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Abstract

In this note, we deal with the Baker's superstability for the following linear func-
tional equations

m

Y [fa+y+a)+fe-y-a)=2f@)f), wyeq,

=1

where G is an abelian group, a1, ..., am (m € N) are arbitrary elements in G
and f is a complex-valued function on G.
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Let G be an abelian group. The main purpose of this paper is to generalize the
results obtained ind] and [5] for the linear functional equations

m

(1.1) d fletyta)=[f(2)fly), wyeq,

=1

m

(1.2) Z[f(f’? tyta)+fle—y-w)=2f()fy), wyed, The Stability of Some Linear

i=1 Functional Equations

whereay, ..., a,, (m € N), are arbitrary elements i@ and f is a complex- Belaid Bouikhalene
valued function ort7. In the case wheré€' is a locally compact group, the form
of L>°(G) solutions of (.1) (resp. (.2)) are determined in’] (resp. []). Some

Title P
particular cases of these linear functional equations are: e Page
Contents
e The linear functional equations
44 44
(1.3) fleaty+a)=[f2)fly), =zyedq, < >
(14)  fle+ty+a)+fle—y—a)=2f()fly), =zyedq, Go Back
(15 flety+a)—fla—y+a)=2f(x)f(y), =zyeQC, o
(16)  fle+y+a)+fle—y+a)=2f()f(y), wzyeG, —
Quit
see[],[7], [6], [ and [ page 3 of 18

e Cauchy’s functional equation
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e D’Alembert’s functional equation

(1.8) flea+y)+ flz+y) =2f(2)f(y), =zyed.
To complete our consideration, we give some applications.

We shall need the results below for later use.
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Proposition 2.1. Leté > 0. LetG be an abelian group and let be a complex-
valued function defined afi such that

m

(2.1) Y flrtyta)-f@)fy|<s wyed,

i=1

then one of the assertions is satisfied

The Stability of Some Linear

I) If f is bounded’ then Functional Equations

(2.2) ‘f(l’)‘ < m + vm? + 40 red Belaid Bouikhalene
: < 5 : :

i) If fis unbounded, then there exists a sequefg,cn in G such that Title Page
f(zn) # 0and lix_nn |f(zn)] = 400 and that the convergence of the se- Contents
guences of functions

_— < >
(2.3) T — fzn+2+0a;), neN, < >
e 2
. Go Back
to the function o=ac
T — f(:c), Close
Quit
1 m
(2.4) x—>f( )Zf(zn+x+y+aj+ai), Page 5 of 18
Zn) <
=1
n e N, 1< j <m,ye G’ J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004
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to the function
r— flx+y+a;),

is uniform.
Proof. i) Let X = sup]|f|, then for allz € G we have
|f(z) f(z)] <mX +6
from which we obtain that
X?—mX—-6<0
hence

+vm? 446
5 :

x<

ii) Sincef is unbounded then there exists a sequéngg,cy in G such that
f(zn) # 0 andlim, |f(z,)| = +oo. Using @.1) one has

in) o fln+a4a) - (o) <

, v € G, neN,

f(

by lettingn — oo, we obtain

| (zn)l

1
lim

Zf(zn+x+ai)=f($)
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and

lim

n (

Z (zo + 2 +y+a;+a;) = flz+y+a;).

]

Proposition 2.2. Letd > 0. LetG be an abelian group and let be a complex-
valued function defined af such that

m The Stability of Some Linear
Functional Equations

25) D [f@r+y+a)+ fle—y—a)—2f(x)f(y)| <0, z,y€G,

i=1

Belaid Bouikhalene

then one of the assertions is satisfied
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i) If fis bounded, then
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m

S fGnt+z+y+a;+a)

n/i=1

(2.8) =z — T

+ flon —2—y —a; —a;)],

to the function
r—2f(x+y+ay),
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flen+r—y—a;+a)
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+ flon — 2 +y+a; —a;)],
neN, 1<j5<myeaG, Title Page
to the function Contents
r—2f(x—y—a) «“ 33
is uniform. < >
Proof. The proof is similar to the proof of Propositiénl. Go Back
i) Let X = sup|f], then for allx € G we have Close
6 .
X?—mx -2 <0 ot
2 Page 8 of 18
hence
m _'_ \Z m2 _'_ 2(5 J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

X < 2 : http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bbouikhalene@yahoo.fr
http://jipam.vu.edu.au/

i) Follows from the fact that

f(lz )Z[f(zn—l-x%—ai)jtf(zn_g;_ai)] —2f(z)
=1 :
rz € G, neN.
STy TEGnE
O
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The main results are the following theorems.

Theorem 3.1.Letd > 0. LetG be an abelian group and let be a complex-
valued function defined af such that

(3.1) f;f(:r+y+ai)—f(l’)f(y) <94, r,y€q,
then either i

(3.2) f(2)] < m*@, el

or

(3.3) Xm:f(m+y+ai) = f(2)f(y), v,yed.

=1

Proof. The idea is inspired by the papei [

If f is bounded, then from2(2) we obtain the first case of the theorem. For
the remainder, we get by using the assertion ii) in Propostiayfor all z,y €

G, neN

3

Z (zn+z4+y+a;+a;)— +y+a))

J:1
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<

! {Zf(zn+x+y+aj+ai)—f(w)f(zn+y+aj>}‘

|f(zn)l

since the convergence is uniform, we have

m

S flaty+a) - f@)fy)

=1

<0.

i.e. f is a solution of the functional equatiof.().

Theorem 3.2.Letd > 0. LetG be an abelian group and let be a complex-

valued function defined ofi such that

(3. i[f(x+y+ai)+f(x—y—az)]—2f(96)f(y) <5 ryed,
then either

(3.5) |f(m)\_m+\/gm, €G.

or

@6) Sty ta)+ fo—y—a) = 2@f), nyeG.

i=1

O]
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Proof. By the assertion i) in Propositidh2we get the first case of the theorem.
For the second case we have by the inequality) that

{Z[f(2n+$—y—aj+ai)+f(zn—$+y+aj—ai)]}
i=1

m The Stability of Some Linear
Functional Equations

[zn +y+a;)+ f(zn —y — aj)]

j:1 Belaid Bouikhalene

){Z[f(zn+x+y+aj+ai)+f(zn—a:+y+aj—ai)]

Title Page
) 2f($)f<zn . aj)}’ Contents
44 44
+Zf(i>{Z[f(zmrx—y—aﬂrai)+f(zn—l’—y—aj_ai>] ! >
2 W) | & Go Back
—2f(x)f(zn—y—@j)}‘ =
) 1 i Quit
<> F(zn) {Z[f(2n+$+y+aj+(li) + flzn —z+y+a; —a;)] Page 12 of 18
j=1 n i=1
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{Z (znt+2x—y—aj+a)+ flzn —2—y—a; —a;)]

- 2@ -y -}

since the convergence is uniform, we have The Stability of Some Linear
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From Theorem$8.1and3.2, we easily obtain .

Corollary 4.1. Letd > 0. LetG be an abelian group and let be a complex-
valued function defined af such that

(4.1) |fx+y+a)— flx)fy)| <6, z,y€QG,
then either

4.2) o) < VI L V21+45 zeG.

or

(4.3) flx+y+a)=flz)fly) z,yeq.

Remark 4.1. Takinga = 0 in Corollary 4.1, we find the result obtained ir].

Corollary 4.2. Leté > 0. LetG be an abelian group and lef be a complex-
valued function defined afd such that

(4.4) lf(x+y+a)+ flx —y—a)—2f(x)f(y)| <9, z,y€Qq,
then either

1+V1+20

(4.5) fo)l < =%

or

(4.6) fety+a)+flx—y—a)=2f(2)f(y), z,yedC.

, x € G,
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Remark 4.2. Takinga = 0 in Corollary 4.2, we find the result obtained irv].

Corollary 4.3. Leté > 0. LetG be an abelian group and let be a complex-
valued function defined afi such that

m

@7 D [fe+y+a)— fle—y+a)—2f(x)f(y)| <6, z,y€eq,

i=1

then either

2
(4.8) fa)] < EEER e
or

m

49 D fle+y+a)+ fle—y—a) =2f(2)fy), z,y€eG

=1

Proof. Let f be a complex-valued function defined éhwhich satisfies the
inequality @.7), then for allz, y € G we have

2 f (@) f(y) + f(=y)]
=12f(x)f(y) +2f(x) f(—y)|

= Z[f($+y+ai)—f($—y+ai)]
> @ +y+a) - flo—y+a)] +2f(2)f(y) + 2f (2) f(—y)

i=1
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< 2@ ) =D [fe+y+a) = fe—y+a)
+12f@)f(—y) = Y _[f@—y+a) = flz+y+a)
< 20. -

Since f is unbounded it follows thaf(—y) = —f(y), for ally € G. Conse-
guently f satisfies the inequality3(4) and one has the remainder. O

Corollary 4.4. Let§ > 0. LetG be an abelian group and let be a complex-
valued function defined afd such that

(4.10) i[f(w tyta)+ fle—y+a))-2f(2)f(y)] <o z,yeq,
then eithe_r

(4.11) o) < VIR g,

or

(4.12) f;[f(:ﬁ Fy+a)+ fle—y—a))=2f(2)f(y) ©,yeC.
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Proof. Let f be a complex-valued function defined éhwhich satisfies the
inequality @.10, then for allz, y € G we have

21/@)[1f(y) = f(=y)l
= [2f(2)f(y) = 2f(2) f(=y)]

Z Ty +a)+ fle—y+a)

m

_Z[f($+y+ai)+f(z_y+ai)]

=1

F2f () fly) - 2f(fc)f(—y)‘

< | U@ —y+a) + fla+y+a)l =2 (@) f(y)
D@yt a) + fa =y a)] = 2 (@) ()
< 26. :

Since f is unbounded it follows thaf(—y) = f(y), for all y € G. Conse-
guently f satisfies the inequality3(4) and one has the remainder. O
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