Journal of Inequalities in Pure and Applied Mathematics

THE STABILITY OF SOME LINEAR FUNCTIONAL EQUATIONS

BELAID BOUIKHALENE

Department of Mathematics University of Ibn Tofail Faculty of Sciences BP 133 Kenitra 14000, Morocco.

EMail: bbouikhalene@yahoo.fr

volume 5, issue 2, article 49, 2004.

Received 14 January, 2004; accepted 25 April, 2004.

Communicated by: Kazimierz Nikodem

©2000 Victoria University ISSN (electronic): 1443-5756 012-04

Abstract

In this note, we deal with the Baker's superstability for the following linear functional equations

$$\sum_{i=1}^{m} f(x+y+a_i) = f(x)f(y), \quad x, y \in G,$$

$$\sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] = 2f(x)f(y), \quad x, y \in G,$$

where G is an abelian group, a_1, \ldots, a_m ($m \in \mathbb{N}$) are arbitrary elements in G and f is a complex-valued function on G.

2000 Mathematics Subject Classification: 39B72.

Key words: Linear functional equations, Stability, Superstability.

Contents

1	Introduction	3
2	General Properties	5
3	The Main Results	10
4	Applications	14
Refe	prences	

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 2 of 18

1. Introduction

Let G be an abelian group. The main purpose of this paper is to generalize the results obtained in [4] and [5] for the linear functional equations

(1.1)
$$\sum_{i=1}^{m} f(x+y+a_i) = f(x)f(y), \quad x, y \in G,$$

(1.2)
$$\sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] = 2f(x)f(y), \quad x, y \in G,$$

where a_1, \ldots, a_m $(m \in \mathbb{N})$, are arbitrary elements in G and f is a complexvalued function on G. In the case where G is a locally compact group, the form of $L^{\infty}(G)$ solutions of (1.1) (resp. (1.2)) are determined in [2] (resp. [6]). Some particular cases of these linear functional equations are:

The linear functional equations

(1.3)
$$f(x+y+a) = f(x)f(y), \quad x, y \in G,$$

$$(1.4) f(x+y+a) + f(x-y-a) = 2f(x)f(y), x, y \in G,$$

$$(1.5) f(x+y+a) - f(x-y+a) = 2f(x)f(y), x, y \in G,$$

$$(1.6) f(x+y+a) + f(x-y+a) = 2f(x)f(y), x, y \in G,$$

see [1], [2], [6], [7] and [8].

• Cauchy's functional equation

$$(1.7) f(x+y) = f(x)f(y), x, y \in G,$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 3 of 18

• D'Alembert's functional equation

$$(1.8) f(x+y) + f(x+y) = 2f(x)f(y), x, y \in G.$$

To complete our consideration, we give some applications.

We shall need the results below for later use.

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

2. General Properties

Proposition 2.1. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

(2.1)
$$\left| \sum_{i=1}^{m} f(x+y+a_i) - f(x)f(y) \right| \le \delta, \quad x, y \in G,$$

then one of the assertions is satisfied

i) If f is bounded, then

(2.2)
$$|f(x)| \le \frac{m + \sqrt{m^2 + 4\delta}}{2}, \quad x \in G.$$

ii) If f is unbounded, then there exists a sequence $(z_n)_{n\in\mathbb{N}}$ in G such that $f(z_n) \neq 0$ and $\lim_n |f(z_n)| = +\infty$ and that the convergence of the sequences of functions

(2.3)
$$x \to \frac{1}{f(z_n)} \sum_{i=1}^m f(z_n + x + a_i), \quad n \in \mathbb{N},$$

to the function

$$x \to f(x)$$
,

(2.4)
$$x \to \frac{1}{f(z_n)} \sum_{i=1}^m f(z_n + x + y + a_j + a_i),$$
 $n \in \mathbb{N}, \ 1 < j < m, \ y \in G,$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 5 of 18

to the function

$$x \to f(x+y+a_i),$$

is uniform.

Proof. i) Let $X = \sup |f|$, then for all $x \in G$ we have

$$|f(x)f(x)| \le mX + \delta$$

from which we obtain that

$$X^2 - mX - \delta \le 0$$

hence

$$X \leq \frac{m + \sqrt{m^2 + 4\delta}}{2}.$$

ii) Since f is unbounded then there exists a sequence $(z_n)_{n\in\mathbb{N}}$ in G such that $f(z_n)\neq 0$ and $\lim_n |f(z_n)|=+\infty$. Using (2.1) one has

$$\left| \frac{1}{f(z_n)} \sum_{i=1}^m f(z_n + x + a_i) - f(x) \right| \le \frac{\delta}{|f(z_n)|}, x \in G, \ n \in \mathbb{N},$$

by letting $n \to \infty$, we obtain

$$\lim_{n} \frac{1}{f(z_n)} \sum_{i=1}^{m} f(z_n + x + a_i) = f(x)$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 6 of 18

and

$$\lim_{n} \frac{1}{f(z_n)} \sum_{i=1}^{m} f(z_n + x + y + a_j + a_i) = f(x + y + a_j).$$

Proposition 2.2. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

(2.5)
$$\left| \sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] - 2f(x)f(y) \right| \le \delta, \ x, y \in G,$$

then one of the assertions is satisfied

i) If f is bounded, then

(2.6)
$$|f(x)| \le \frac{m + \sqrt{m^2 + 2\delta}}{2}, \ x \in G.$$

ii) If f is unbounded, then there exists a sequence $(z_n)_{n\in\mathbb{N}}\in G$ such that $f(z_n)\neq 0$ and $\lim_n |f(z_n)|=+\infty$ and that the convergence of the sequences of functions

(2.7)
$$x \to \frac{1}{f(z_n)} \sum_{i=1}^{m} [f(z_n + x + a_i) + f(z_n - x - a_i)], n \in \mathbb{N},$$

to the function

$$x \to 2f(x),$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Close

Quit

Page 7 of 18

(2.8)
$$x \to \frac{1}{f(z_n)} \sum_{i=1}^m [f(z_n + x + y + a_j + a_i) + f(z_n - x - y - a_j - a_i)],$$

 $n \in \mathbb{N}, \ 1 \le j \le m, y \in G,$

to the function

$$x \to 2f(x+y+a_j),$$

(2.9)
$$x \to \frac{1}{f(z_n)} \sum_{i=1}^{m} [f(z_n + x - y - a_j + a_i) + f(z_n - x + y + a_j - a_i)],$$

 $n \in \mathbb{N}, \ 1 \le j \le m, y \in G,$

to the function

$$x \to 2f(x - y - a_i)$$

is uniform.

Proof. The proof is similar to the proof of Proposition 2.1.

i) Let $X = \sup |f|$, then for all $x \in G$ we have

$$X^2 - mX - \frac{\delta}{2} \le 0$$

hence

$$X \le \frac{m + \sqrt{m^2 + 2\delta}}{2}.$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 8 of 18

ii) Follows from the fact that

$$\left| \frac{1}{f(z_n)} \sum_{i=1}^m [f(z_n + x + a_i) + f(z_n - x - a_i)] - 2f(x) \right|$$

$$\leq \frac{\delta}{|f(z_n)|}, \ x \in G, \ n \in \mathbb{N}.$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

Close

Quit

Page 9 of 18

3. The Main Results

The main results are the following theorems.

Theorem 3.1. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

(3.1)
$$\left| \sum_{i=1}^{m} f(x+y+a_i) - f(x)f(y) \right| \le \delta, \quad x, y \in G,$$

then either

(3.2)
$$|f(x)| \le \frac{m + \sqrt{m^2 + 4\delta}}{2}, \ x \in G,$$

or

(3.3)
$$\sum_{i=1}^{m} f(x+y+a_i) = f(x)f(y), \quad x,y \in G.$$

Proof. The idea is inspired by the paper [3].

If f is bounded, then from (2.2) we obtain the first case of the theorem. For the remainder, we get by using the assertion ii) in Proposition 2.1, for all $x, y \in G$, $n \in \mathbb{N}$

$$\left| \sum_{j=1}^{m} \frac{1}{f(z_n)} \sum_{i=1}^{m} f(z_n + x + y + a_j + a_i) - f(x) \frac{1}{f(z_n)} \sum_{j=1}^{m} f(z_n + y + a_j) \right|$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 10 of 18

$$\leq \sum_{j=1}^{m} \left| \frac{1}{f(z_n)} \left\{ \sum_{i=1}^{m} f(z_n + x + y + a_j + a_i) - f(x) f(z_n + y + a_j) \right\} \right|$$

$$\leq \frac{m\delta}{|f(z_n)|},$$

since the convergence is uniform, we have

$$\left| \sum_{i=1}^{m} f(x+y+a_i) - f(x)f(y) \right| \le 0.$$

i.e. f is a solution of the functional equation (1.1).

Theorem 3.2. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

(3.4)
$$\left| \sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] - 2f(x)f(y) \right| \le \delta, \quad x, y \in G,$$

then either

(3.5)
$$|f(x)| \le \frac{m + \sqrt{m^2 + 2\delta}}{2}, \ x \in G.$$

or

(3.6)
$$\sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] = 2f(x)f(y), \quad x, y \in G.$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 11 of 18

Proof. By the assertion i) in Proposition 2.2 we get the first case of the theorem. For the second case we have by the inequality (3.4) that

$$\begin{split} &\left| \sum_{j=1}^{m} \frac{1}{f(z_n)} \left\{ \sum_{i=1}^{m} [f(z_n + x + y + a_j + a_i) + f(z_n - x - y - a_j - a_i)] \right\} \right. \\ &\left. + \sum_{j=1}^{m} \frac{1}{f(z_n)} \left\{ \sum_{i=1}^{m} [f(z_n + x - y - a_j + a_i) + f(z_n - x + y + a_j - a_i)] \right\} \right. \\ &\left. - 2f(x) \frac{1}{f(z_n)} \sum_{j=1}^{m} [f(z_n + y + a_j) + f(z_n - y - a_j)] \right| \\ &= \left| \sum_{j=1}^{m} \frac{1}{f(z_n)} \left\{ \sum_{i=1}^{m} [f(z_n + x + y + a_j + a_i) + f(z_n - x + y + a_j - a_i)] \right. \\ &\left. - 2f(x)f(z_n + y + a_j) \right\} \right| \\ &\left. + \left| \sum_{j=1}^{m} \frac{1}{f(z_n)} \left\{ \sum_{i=1}^{m} [f(z_n + x - y - a_j + a_i) + f(z_n - x - y - a_j - a_i)] \right. \right. \\ &\left. - 2f(x)f(z_n - y - a_j) \right\} \right| \\ &\leq \sum_{j=1}^{m} \left| \frac{1}{f(z_n)} \left\{ \sum_{i=1}^{m} [f(z_n + x + y + a_j + a_i) + f(z_n - x + y + a_j - a_i)] \right. \\ &\left. - 2f(x)f(z_n + y + a_j) \right\} \right| \end{split}$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

44

Close

Quit

Page 12 of 18

$$+ \sum_{j=1}^{m} \left| \frac{1}{f(z_n)} \left\{ \sum_{i=1}^{m} [f(z_n + x - y - a_j + a_i) + f(z_n - x - y - a_j - a_i)] - 2f(x)f(z_n - y - a_j) \right\} \right|$$

$$\leq \frac{2m\delta}{|f(z_n)|},$$

since the convergence is uniform, we have

$$\left| 2\sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] - 4f(x)f(y) \right| \le 0.$$

i.e. f is a solution of the functional equation (1.2).

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

Close

Quit

Page 13 of 18

4. Applications

From Theorems 3.1 and 3.2, we easily obtain.

Corollary 4.1. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

$$(4.1) |f(x+y+a) - f(x)f(y)| \le \delta, \ x, y \in G,$$

then either

(4.2)
$$|f(x)| \le \frac{1 + \sqrt{1 + 4\delta}}{2}, \ x \in G.$$

or

(4.3)
$$f(x+y+a) = f(x)f(y) \ x, y \in G.$$

Remark 4.1. Taking a = 0 in Corollary 4.1, we find the result obtained in [4].

Corollary 4.2. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

$$(4.4) |f(x+y+a) + f(x-y-a) - 2f(x)f(y)| \le \delta, \ x, y \in G,$$

then either

(4.5)
$$|f(x)| \le \frac{1 + \sqrt{1 + 2\delta}}{2}, \ x \in G,$$

or

$$(4.6) f(x+y+a) + f(x-y-a) = 2f(x)f(y), \ x,y \in G.$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Close

Quit

Page 14 of 18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004 http://jipam.vu.edu.au

Remark 4.2. Taking a = 0 in Corollary 4.2, we find the result obtained in [5].

Corollary 4.3. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

(4.7)
$$\left| \sum_{i=1}^{m} [f(x+y+a_i) - f(x-y+a_i)] - 2f(x)f(y) \right| \le \delta, \ x,y \in G,$$

then either

(4.8)
$$|f(x)| \le \frac{m + \sqrt{m^2 + 2\delta}}{2}, \ x \in G,$$

or

(4.9)
$$\sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] = 2f(x)f(y), \quad x, y \in G.$$

Proof. Let f be a complex-valued function defined on G which satisfies the inequality (4.7), then for all $x, y \in G$ we have

$$2|f(x)||f(y) + f(-y)|$$

$$= |2f(x)f(y) + 2f(x)f(-y)|$$

$$= \left| \sum_{i=1}^{m} [f(x+y+a_i) - f(x-y+a_i)] - \sum_{i=1}^{m} [f(x+y+a_i) - f(x-y+a_i)] + 2f(x)f(y) + 2f(x)f(-y) \right|$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Close

Quit

Page 15 of 18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004 http://jipam.vu.edu.au

$$\leq \left| 2f(x)f(y) - \sum_{i=1}^{m} [f(x+y+a_i) - f(x-y+a_i)] \right| + \left| 2f(x)f(-y) - \sum_{i=1}^{m} [f(x-y+a_i) - f(x+y+a_i)] \right| < 2\delta.$$

Since f is unbounded it follows that f(-y) = -f(y), for all $y \in G$. Consequently f satisfies the inequality (3.4) and one has the remainder.

Corollary 4.4. Let $\delta > 0$. Let G be an abelian group and let f be a complex-valued function defined on G such that

(4.10)
$$\left| \sum_{i=1}^{m} [f(x+y+a_i) + f(x-y+a_i)] - 2f(x)f(y) \right| \le \delta, \quad x, y \in G,$$

then either

(4.11)
$$|f(x)| \le \frac{m + \sqrt{m^2 + 2\delta}}{2}, \ x \in G,$$

or

(4.12)
$$\sum_{i=1}^{m} [f(x+y+a_i) + f(x-y-a_i)] = 2f(x)f(y) \quad x, y \in G.$$

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 16 of 18

Proof. Let f be a complex-valued function defined on G which satisfies the inequality (4.10), then for all $x, y \in G$ we have

$$\begin{aligned} 2|f(x)||f(y) - f(-y)| \\ &= |2f(x)f(y) - 2f(x)f(-y)| \\ &= \left| \sum_{i=1}^{m} [f(x+y+a_i) + f(x-y+a_i)] \right| \\ &- \sum_{i=1}^{m} [f(x+y+a_i) + f(x-y+a_i)] \\ &+ 2f(x)f(y) - 2f(x)f(-y) \right| \\ &\leq \left| \sum_{i=1}^{m} [f(x-y+a_i) + f(x+y+a_i)] - 2f(x)f(-y) \right| \\ &+ \left| \sum_{i=1}^{m} [f(x+y+a_i) + f(x-y+a_i)] - 2f(x)f(y) \right| \\ &\leq 2\delta. \end{aligned}$$

Since f is unbounded it follows that f(-y) = f(y), for all $y \in G$. Consequently f satisfies the inequality (3.4) and one has the remainder.

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 17 of 18

References

- [1] J. ACZÉL, Lectures on Functional Equations and their Applications, Academic Press, New York-Sain Francisco-London, 1966.
- [2] R. BADORA, On a joint generalization of Cauchy's and d'Alembert functional equations, *Aequations Math.*, **43** (1992), 72–89.
- [3] R. BADORA, On Heyers-Ulam stability of Wilson's functional equation, *Aequations Math.*, **60** (2000), 211–218.
- [4] J. BAKER, J. LAWRENCE AND F. ZORZITTO, The stability of the equation f(x + y) = f(x)f(y), *Proc. Amer. Math. Soc.*, **74** (1979), 242–246.
- [5] J. BAKER, The stability of the cosine equation, *Proc. Amer. Math. Soc.*, **80**(3) (1980), 411–416.
- [6] Z. GAJDA, A generalization of d'Alembert's functional equation, *Funkcial*. *Evac.*, **33** (1990), 69–77.
- [7] B. NAGY, A sine functional equation in Banach algebras, *Publ. Math. Debrecen.* **24** (1977), 77–99.
- [8] E.B. VAN VLECK, A functional equation for the sine, *Ann. Math.*, **11** (1910), 161–165.

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page

Contents

Go Back

Close

Quit

Page 18 of 18