality is obvious.
Summing up, we obtain that

| (@) (y)) = (zly) | <

|l

[ {zly)]

¢]
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whence also
(5.4) [ {(f(@)|f(y) — (zly) | < ||HwHHyH

Letd’ : Ry — R, be a mapping from the assertion of Theofenj 1.3. Defiag:= §'(</|c|)
and notice thalim. .o+ 6(¢) = 0. Then it follows from [(5.4) that there exists a linear isometry

I : X — Y such that
If—1] <3 (‘ |) — 5(e).
]

For e = 0 we obtain from the above result (we can omit the assumption concerning the
dimension ofX in this case, considering a subspace spanned on given vecioes X):

Corollary 5.2. Let f : X — Y be linear and satisfy5.1)), with some0 # ¢ € K. Thenf
satisfieq(T.3).
Notice that forc = 0, the condition[(5.2) has the form

(zly) = 0= [{f()fy) | <e

If (x|y) = 0, then also(nz|y) = 0 for all n € N. Thus|(f(nz)|f(y))| < e, whence
| (f(2)|f(y )> | < £ forn € N. Lettingn — oo one gets

Vo,y € X (zly) = 0= (f(2)|f(y) =

i.e, f is a linear, orthogonality preserving mapping.
Now, let us replace the condition (b.2) by

(5.5) Va,y € X (zly) = ¢ = [ (f(@)|f () — o <ellf@)I[f W)

Forc = 0, (5.5) states thaf satisfies{-OR).
Let us consider the class of linear mappings satisfyjing (5.5) avj#h.

We proceed similarly as in the proof of Theorgm|5.1. Qet d € K. If (z]y) = d, then
(<z|y) = cand hence, using (8.5) and homogeneity pfve obtain

]

e

—d :
|d|| (f@)f(y) —d| < ] 1 ()IIf ()l
Therefore we have (faf # 0)
(5.6) (zly) = d = [ (f(2)|f(y)) —d] <ellf@)[f W]
Now, suppose thatc|y) = d = 0. Let0 # d,, € Kandlim,, .., d,, = 0. Then<x + de%fély> =
d,, and thus, from[(516) and linearity gf

d
flz) +

d,
’<f<x>+||y”2 W)/ >> , )| 1761

Lettingn — oo we obtain| (f(«)|f(y)) | < <|lf ()]l f(»)]l. So we have
(@ly) = 0= | (f(@)fW) | < el f@)f I

Summing up, we obtain that

(5.7) | @) = @l | <ellf@IIFQI, vye X

Putting in the above inequality = y we get]| f(x)|| < J=L for » € X, which gives

[(F@)IF )~ (el | <

<e

lalllsll, 2y e X,
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i.e., f satisfies[(14) with the constapt-.
Therefore, applying Theorejm 1.3, we get

Theorem 5.3.1f X is a finite-dimensional inner product space arién arbitrary inner product
space, then there exists a continuous mappin®R, — R, with lim. o+ 6(¢) = 0 such that
for a linear mappingf : X — Y satisfying(5.5), with ¢ # 0, there exists a linear isometry
I : X — Y such that

If =1l < d(e).

A converse theorem is also true, even with no restrictions concerning the dimensian of
Let] : X — Y be alinear isometry and : X — Y a mapping, not necessarily linear, such
that

If(x) = I(x)]| <6z, xeX
with § = 4/ 11++25 1 (for a givens > 0). Reasoning similarly as in the proof of Prop05|4 3

one can show that

| (F@)f(Y)) = (ly) [ < (5 + 2)[=[l[lyl],

which implies

1
ol < /(@)1
and finally
(L) ~ (bl < 252 L@
= ellf @I f W)l

Thus f satisfies[(5)5) with an arbitrary

Remark 5.4. From Theoremf 5|1 arnd 5.3 one can derive immediately the stability results for-
mulated as in Corollariés 4.2 and#4.6.
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