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ABSTRACT. Referring to previous papers on orthogonality preserving mappings we deal with
some relations, connected with orthogonality, which are preserved exactly or approximately. In
particular, we investigate the class of mappings approximately preserving the right-angle. We
show some properties similar to those characterizing mappings which exactly preserve the right-
angle. Besides, some kind of stability of the considered property is established. We study also
the property that a particular valuec of the inner product is preserved. We compare the case
c 6= 0 with c = 0, i.e., with orthogonality preserving property. Also here some stability results
are given.
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1. PREREQUISITES

Let X andY be real inner product spaces with the standard orthogonality relation⊥. For a
mappingf : X → Y it is natural to consider theorthogonality preserving property:

(OP) ∀x, y ∈ X : x⊥y ⇒ f(x)⊥f(y).

The class of solutions of (OP) contains also very irregular mappings (cf. [1, Examples 1 and
2]). On the other hand, alinear solutionf of (OP) has to be a linear similarity, i.e., it satisfies
(cf. [1, Theorem 1])

(1.1) ‖f(x)‖ = γ‖x‖, x ∈ X

or, equivalently,

(1.2) 〈f(x)|f(y)〉 = γ2 〈x|y〉 , x, y ∈ X
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with someγ ≥ 0 (γ > 0 for f 6= 0). (More generally, a linear mapping between real normed
spaces which preserves the Birkhoff-James orthogonality has to satisfy (1.1) – see [5].) There-
fore, linear orthogonality preserving mappings are not far from inner product preserving map-
pings (linear isometries), i.e., solutions of the functional equation:

(1.3) ∀x, y ∈ X : 〈f(x)|f(y)〉 = 〈x|y〉 .
A property similar to (OP) was introduced by Kestelman and Tissier (see [6]). One says that

f has theright-angle preserving propertyiff:

(RAP) ∀x, y, z ∈ X : x− z⊥y − z ⇒ f(x)− f(z)⊥f(y)− f(z).

For the solutions of (RAP) it is known (see [6]) that they must be affine, continuous similarities
(with respect to some point).

It is easily seen that iff satisfies (RAP) then, for an arbitraryy0 ∈ Y , the mappingf + y0

satisfies (RAP) as well. In particular,f0 := f − f(0) satisfies (RAP) andf0(0) = 0.
Summing up we have:

Theorem 1.1.The following conditions are equivalent:

(i) f satisfies (RAP) andf(0) = 0;
(ii) f satisfies (OP) andf is continuous and linear;

(iii) f satisfies (OP) andf is linear;
(iv) f is linear and satisfies(1.1) for some constantγ ≥ 0;
(v) f satisfies(1.2) for some constantγ ≥ 0;

(vi) f satisfies (OP) andf is additive.

Proof. (i)⇒(ii) follows from [6] (see above); (ii)⇒(iii) is trivial; (iii) ⇒(iv) follows from [1]
(see above); (iv)⇒(v) by use of the polarization formula and (v)⇒(vi)⇒(i) is trivial. �

In particular, one can consider a real vector spaceX with two inner products〈·|·〉1 and〈·|·〉2
andf = id|X a linear and continuous mapping between(X, 〈·|·〉1) and(X, 〈·|·〉2). Then we
obtain from Theorem 1.1:

Corollary 1.2. Let X be a real vector space equipped with two inner products〈·|·〉1 and〈·|·〉2
generating the norms‖ · ‖1, ‖ · ‖2 and orthogonality relations⊥1, ⊥2, respectively. Then the
following conditions are equivalent:

(i) ∀x, y, z ∈ X : x− z⊥1y − z ⇒ x− z⊥2y − z;
(ii) ∀x, y ∈ X : x⊥1y ⇒ x⊥2y;

(iii) ‖x‖2 = γ‖x‖1 for x ∈ X with some constantγ > 0;
(iv) 〈x|y〉2 = γ2 〈x|y〉1 for x, y ∈ X with some constantγ > 0;
(v) ∀x, y, z ∈ X : x− z⊥1y − z ⇔ x− z⊥2y − z;

(vi) ∀x, y ∈ X : x⊥1y ⇔ x⊥2y.

For ε ∈ [0, 1) we define anε-orthogonality by

u⊥ε v :⇔ | 〈u|v〉 | ≤ ε‖u‖‖v‖.
(Some remarks on how to extend this definition to normed or semi-inner product spaces can be
found in [2].)

Then, it is natural to consider an approximate orthogonality preserving (a.o.p.) property:

(ε-OP) ∀x, y ∈ X : x⊥y ⇒ f(x)⊥ε f(y)

and the approximate right-angle preserving (a.r.a.p.) property:

(ε-RAP) ∀x, y, z ∈ X : x− z⊥y − z ⇒ f(x)− f(z)⊥ε f(y)− f(z).
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The class of linear mappings satisfying (ε-OP) has been considered by the author (cf. [1,
3]). In the present paper we are going to deal with mappings satisfying (ε-RAP) and, in the
last section, with mappings which preserve (exactly or approximately) a given value of the
inner product. We will deal also with some stability problems. (For basic facts concerning the
background and main results in the theory of stability of functional equations we refer to [4].)
The following result establishing the stability of equation (1.3) has been proved in [3] and will
be used later on.

Theorem 1.3 ([3], Theorem 2). Let X and Y be inner product spaces and letX be finite-
dimensional. Then, there exists a continuous mappingδ : R+ → R+ such thatlimε→0+ δ(ε) = 0
which satisfies the following property: For each mappingf : X → Y (not necessarily linear)
satisfying

(1.4) | 〈f(x)|f(y)〉 − 〈x|y〉 | ≤ ε‖x‖‖y‖, x, y ∈ X

there exists a linear isometryI : X → Y such that

‖f(x)− I(x)‖ ≤ δ(ε)‖x‖, x ∈ X.

2. ADDITIVITY OF APPROXIMATELY RIGHT -ANGLE PRESERVING M APPINGS

Tissier [6] showed that a mappingf satisfying the (RAP) property has to be additive up to
a constantf(0). Following his idea we will show that a.r.a.p. mappings are, in some sense,
quasi-additive. We start with the following lemma.

Lemma 2.1. Let X be a real inner product space. Let a set of pointsa, b, c, d, e ∈ X satisfies
the following relations, withε ∈ [0, 1

8
),

(2.1) a− b⊥ε c− b, b− c⊥ε d− c, c− d⊥ε a− d, d− a⊥ε b− a;

(2.2) a− e⊥ε b− e, b− e⊥ε c− e, c− e⊥ε d− e, d− e⊥ε a− e.

Then, ∥∥∥∥e− a + c

2

∥∥∥∥ ≤ δ‖a− c‖

with δ :=
√

3ε
1−4ε

.

Proof. We have

‖c− e‖2 = ‖e− a + a− c‖2 = ‖e− a‖2 + ‖a− c‖2 + 2 〈e− a|a− c〉
whence

〈e− a|a− c〉 =
‖c− e‖2 − ‖a− e‖2 − ‖a− c‖2

2
.

Thus ∥∥∥∥e− a + c

2

∥∥∥∥2

=

∥∥∥∥e− a +
a− c

2

∥∥∥∥2

= ‖e− a‖2 +
1

4
‖a− c‖2 + 〈e− a|a− c〉

= ‖e− a‖2 +
1

4
‖a− c‖2 +

1

2
‖c− e‖2 − 1

2
‖a− e‖2 − 1

2
‖a− c‖2

=
1

2
‖a− e‖2 +

1

2
‖c− e‖2 − 1

4
‖a− c‖2.
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Finally,

(2.3)

∥∥∥∥e− a + c

2

∥∥∥∥2

=
1

4

(
2‖a− e‖2 + 2‖c− e‖2 − ‖a− c‖2

)
and, analogously,

(2.4)

∥∥∥∥e− b + d

2

∥∥∥∥2

=
1

4

(
2‖b− e‖2 + 2‖d− e‖2 − ‖b− d‖2

)
.

Adding the equalities:

‖a− b‖2 = ‖a− e + e− b‖2 = ‖a− e‖2 + ‖e− b‖2 + 2 〈a− e|e− b〉 ,
‖b− c‖2 = ‖b− e + e− c‖2 = ‖b− e‖2 + ‖e− c‖2 + 2 〈b− e|e− c〉 ,
‖c− d‖2 = ‖c− e + e− d‖2 = ‖c− e‖2 + ‖e− d‖2 + 2 〈c− e|e− d〉 ,
‖d− a‖2 = ‖d− e + e− a‖2 = ‖d− e‖2 + ‖e− a‖2 + 2 〈d− e|e− a〉

one gets

(2.5) ‖a− b‖2 + ‖b− c‖2 + ‖c− d‖2 + ‖d− a‖2

= 2‖a− e‖2 + 2‖b− e‖2 + 2‖c− e‖2 + 2‖d− e‖2

+ 2 〈a− e|e− b〉+ 2 〈b− e|e− c〉
+ 2 〈c− e|e− d〉+ 2 〈d− e|e− a〉 .

Similarly, adding

‖a− c‖2 = ‖a− b + b− c‖2 = ‖a− b‖2 + ‖b− c‖2 + 2 〈a− b|b− c〉 ,
‖a− c‖2 = ‖a− d + d− c‖2 = ‖a− d‖2 + ‖d− c‖2 + 2 〈a− d|d− c〉 ,
‖b− d‖2 = ‖b− a + a− d‖2 = ‖b− a‖2 + ‖a− d‖2 + 2 〈b− a|a− d〉 ,
‖b− d‖2 = ‖b− c + c− d‖2 = ‖b− c‖2 + ‖c− d‖2 + 2 〈b− c|c− d〉

one gets

(2.6) ‖a− c‖2 + ‖b− d‖2 = ‖a− b‖2 + ‖a− d‖2 + ‖c− b‖2 + ‖c− d‖2

+ 〈a− b|b− c〉+ 〈a− d|d− c〉
+ 〈b− a|a− d〉+ 〈b− c|c− d〉 .

Using (2.3) – (2.6) we derive∥∥∥∥e− a + c

2

∥∥∥∥2

+

∥∥∥∥e− b + d

2

∥∥∥∥2

(2.3),(2.4)
=

2‖a− e‖2 + 2‖c− e‖2 + 2‖b− e‖2 + 2‖d− e‖2 − ‖a− c‖2 − ‖b− d‖2

4
(2.5)
=

1

4

(
‖b− c‖2 + ‖c− d‖2 + ‖d− a‖2 + ‖a− b‖2

− 2 〈b− e|e− c〉 − 2 〈c− e|e− d〉 − 2 〈d− e|e− a〉

− 2 〈a− e|e− b〉 − ‖a− c‖2 − ‖b− d‖2
)
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(2.6)
= −1

4

(
〈a− b|b− c〉+ 〈a− d|d− c〉+ 〈b− a|a− d〉+ 〈b− c|c− d〉

+ 2 〈b− e|e− c〉+ 2 〈c− e|e− d〉+ 2 〈d− e|e− a〉+ 2 〈a− e|e− b〉
)
.

Thus∥∥∥∥e− a + c

2

∥∥∥∥2

+

∥∥∥∥e− b + d

2

∥∥∥∥2

≤ 1

4

(
| 〈a− b|b− c〉 |+ | 〈a− d|d− c〉 |+ | 〈b− a|a− d〉 |

+ | 〈b− c|c− d〉 |+ 2| 〈b− e|e− c〉 |+ 2| 〈c− e|e− d〉 |

+ 2| 〈d− e|e− a〉 |+ 2| 〈a− e|e− b〉 |
)
.

Using the assumptions (2.1) and (2.2), we obtain∥∥∥∥e− a + c

2

∥∥∥∥2

+

∥∥∥∥e− b + d

2

∥∥∥∥2

(2.7)

≤ 1

4
ε
(
‖a− b‖‖b− c‖+ ‖a− d‖‖d− c‖+ ‖b− a‖‖a− d‖

+ ‖b− c‖‖c− d‖+ 2‖b− e‖‖e− c‖+ 2‖c− e‖‖e− d‖

+ 2‖d− e‖‖e− a‖+ 2‖a− e‖‖e− b‖
)

=
1

4
ε
(
(‖b− c‖+ ‖a− d‖)(‖a− b‖+ ‖c− d‖)

+ 2(‖b− e‖+ ‖d− e‖)(‖a− e‖+ ‖c− e‖)
)
.

Notice, that forε = 0, (2.7) yieldse = a+c
2

= b+d
2

.
Let

% := max{‖a− b‖, ‖b− c‖, ‖c− d‖, ‖d− a‖, ‖a− e‖, ‖b− e‖, ‖c− e‖, ‖d− e‖}.

It follows from (2.7) that∥∥∥∥e− a + c

2

∥∥∥∥2

+

∥∥∥∥e− b + d

2

∥∥∥∥2

≤ 1

4
ε(2% · 2% + 2 · 2% · 2%) = 3ε%2.

Then, in particular

(2.8)

∥∥∥∥e− a + c

2

∥∥∥∥2

≤ 3ε%2.

Since we do not know for which distance the value% is attained, we are going to consider a
few cases.

(1) % ∈ {‖a− b‖, ‖b− c‖, ‖c− d‖, ‖d− a‖}.
Suppose that% = ‖a− b‖ (other possibilities in this case are similar). Then

‖a− c‖2 = ‖a− b + b− c‖2

= ‖a− b‖2 + ‖b− c‖2 + 2 〈a− b|b− c〉
≥ %2 + 0− 2ε‖a− b‖‖b− c‖
≥ %2 − 2ε%2 = (1− 2ε)%2.
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Assumingε < 1
2
,

%2 ≤ 1

1− 2ε
‖a− c‖2.

Using (2.8) we have ∥∥∥∥e− a + c

2

∥∥∥∥2

≤ 3ε

1− 2ε
‖a− c‖2

whence

(2.9)

∥∥∥∥e− a + c

2

∥∥∥∥ ≤
√

3ε

1− 2ε
‖a− c‖.

(2) % ∈ {‖a− e‖, ‖c− e‖}.
Suppose that% = ‖a− e‖ (the other possibility is similar). Then, from (2.3), we have

1

4
‖a− c‖2 +

∥∥∥∥e− a + c

2

∥∥∥∥2

=
1

2
‖a− e‖2 +

1

2
‖c− e‖2 ≥ 1

2
%2,

whence

%2 ≤ 1

2
‖a− c‖2 + 2

∥∥∥∥e− a + c

2

∥∥∥∥2

.

From it and (2.8) we get∥∥∥∥e− a + c

2

∥∥∥∥2

≤ 3ε%2 ≤ 3ε

2
‖a− c‖2 + 6ε

∥∥∥∥e− a + c

2

∥∥∥∥2

whence (assumingε < 1
6
)

(2.10)

∥∥∥∥e− a + c

2

∥∥∥∥ ≤
√

3ε

2(1− 6ε)
‖a− c‖.

(3) % ∈ {‖b− e‖, ‖d− e‖}.
Suppose that% = ‖b− e‖ (the other possibility is similar). We have then

‖b− a‖2 = ‖b− e + e− a‖2

= ‖b− e‖2 + ‖e− a‖2 + 2 〈b− e|e− a〉
≥ %2 + 0− 2ε‖b− e‖‖e− a‖
≥ %2 − 2ε%2 = (1− 2ε)%2,

whence
‖b− a‖2 ≥ (1− 2ε)%2.

Using this estimation we have

‖a− c‖2 = ‖a− b + b− c‖2

= ‖a− b‖2 + ‖b− c‖2 + 2 〈a− b|b− c〉
≥ (1− 2ε)%2 + 0− 2ε‖a− b‖‖b− c‖
≥ (1− 2ε)%2 − 2ε%2

= (1− 4ε)%2,

whence (forε < 1
4
)

%2 ≤ 1

1− 4ε
‖a− c‖2.
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Using (2.8) we get∥∥∥∥e− a + c

2

∥∥∥∥2

≤ 3ε%2 ≤ 3ε

1− 4ε
‖a− c‖2

and

(2.11)

∥∥∥∥e− a + c

2

∥∥∥∥ ≤
√

3ε

1− 4ε
‖a− c‖.

Finally, assumingε < 1
8
, we have

max

{√
3ε

1− 2ε
,

√
3ε

2(1− 6ε)
,

√
3ε

1− 4ε

}
=

√
3ε

1− 4ε

and it follows from (2.9) – (2.11)∥∥∥∥e− a + c

2

∥∥∥∥ ≤
√

3ε

1− 4ε
‖a− c‖,

which completes the proof.
�

Theorem 2.2. Let X andY be real inner product spaces and letf : X → Y satisfy (ε-RAP)
with ε < 1

8
. Thenf satisfies

(2.12)

∥∥∥∥f

(
x + y

2

)
− f(x) + f(y)

2

∥∥∥∥ ≤ δ‖f(x)− f(y)‖ for x, y ∈ X

with δ =
√

3ε
1−4ε

.

Moreover, if additionallyf(0) = 0, thenf satisfies (ε-OP) and

(2.13) ‖f(x + y)− f(x)− f(y)‖ ≤ 2δ(‖f(x + y)‖+ ‖f(x)− f(y)‖), for x, y ∈ X.

Proof. Fix arbitrarily x, y ∈ X. The casex = y is obvious. Assumex 6= y. Chooseu, v ∈ X
such thatx, u, y, v are consecutive vertices of a square with the center atx+y

2
. Denote

a := f(x), b := f(u), c := f(y), d := f(v), e := f

(
x + y

2

)
.

Sincex−u⊥y−u, u−y⊥v−y, y−v⊥x−v, v−x⊥u−x andx− x+y
2
⊥u− x+y

2
, u− x+y

2
⊥y− x+y

2
,

y− x+y
2
⊥v− x+y

2
, v− x+y

2
⊥x− x+y

2
, it follows from (ε-RAP) that the conditions (2.1) and (2.2)

are satisfied. The assertion of Lemma 2.1 yields (2.12).
For the second assertion, it is obvious thatf satisfies (ε-OP). Inequality (2.13) follows from

(2.12). Indeed, puttingy = 0 we get∥∥∥∥f
(x

2

)
− f(x)

2

∥∥∥∥ ≤ δ‖f(x)‖, x ∈ X.

Now, for x, y ∈ X

‖f(x + y)−f(x)− f(y)‖

= 2

∥∥∥∥f(x + y)

2
− f

(
x + y

2

)
+ f

(
x + y

2

)
− f(x) + f(y)

2

∥∥∥∥
≤ 2

∥∥∥∥f(x + y)

2
− f

(
x + y

2

)∥∥∥∥ + 2

∥∥∥∥f

(
x + y

2

)
− f(x) + f(y)

2

∥∥∥∥
≤ 2δ‖f(x + y)‖+ 2δ‖f(x)− f(y)‖.

�
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For ε = 0 we obtain that iff satisfies (RAP) andf(0) = 0, thenf is additive.
The following, reverse in a sense, statement is easily seen.

Lemma 2.3. If f satisfies (ε-OP) andf is additive, thenf satisfies (ε-RAP) andf(0) = 0.

Example 2 in [1] shows that it is not possible to omit completely the additivity assumption
in the above lemma. However, the problem arises if additivity can be replaced by a weaker
condition (e.g. by (2.13)). This problem remains open.

3. APPROXIMATE RIGHT -ANGLE PRESERVING M APPINGS ARE APPROXIMATE

SIMILARITIES

As we know from [6], a right-angle preserving mappings are similarities. Our aim is to show
that a.r.a.p. mappings behave similarly. We start with a technical lemma.

Lemma 3.1. Leta, x ∈ X andε ∈ [0, 1). Then

(3.1) (a− x)⊥ε (−a− x)

if and only if

(3.2)
∣∣‖x‖2 − ‖a‖2

∣∣ ≤ 2ε√
1− ε2

√
‖a‖2‖x‖2 − 〈a|x〉2.

Moreover, it follows from(3.1) that

(3.3)

√
1− ε

1 + ε
‖a‖ ≤ ‖x‖ ≤

√
1 + ε

1− ε
‖a‖.

Proof. The condition (3.1) is equivalent to:

| 〈a + x|a− x〉 | ≤ ε‖a + x‖‖a− x‖,∣∣‖a‖2 − ‖x‖2
∣∣ ≤ ε

√
‖a‖2 + 2 〈a|x〉+ ‖x‖2

√
‖a‖2 − 2 〈a|x〉+ ‖x‖2,(

‖a‖2 − ‖x‖2
)2 ≤ ε2(‖a‖2 + ‖x‖2 + 2 〈a|x〉)(‖a‖2 + ‖x‖2 − 2 〈a|x〉)

= ε2
(
(‖a‖2 + ‖x‖2)2 − 4 〈a|x〉2

)
= ε2

(
(‖a‖2 − ‖x‖2)2 + 4‖a‖2‖x‖2 − 4 〈a|x〉2

)
,

and finally
(1− ε2)(‖a‖2 − ‖x‖2)2 ≤ 4ε2

(
‖a‖2‖x‖2 − 〈a|x〉2

)
which is equivalent to (3.2).

Inequality (3.2) implies ∣∣‖x‖2 − ‖a‖2
∣∣ ≤ 2ε√

1− ε2
‖a‖‖x‖,

which yields

(3.4)

∣∣∣∣‖x‖‖a‖
− ‖a‖
‖x‖

∣∣∣∣ ≤ 2ε√
1− ε2

(we assumex 6= 0 and a 6= 0, otherwise the assertion of the lemma is trivial). Denoting
t := ‖x‖

‖a‖ > 0 andα := 2ε√
1−ε2 , the inequality (3.4) can be written in the form

|t− t−1| ≤ α
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with a solution
−α +

√
α2 + 4

2
≤ t ≤ α +

√
α2 + 4

2
.

Therefore, √
1− ε

1 + ε
≤ ‖x‖
‖a‖

≤
√

1 + ε

1− ε

whence (3.3) is satisfied. �

Theorem 3.2. If f : X → Y is homogeneous and satisfies (ε-RAP), then with somek ≥ 0:

(3.5) k ·
(

1− ε

1 + ε

) 3
2

‖x‖ ≤ ‖f(x)‖ ≤ k ·
(

1 + ε

1− ε

) 3
2

‖x‖, x ∈ X.

Proof. 1. For arbitraryx, y ∈ X we have

‖x‖ = ‖y‖ ⇔ x− y⊥− x− y.

It follows from (ε-RAP) and the oddness off that

‖x‖ = ‖y‖ ⇒ f(x)− f(y)⊥ε − f(x)− f(y).

Lemma 3.1 yields

(3.6) ‖x‖ = ‖y‖ ⇒
√

1− ε

1 + ε
‖f(x)‖ ≤ ‖f(y)‖ ≤

√
1 + ε

1− ε
‖f(x)‖.

2. Fix arbitrarilyx0 6= 0 and define forr ≥ 0, ϕ(r) :=
∥∥∥f

(
r

‖x0‖x0

)∥∥∥. Using (3.6) we have

‖x‖ = r ⇒
√

1− ε

1 + ε
ϕ(r) ≤ ‖f(x)‖ ≤

√
1 + ε

1− ε
ϕ(r),

whence

(3.7)

√
1− ε

1 + ε
ϕ(‖x‖) ≤ ‖f(x)‖ ≤

√
1 + ε

1− ε
ϕ(‖x‖), x ∈ X.

3. Fort ≥ 0 and‖x‖ = r we have

‖f(tx)‖ ∈

[√
1− ε

1 + ε
ϕ(tr),

√
1 + ε

1− ε
ϕ(tr)

]
and

t‖f(x)‖ ∈

[√
1− ε

1 + ε
tϕ(r),

√
1 + ε

1− ε
tϕ(r)

]
.

Since‖f(tx)‖ = t‖f(x)‖ (homogeneity off ),[√
1− ε

1 + ε
ϕ(tr),

√
1 + ε

1− ε
ϕ(tr)

]
∩

[√
1− ε

1 + ε
tϕ(r),

√
1 + ε

1− ε
tϕ(r)

]
6= ∅.

Thus there existλ, µ ∈
[√

1−ε
1+ε

,
√

1+ε
1−ε

]
such thatλϕ(tr) = µtϕ(r), whence

1− ε

1 + ε
tϕ(r) ≤ ϕ(tr) ≤ 1 + ε

1− ε
tϕ(r).

In particular, forr = 1 andk := ϕ(1) we get

(3.8)
1− ε

1 + ε
kt ≤ ϕ(t) ≤ 1 + ε

1− ε
kt, t ≥ 0.
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4. Using (3.7) and (3.8), we get

‖f(x)‖ ≤
√

1 + ε

1− ε
ϕ(‖x‖) ≤

√
1 + ε

1− ε
· 1 + ε

1− ε
k‖x‖

and

‖f(x)‖ ≥
√

1− ε

1 + ε
ϕ(‖x‖) ≥

√
1− ε

1 + ε
· 1− ε

1 + ε
k‖x‖

whence (3.5) is proved. �

For ε = 0 we get‖f(x)‖ = k‖x‖ for x ∈ X and, from (2.13),f is additive hence linear.
Thusf is a similarity.

4. SOME STABILITY PROBLEMS

The stability of the orthogonality preserving property has been studied in [3]. We present the
main result from that paper which will be used in this section.

Theorem 4.1([3, Theorem 4]). LetX, Y be inner product spaces and letX be finite-dimensional.
Then, there exists a continuous functionδ : [0, 1) → [0, +∞) with the propertylimε→0+ δ(ε) =
0 such that for each linear mappingf : X → Y satisfying (ε-OP) one finds a linear, orthogo-
nality preserving oneT : X → Y such that

‖f − T‖ ≤ δ(ε) min{‖f‖, ‖T‖}.
The mappingδ depends, actually, only on the dimension ofX. Immediately, we have from

the above theorem:

Corollary 4.2. Let X, Y be inner product spaces and letX be finite-dimensional. Then, for
eachδ > 0 there existsε > 0 such that for each linear mappingf : X → Y satisfying (ε-OP)
one finds a linear, orthogonality preserving oneT : X → Y such that

‖f − T‖ ≤ δ min{‖f‖, ‖T‖}.
We start our considerations with the following observation.

Proposition 4.3. Let f : X → Y satisfy (RAP) andf(0) = 0. Suppose thatg : X → Y
satisfies

‖f(x)− g(x)‖ ≤ M‖f(x)‖, x ∈ X

with some constantM < 1
4
. Theng satisfies (ε-OP) withε := M(M+2)

(1−M)2
and

(4.1) ‖g(x + y)− g(x)− g(y)‖ ≤ 2
√

ε(‖g(x)‖+ ‖g(y)‖), x, y ∈ X;

(4.2) ‖g(λx)− λg(x)‖ ≤ 2
√

ε|λ|‖g(x)‖, x ∈ X, λ ∈ R.

Proof. It follows from Theorem 1.1 that for someγ ≥ 0, f satisfies (1.2) and (1.1). Thus we
have for arbitraryx, y ∈ X:

| 〈g(x)|g(y)〉 − γ2 〈x|y〉 |
= | 〈g(x)− f(x)|g(y)− f(y)〉+ 〈g(x)− f(x)|f(y)〉

+ 〈f(x)|g(y)− f(y)〉 |
≤ ‖g(x)− f(x)‖‖g(y)− f(y)‖+ ‖g(x)− f(x)‖‖f(y)‖

+ ‖f(x)‖‖g(y)− f(y)‖
≤ M2‖f(x)‖‖f(y)‖+ M‖f(x)‖‖f(y)‖+ M‖f(x)‖‖f(y)‖
= M(M + 2)γ2‖x‖‖y‖.
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Using [1, Lemma 2], we get, for arbitraryx, y ∈ X, λ ∈ R:

‖g(x + y)− g(x)− g(y)‖ ≤ 2
√

M(M + 2)γ(‖x‖+ ‖y‖)

= 2
√

M(M + 2)(‖f(x)‖+ ‖f(y)‖);

‖g(λx)− λg(x)‖ ≤ 2
√

M(M + 2)γ|λ|‖x‖

= 2
√

M(M + 2)|λ|‖f(x)‖.

Since‖f(x)‖ − ‖g(x)‖ ≤ M‖f(x)‖,

‖f(x)‖ ≤ ‖g(x)‖
1−M

.

Therefore

| 〈g(x)|g(y)〉 − γ2 〈x|y〉 | ≤ M(M + 2)

(1−M)2
‖g(x)‖‖g(y)‖.

Puttingε := M(M+2)
(1−M)2

we havex⊥y ⇒ g(x)⊥ε g(y) and

‖g(x + y)− g(x)− g(y)‖ ≤ 2
√

ε(‖g(x)‖+ ‖g(y)‖)
‖g(λx)− λg(x)‖ ≤ 2

√
ε|λ|‖g(x)‖.

�

Corollary 4.4. If f satisfies (RAP),f(0) = 0 (whencef is linear) andg : X → Y is a linear
mapping satisfying, withM < 1

4
,

(4.3) ‖f − g‖ ≤ M‖f‖,

theng is (ε-OP) (and linear) whence (ε-RAP).

The above result yields a natural question if the reverse statement is true. Namely, we may
ask if for a linear mappingg : X → Y satisfying (ε-RAP) (with someε > 0) there exists a
(linear) mappingf satisfying (RAP) such that an estimation of the (4.3) type holds.

A particular solution to this problem follows easily from Theorem 4.1.

Theorem 4.5.LetX be a finite-dimensional inner product space andY an arbitrary one. There
exists a mappingδ : [0, 1) → R+ satisfyinglimε→0+ δ(ε) = 0 and such that for each linear
mapping satisfying (ε-RAP)g : X → Y there existsf : X → Y satisfying (RAP) and such that

(4.4) ‖f − g‖ ≤ δ(ε) min{‖f‖, ‖g‖}.

Proof. If g is linear and satisfies (ε-RAP), theng is linear and satisfies (ε-OP). It follows then
from Theorem 4.1 that there existsf linear and satisfying (OP), whence (RAP), such that (4.4)
holds. �

Corollary 4.6. Let X be a finite-dimensional inner product space andY an arbitrary one.
Then, for eachδ > 0 there existsε > 0 such that for each linear and satisfying (ε-RAP)
mappingg : X → Y there existsf : X → Y satisfying (RAP) and such that

‖f − g‖ ≤ δ min{‖f‖, ‖g‖}.

It is an open problem to verify if the above result remains true in the infinite dimensional case
or without the linearity assumption.
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5. ON M APPINGS PRESERVING A PARTICULAR VALUE OF THE I NNER PRODUCT

The following considerations have been inspired by a question of L. Reich during the 43rd
ISFE. In this sectionX andY are inner product spaces over the fieldK of real or complex
numbers. Letf : X → Y and suppose that, for a fixed numberc ∈ K, f preserves this
particular value of the inner product, i.e.,

(5.1) ∀x, y ∈ X : 〈x|y〉 = c ⇒ 〈f(x)|f(y)〉 = c.

If c = 0, the condition (5.1) simply means thatf preserves orthogonality, i.e., thatf satisfies
(OP).

We will show that the solutions of (5.1) behave differently forc = 0 and forc 6= 0.
Obviously, if f satisfies (1.3) thenf also satisfies (5.1), with an arbitraryc. The converse

is not true, neither withc = 0 (cf. examples mentioned in the Introduction) nor withc 6= 0.
Indeed, ifc > 0, then fixingx0 ∈ X such that‖x0‖2 = c, a constant mappingf(x) = x0,
x ∈ X satisfies (5.1) but not (1.3). Another example: letX = Y = C and let0 6= c ∈ C.
Define

f(z) :=
c

z
, z ∈ C \ {0}; f(0) := 0.

Then, forz, w ∈ C \ {0}

〈f(z)|f(w)〉 =
|c|2

〈z|w〉
and, in particular, if〈z|w〉 = c, then〈f(z)|f(w)〉 = c. Thusf satisfies (5.1) but not (1.3).

Let us restrict our investigations to the class of linear mappings. As we will see below (Corol-
lary 5.2), a linear solution of (5.1), withc 6= 0, satisfies (1.3).

Let us discuss a stability problem. For fixed0 6= c ∈ K andε ≥ 0 we consider the condition

(5.2) ∀x, y ∈ X : 〈x|y〉 = c ⇒ | 〈f(x)|f(y)〉 − c| ≤ ε.

Theorem 5.1. For a finite-dimensional inner product spaceX and an arbitrary inner product
spaceY there exists a continuous mappingδ : R+ → R+ satisfyinglimε→0+ δ(ε) = 0 and
such that for each linear mappingf : X → Y satisfying(5.2) there exists a linear isometry
I : X → Y such that

‖f − I‖ ≤ δ(ε).

Proof. Let 0 6= d ∈ K. If 〈x|y〉 = d, then
〈

c
d
x|y

〉
= c and hence, using (5.2) and homogeneity

of f , |c||d| | 〈f(x)|f(y)〉 − d| ≤ ε. Therefore we have (ford 6= 0)

(5.3) 〈x|y〉 = d ⇒ | 〈f(x)|f(y)〉 − d| ≤ |d|
|c|

ε.

Now, letd = 0. Let 0 6= dn ∈ K andlimn→∞ dn = 0. Suppose that〈x|y〉 = d = 0 andy 6= 0.

Then
〈
x + dny

‖y‖2 |y
〉

= dn and thus, from (5.3) and linearity off ,∣∣∣∣〈f(x) +
dn

‖y‖2
f(y)|f(y)

〉
− dn

∣∣∣∣ ≤ |dn|
|c|

ε.

Lettingn →∞ we obtain〈f(x)|f(y)〉 = 0. Fory = 0 the latter equality is obvious.
Summing up, we obtain that

| 〈f(x)|f(y)〉 − 〈x|y〉 | ≤ | 〈x|y〉 |
|c|

ε
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whence also

(5.4) | 〈f(x)|f(y)〉 − 〈x|y〉 | ≤ ε

|c|
‖x‖‖y‖.

Let δ′ : R+ → R+ be a mapping from the assertion of Theorem 1.3. Defineδ(ε) := δ′(ε/|c|)
and notice thatlimε→0+ δ(ε) = 0. Then it follows from (5.4) that there exists a linear isometry
I : X → Y such that

‖f − I‖ ≤ δ′
(

ε

|c|

)
= δ(ε).

�

For ε = 0 we obtain from the above result (we can omit the assumption concerning the
dimension ofX in this case, considering a subspace spanned on given vectorsx, y ∈ X):

Corollary 5.2. Let f : X → Y be linear and satisfy(5.1), with some0 6= c ∈ K. Thenf
satisfies(1.3).

Notice that forc = 0, the condition (5.2) has the form

〈x|y〉 = 0 ⇒ | 〈f(x)|f(y)〉 | ≤ ε.

If 〈x|y〉 = 0, then also〈nx|y〉 = 0 for all n ∈ N. Thus | 〈f(nx)|f(y)〉 | ≤ ε, whence
| 〈f(x)|f(y)〉 | ≤ ε

n
for n ∈ N. Lettingn →∞ one gets

∀x, y ∈ X : 〈x|y〉 = 0 ⇒ 〈f(x)|f(y)〉 = 0,

i.e,f is a linear, orthogonality preserving mapping.
Now, let us replace the condition (5.2) by

(5.5) ∀x, y ∈ X : 〈x|y〉 = c ⇒ | 〈f(x)|f(y)〉 − c| ≤ ε‖f(x)‖‖f(y)‖.
For c = 0, (5.5) states thatf satisfies (ε-OP).

Let us consider the class of linear mappings satisfying (5.5) withc 6= 0.
We proceed similarly as in the proof of Theorem 5.1. Let0 6= d ∈ K. If 〈x|y〉 = d, then〈

c
d
x|y

〉
= c and hence, using (5.5) and homogeneity off , we obtain

|c|
|d|
| 〈f(x)|f(y)〉 − d| ≤ ε

|c|
|d|
‖f(x)‖‖f(y)‖.

Therefore we have (ford 6= 0)

(5.6) 〈x|y〉 = d ⇒ | 〈f(x)|f(y)〉 − d| ≤ ε‖f(x)‖‖f(y)‖.

Now, suppose that〈x|y〉 = d = 0. Let 0 6= dn ∈ K andlimn→∞ dn = 0. Then
〈
x + dny

‖y‖2 |y
〉

=

dn and thus, from (5.6) and linearity off ,∣∣∣∣〈f(x) +
dn

‖y‖2
f(y)|f(y)

〉
− dn

∣∣∣∣ ≤ ε

∥∥∥∥f(x) +
dn

‖y‖2
f(y)

∥∥∥∥ ‖f(y)‖.

Lettingn →∞ we obtain| 〈f(x)|f(y)〉 | ≤ ε‖f(x)‖‖f(y)‖. So we have

〈x|y〉 = 0 ⇒ | 〈f(x)|f(y)〉 | ≤ ε‖f(x)‖‖f(y)‖.
Summing up, we obtain that

(5.7) | 〈f(x)|f(y)〉 − 〈x|y〉 | ≤ ε‖f(x)‖‖f(y)‖, x, y ∈ X.

Putting in the above inequalityx = y we get‖f(x)‖ ≤ ‖x‖√
1−ε

for x ∈ X, which gives

| 〈f(x)|f(y)〉 − 〈x|y〉 | ≤ ε

1− ε
‖x‖‖y‖, x, y ∈ X,
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i.e.,f satisfies (1.4) with the constantε
1−ε

.
Therefore, applying Theorem 1.3, we get

Theorem 5.3.If X is a finite-dimensional inner product space andY an arbitrary inner product
space, then there exists a continuous mappingδ : R+ → R+ with limε→0+ δ(ε) = 0 such that
for a linear mappingf : X → Y satisfying(5.5), with c 6= 0, there exists a linear isometry
I : X → Y such that

‖f − I‖ ≤ δ(ε).

A converse theorem is also true, even with no restrictions concerning the dimension ofX.
Let I : X → Y be a linear isometry andf : X → Y a mapping, not necessarily linear, such
that

‖f(x)− I(x)‖ ≤ δ‖x‖, x ∈ X

with δ =
√

1+2ε
1+ε

− 1 (for a givenε ≥ 0). Reasoning similarly as in the proof of Proposition 4.3

one can show that
| 〈f(x)|f(y)〉 − 〈x|y〉 | ≤ δ(δ + 2)‖x‖‖y‖,

which implies

‖x‖ ≤ 1√
1− δ(δ + 2)

‖f(x)‖

and finally

|〈f(x)|f(y)〉 − 〈x|y〉| ≤ δ(δ + 2)

1− δ(δ + 2)
‖f(x)‖‖f(y)‖

= ε‖f(x)‖‖f(y)‖.
Thusf satisfies (5.5) with an arbitraryc.

Remark 5.4. From Theorems 5.1 and 5.3 one can derive immediately the stability results for-
mulated as in Corollaries 4.2 and 4.6.
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