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Abstract

An algorithmic description of the dependence of the oscillation pattern of the

ratio
f

g
of two functions f and g on the oscillation pattern of the ratio

f ′

g′
of

their derivatives is given. This tool is then used in order to refine and extend the
Yao-Iyer inequality, arising in bioequivalence studies. The convexity conjecture
by Topsøe concerning information inequalities is addressed in the context of a
general convexity problem. This paper continues the series of results begun by
the l’Hospital type rule for monotonicity. Other applications of this rule are given
elsewhere: to certain information inequalities, to monotonicity of the relative
error of a Padé approximation for the complementary error function, and to
probability inequalities for sums of bounded random variables.

2000 Mathematics Subject Classification: 26A48, 26D10, 26A51, 26D15, 60E15,
62P10.
Key words: L’Hospital’s Rule, Monotonicity, Oscillation, Convexity, Yao-Iyer inequal-
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1. L’Hospital Type Rules for Oscillation
Let−∞ ≤ a < b ≤ ∞. Let f andg be differentiable functions defined on the
interval(a, b).

Assume thatg andg′ are nonzero on(a, b), so that the ratios
f

g
and

f ′

g′
are

defined on(a, b). It follows that functiong, being differentiable and hence
continuous, does not change sign on(a, b). In other words, eitherg > 0 on the
entire interval(a, b) or g < 0 on (a, b); assume that the same is true forg′.

The following result, which is reminiscent of the l’Hospital rule for comput-
ing limits, was stated and proved in [3].

Proposition 1.1. Suppose thatf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0.

1. If
f ′

g′
is increasing on(a, b), then

(
f

g

)′

> 0 on (a, b), and so,
f

g
is in-

creasing on(a, b).

2. If
f ′

g′
is decreasing on(a, b), then

(
f

g

)′

< 0 on (a, b), and so,
f

g
is de-

creasing on(a, b).

Note that the conditions

(i) g′ is nonzero and does not change sign on(a, b) and

(ii) g(a+) = 0 or g(b−) = 0
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already imply thatg is nonzero and does not change sign on(a, b); hence, one
hasgg′ > 0 on (a, b) or gg′ < 0 on (a, b).

In contrast with the l’Hospital Rule for limits, Proposition1.1 may be gen-
eralized as follows, without requiring thatf andg vanish at an endpoint of the
interval.

Proposition 1.2. Suppose thatgg′ > 0 on (a, b), lim sup
c↓a

g(c)2

|g′(c)|

(
f

g

)′

(c) ≥ 0,

and
f ′

g′
is increasing on(a, b). Then

(
f

g

)′

> 0 on (a, b).

Proof. As in the proof of Proposition1.1 in [3], fix any x ∈ (a, b) and consider
the functionhx defined by the formula

hx(y) := f ′(x)g(y)− g′(x)f(y).

For ally ∈ (a, x),

d

dy
hx(y) = f ′(x)g′(y)− g′(x)f ′(y) = g′(x)g′(y)

(
f ′(x)

g′(x)
− f ′(y)

g′(y)

)
> 0,

becauseg′ is nonzero and does not change sign on(a, b) and
f ′

g′
is increasing on

(a, b). Hence, the functionhx is increasing on(a, x); moreover, being continu-
ous,hx is increasing on(a, x].

Now, fix anyc0 ∈ (a, x). Then for allc ∈ (a, c0]

f ′(x) (g(x)− g(c))− g′(x) (f(x)− f(c)) = hx(x)− hx(c)

≥ ε > 0,(1.1)
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where

(1.2) ε := hx(x)− hx(c0).

Next,

g(x)2

(
f

g

)′

(x) = f ′(x)g(x)− g′(x)f(x)(1.3)

= f ′(x) (g(x)− g(c))− g′(x) (f(x)− f(c))(1.4)

+

(
f ′(x)

g′(x)
− f ′(c)

g′(c)

)
· g(c)g′(x)(1.5)

+
g(c)2

|g′(c)|

(
f

g

)′

(c) · |g′(x)| ;(1.6)

here it is taken into account thatg′ is nonzero and does not change sign on(a, b),

so that
g′(x)

g′(c)
=
|g′(x)|
|g′(c)|

.

Of the three summands in (1.4) – (1.6),

• in view of (1.1), the first summand, in (1.4), is no less than the fixedε > 0
defined by (1.2), for all c ∈ (a, c0];

• the second summand, in (1.5), is nonnegative (and even positive) for all

c ∈ (a, c0], because
f ′

g′
is increasing on(a, b) andg(c)g′(x) > 0; the latter

inequality follows becausegg′ > 0 on (a, b) andg′ does not change sign
on (a, b);
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• as to the last summand, in (1.6), its limit superior asc ↓ a is nonnegative,

by the conditionlim sup
c↓a

g(c)2

|g′(c)|

(
f

g

)′

(c) ≥ 0.

On the other hand, the left-hand side of (1.3), which is the sum of the three sum-

mands in (1.4) – (1.6), does not depend onc. Now the inequality

(
f

g

)′

(x) ≥

ε[> 0] follows if we let c ↓ a.

Corollary 1.3. 1. If gg′ > 0 on (a, b), lim sup
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0, and
f ′

g′

is increasing on(a, b), then

(
f

g

)′

> 0 on (a, b).

2. If gg′ > 0 on(a, b), lim inf
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≤ 0, and
f ′

g′
is decreasing on

(a, b), then

(
f

g

)′

< 0 on (a, b).

3. If gg′ < 0 on(a, b), lim inf
x↑b

g(x)2

|g′(x)|

(
f

g

)′

(x) ≤ 0, and
f ′

g′
is decreasing on

(a, b), then

(
f

g

)′

< 0 on (a, b).

4. If gg′ < 0 on (a, b), lim sup
x↑b

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0, and
f ′

g′
is increasing
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on (a, b), then

(
f

g

)′

> 0 on (a, b).

Proof. Part 1 of Corollary1.3 repeats Proposition1.2. Part 2 can be obtained
from Part 1 by replacingf by −f . Then Parts 3 and 4 can be obtained from
Parts 1 and 2 by replacingf(x) andg(x) for all x ∈ (a, b) by f(a + b− x) and
g(a + b− x), respectively.

Remark 1.1. As seen from the proof of Proposition 1.2, the following variant
of Corollary 1.3 holds. Fix any c ∈ (a, b).

1. If gg′ > 0 on (c, b),
(

f

g

)′

(c) ≥ 0, and
f ′

g′
is increasing on (c, b), then(

f

g

)′

> 0 on (c, b).

2. If gg′ > 0 on (c, b),
(

f

g

)′

(c) ≤ 0, and
f ′

g′
is decreasing on (c, b), then(

f

g

)′

< 0 on (c, b).

3. If gg′ < 0 on (a, c),
(

f

g

)′

(c) ≤ 0, and
f ′

g′
is decreasing on (a, c), then(

f

g

)′

< 0 on (a, c).
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4. If gg′ < 0 on (a, c),
(

f

g

)′

(c) ≥ 0, and
f ′

g′
is increasing on (a, c), then(

f

g

)′

> 0 on (a, c).

Remark 1.2. It may not be immediately obvious that Proposition1.2 — or,
rather, Corollary1.3— is indeed a generalization of Proposition1.1. However,
the conditions

lim sup
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0

and

lim inf
x↑b

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0

are necessary for
f

g
to be increasing on(a, b), because then

(
f

g

)′

≥ 0 on

(a, b). Therefore, by Part 1 (say) of Proposition1.1, its conditions imply that

lim sup
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0

and

lim inf
x↑b

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0.

Finally, as already mentioned, the condition of Corollary1.3 that gg′ > 0 on
(a, b) or gg′ < 0 on (a, b) obviously follows from the conditions of Proposition
1.1 that g′ does not change sign on(a, b) andg(a+) = 0 or g(b−) = 0. Thus,
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Parts 1 and 4 of Corollary1.3 generalize Part 1 of Proposition1.1; similarly,
Parts 2 and 3 of Corollary1.3generalize Part 2 of Proposition1.1.

Remark 1.3. Another possible question is whether the condition

lim sup
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0 of Proposition1.2 may be replaced by the sim-

pler conditionlim sup
x↓a

(
f

g

)′

(x) ≥ 0, which is necessary as well for
f

g
to be

increasing on(a, b). The answer is no; the conditionlim sup
x↓a

(
f

g

)′

(x) ≥ 0, or

even the condition

(
f

g

)′

(a+) ≥ 0, is too weak.

A generic counter-example may be constructed as follows. Letf and G be
functions defined onR such that

• f(0) = 0, f ′(0+) = f ′(0) = 0, andf ′ < 0 on (0,∞), so thatf ≤ 0 on
[0,∞);

• G > 0, G′ < 0, andG′′ > 0 on (−∞, 0];

for instance, one may choose heref(x) = −x2 ∀x ∈ R and G(y) = e−y

∀y ∈ R. Next, defineg by the formula

g(x) := G(f(x)), x ∈ R.

Then

• g > 0 andg′ > 0 on (0,∞), so thatgg′ > 0 on (0,∞);

http://jipam.vu.edu.au/
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•
(

f ′

g′

)′

(x) = −G′′(f(x))f ′(x)

G′(f(x))2
> 0 for x > 0, so that

f ′

g′
is increasing on

(0,∞);

•
(

f

g

)′

(0+) = 0.

Thus, all the conditions of Proposition1.2would be satisfied fora = 0 and

anyb > 0 — if only the conditionlim sup
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0 were replaced

by

(
f

g

)′

(0+) ≥ 0.

Nonetheless, one has

(
(f/g)′

f ′

)
(0+) =

1

G(0)
> 0, so that

(
f

g

)′

< 0 in a

right neighborhood(0, δ) of 0, so that
f

g
is not increasing on(0, δ).

This counter-example shows that the conditionlim sup
x↓a

(
f

g

)′

(x) ≥ 0, or

even the condition

(
f

g

)′

(a+) ≥ 0, is just too easy to satisfy — it is enough to

let f ′(a+) = 0 andg = G ◦ f , and then one can have

(
f

g

)′

(a+) = 0.

On the other hand, if it is required that

(
f

g

)′

(0+) > 0 — or just that

lim sup
x↓a

(
f

g

)′

(x) > 0, then the conditionlim sup
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0 obvi-
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ously follows. Moreover, it is seen from the proof of Proposition1.2 that in this

case the condition that
f ′

g′
is increasing on(a, b) may be relaxed to the condition

that
f ′

g′
is non-decreasing on(a, b). Thus, one has

Proposition 1.4. If gg′ > 0 on (a, b), lim sup
x↓a

(
f

g

)′

(x) > 0, and
f ′

g′
is non-

decreasing on(a, b), then

(
f

g

)′

> 0 on (a, b).

Remark 1.4. Proposition1.4 may also be complemented by the other three
similar cases, just as Cases 2, 3, and 4 of Corollary1.3complement Proposition
1.2.

Similarly, the conditions that

(
f

g

)′

(c) ≥ 0 and
f ′

g′
is increasing on(c, b) in

Part 1 of Remark1.1may be replaced by the conditions that

(
f

g

)′

(c) > 0 and

f ′

g′
is non-decreasing on(c, b), with the same conclusion to hold:

(
f

g

)′

> 0 on

(c, b); similar changes may be made in the other three parts of Remark1.1.

What can be said in the absence of restrictions likelim sup
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥

0? Here is an answer.
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Proposition 1.5.

1. Suppose thatgg′ > 0 and
f ′

g′
is increasing on(a, b). Then there is some

c ∈ [a, b] such that

(
f

g

)′

< 0 on (a, c) and

(
f

g

)′

> 0 on (c, b). (In

particular, if c = a, then

(
f

g

)′

> 0 on the entire interval(a, b); if c = b,

then

(
f

g

)′

< 0 on (a, b).)

2. Suppose thatgg′ > 0 and
f ′

g′
is decreasing on(a, b). Then there is some

c ∈ [a, b] such that

(
f

g

)′

> 0 on (a, c) and

(
f

g

)′

< 0 on (c, b).

3. Suppose thatgg′ < 0 and
f ′

g′
is increasing on(a, b). Then there is some

c ∈ [a, b] such that

(
f

g

)′

> 0 on (a, c) and

(
f

g

)′

< 0 on (c, b).

4. Suppose thatgg′ < 0 and
f ′

g′
is decreasing on(a, b). Then there is some

c ∈ [a, b] such that

(
f

g

)′

< 0 on (a, c) and

(
f

g

)′

> 0 on (c, b).

Proof. Let us prove Part 1 of the proposition; thus, we assume here thatgg′ > 0
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and
f ′

g′
is increasing on(a, b). Let

E :=

{
x ∈ (a, b) :

(
f

g

)′

(x) ≥ 0

}
.

If E = ∅, then

(
f

g

)′

< 0 on (a, b), which implies the conclusion of Part 1

of the proposition, withc := b.
If E 6= ∅, let c := inf E, so thatc ∈ [a, b). If c /∈ E, then there exists a

sequence(cn) in E such thatcn ↓ c. Then

(
f

g

)′

(cn) ≥ 0 for all n, and so,

lim sup
x↓c

g(x)2

|g′(x)|

(
f

g

)′

(x) ≥ 0.

Therefore, according to Proposition1.2,

(
f

g

)′

> 0 on (c, b). If c ∈ E, then

c ∈ (a, b) and

(
f

g

)′

(c) ≥ 0; using now Part 1 of Remark1.1, one comes to

the same conclusion — that

(
f

g

)′

> 0 on (c, b). On the other hand, by the

construction ofE andc, one has

(
f

g

)′

< 0 on (a, c). This implies that the

conclusion of Part 1 of the proposition holds in the caseE 6= ∅, too.
The other three parts of the proposition follow from Part 1 of it; cf. the proof

of Corollary1.3.
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Theorem 1.6.Suppose thatgg′ > 0 and
f ′

g′
is increasing on(a, b).

1. The following statements are equivalent:

(a)

(
f

g

)′

> 0 on (a, b);

(b)

(
f

g

)′

> 0 in a right neighborhood ofa.

2. The following statements are equivalent:

(a) ∃c ∈ (a, b)

(
f

g

)′

< 0 on (a, c) and

(
f

g

)′

> 0 on (c, b);

(b)

(
f

g

)′

< 0 in a right neighborhood ofa and

(
f

g

)′

> 0 in a left

neighborhood ofb.

3. The following statements are equivalent:

(a)

(
f

g

)′

< 0 on (a, b);

(b)

(
f

g

)′

< 0 in a left neighborhood ofb.

This theorem is immediate from Part 1 of Proposition1.5.
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Remark 1.5. If the condition that
f ′

g′
is increasing on(a, b) in the preamble of

Theorem1.6 is replaced by the condition that
f ′

g′
is decreasing on(a, b), then

all of the conclusions of the theorem will hold provided that all the inequality
signs in them are switched to the opposite ones. Similarly, if the condition
gg′ > 0 in the preamble of Theorem1.6 is replaced bygg′ < 0, then all of
the conclusions of the theorem will hold provided that all the inequality signs
in them are switched to the opposite ones. If both conditions in the preamble of

Theorem1.6are switched to the opposite ones —
f ′

g′
is decreasing on(a, b) and

gg′ < 0, then all the three parts of Theorem1.6will hold without any changes.
— Cf. Parts 2, 3, and 4 of Proposition1.5.

Thus, Theorem1.6and Remark1.5provide acomplete qualitative descrip-

tion of the oscillation pattern of
f

g
on an interval of monotonicity of

f ′

g′
based

on thelocal behavior of
f

g
near the endpoints of the interval.

Remark 1.6. Yet, whenever possible and more convenient, Proposition1.1may
be used instead of the more general Theorem1.6and Remark1.5.

Remark 1.7. In Part 1(b) of Theorem1.6, the condition that

(
f

g

)′

> 0 in a

right neighborhood of the left endpointa may be relaxed to the condition that
f

g
is non-decreasing in a right neighborhood ofa, with Part 1(a) of the theorem to
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hold. (Similar changes may be made in the other two parts of Theorem1.6, as
well as concerning Remark1.5.) This too follows from Proposition1.5, because

in each of the four parts of Proposition1.5 the conclusion implies that

(
f

g

)′

is nonzero and does not change sign in some right neighborhood ofa and the
same is true for some left neighborhood ofb; hence, under the conditions of
Proposition1.5or, equivalently, under those of Theorem1.6and Remark1.5, if

(say)
f

g
is non-decreasing in a right neighborhood ofa, then

(
f

g

)′

> 0 in a

right neighborhood ofa.

Remark 1.8. In all the above statements, the “strict” terms “increasing” and
“decreasing” and the “strict” signs “>” and “ <” may be replaced, simulta-
neously and throughout, by their “non-strict” counterparts: “non-decreasing”,
“non-increasing”, “ ≥” and “ ≤”respectively (however, it still must be as-

sumed thatg and g′ are nonzero on(a, b), just for the ratios
f

g
and

f ′

g′
to be

defined on(a, b)).
In particular, it follows that the conditionsgg′ > 0 on(a, b) or gg′ < 0 on(a, b),

lim
x↓a

g(x)2

|g′(x)|

(
f

g

)′

(x) = 0, and
f ′

g′
is constant on(a, b) imply that

f

g
is constant

on (a, b).

Even if the ratio
f ′

g′
is not monotone, something can be said on the behavior

of
f

g
based on that of

f ′

g′
. Below we shall state the most general result of this

work, Theorem1.7. Toward that end, we need the following two definitions,
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which will be accompanied by discussion.

Definition 1.1. Let us say that a functionρ is n waves upon the interval(a, b),
wheren is a natural number, if there exist real numbersa0 = a < a1 < · · · <
an = b (which we shall call theswitching points forρ) such thatρ is increasing

on the intervals(a2j, a2j+1) for all j ∈
{

0, 1, . . . ,

⌊
n− 1

2

⌋}
and decreasing

on the intervals(a2j+1, a2j+2) for all j ∈
{

0, 1, . . . ,

⌊
n− 2

2

⌋}
; here, as usual,

bxc stands for the integer part of a real numberx. In such a situation, one might
prefer to say “n quarter-waves up” rather than “n waves up”.

Definition 1.2. If, for some natural numbern, a functionρ is n waves up on the
interval (a, b) with the switching pointsa0, a1, . . . , an andr is another function
defined on(a, b), let us say thatthe waves ofr on (a, b) follow the waves ofρ if
there exist some nonnegative integerm and real numbersc−1 = a ≤ c0 < c1 <
· · · < cm = b such that

1. r is increasing on the intervals(c2i, c2i+1) for all i ∈
{

0, 1, . . . ,

⌊
m− 1

2

⌋}
and decreasing on the intervals(c2i+1, c2i+2) for all

i ∈
{
−1, 0, 1, . . . ,

⌊
m− 2

2

⌋}
;

2. there is a strictly increasing map{0, 1, . . . ,m− 1} 3 k 7→ `(k) ∈ {0, 1, . . .}
such that for allk ∈ {0, 1, . . . ,m− 1} one has

(i) `(k) ∈ {0, 1, . . . , n− 1},

http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au/


L’Hospital Type Rules for
Oscillation, With Applications

Iosif Pinelis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 53

J. Ineq. Pure and Appl. Math. 2(3) Art. 33, 2001

http://jipam.vu.edu.au

(ii) ck ∈ [a`(k), a`(k)+1), and

(iii) `(k) is even iffk is even.

We make standard assumptions such as{0, 1, . . . ,m− 1} = ∅ if m = 0.
Hence, ifm = 0, then necessarily the map` = ∅ (as usual, a map is understood
as a set of ordered pairs satisfying certain conditions).

Mutually interchanging the terms “increasing” and “decreasing” (concerning
only ρ andr but, of course, not̀) in Definitions1.1and1.2, one can define the
notions “ρ is n wavesdownon (a, b)” and, in the latter case too, the notion “the
waves ofr on (a, b) follow the waves ofρ”. If ρ is constant on(a, b), let us say
thatρ is 0 waves up and0 waves down on(a, b).

Note that Condition 2 of Definition1.2 impliesm ≤ n, while Condition 1
of Definition 1.2 implies that eitherr is m waves up on(a, b) (whenc0 = a) or
m + 1 waves down on(a, b) (whenc0 > a).

Also, since the intervals[aj, aj+1) are disjoint for differentj’s, the Condition
2(ii) of Definition 1.2 implies that the map̀ is uniquely determined.

Remark 1.9. Somewhat informally, the phrase “the waves ofr follow the waves
of ρ” may be restated this way: as one proceeds from left to right,

(i) r may switch from decrease to increase only on intervals of increase ofρ
and

(ii) r may switch from increase to decrease only on intervals of decrease ofρ;

the intervals of increase/decrease ofρ are considered here to be semi-open,
with the left endpoints included, except for the left-most interval, which is open.
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Example 1.1.Suppose that a functionρ is increasing on(a0, a1) and decreasing
on (a1, a2), wherea0 = a < a1 < a2 = b, so thatρ is n waves up on(a, b) =
(a0, a2), with n = 2; suppose further that the waves of a functionr on (a, b)
follow the waves ofρ. Then exactly one of the following five cases takes place:

1. r is decreasing on the entire interval(a0, a2), which corresponds tom = 0,
c0 = a2, and` = ∅ in Definition1.2;

2. r is increasing on the entire interval(a0, a2), which corresponds tom = 1,
c0 = a0, and`(0) = 0;

3. there is somec0 ∈ (a0, a1) such thatr is decreasing on(a0, c0) and in-
creasing on(c0, a2), which corresponds tom = 1, c0 > a0, and`(0) = 0;

4. there is somec1 ∈ [a1, a2) such thatr is increasing on(a0, c1) and de-
creasing on(c1, a2), which corresponds tom = 2, c0 = a0, `(0) = 0, and
`(1) = 1;

5. there are somec0 ∈ (a0, a1) and c1 ∈ [a1, a2) such thatr is decreasing
on (a0, c0), increasing on(c0, c1), and decreasing on(c1, a2); this corre-
sponds tom = 2, c0 > a0, `(0) = 0, and`(1) = 1.

In particular, if ρ is 2 waves up on(a, b) and the waves ofr on (a, b) follow
the waves ofρ, then it follows thatr is at most2 waves up or at most3 waves
down on(a, b).

Definitions1.1and1.2are also illustrated below in Example1.2and, espe-
cially, in Example1.3. The following is a further generalization of the previous
results.
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Theorem 1.7. Suppose thatgg′ > 0 and
f ′

g′
is n waves up on(a, b), wheren is

a natural number. Then

1. the waves of
f

g
on (a, b) follow the waves of

f ′

g′
;

2. in particular,
f

g
is at mostn waves up or at mostn + 1 waves down on

(a, b), depending on whether

(
f

g

)′

> 0 in a right neighborhood ofa or

not.

In addition to this theorem, ifa0, a1, . . . , an are the switching points for
f ′

g′
,

then on each of the intervals(ai−1, ai), i = 1, . . . , n, of the monotonicity of
f ′

g′
, the increase/decrease pattern of

f

g
can be determined according to Theorem

1.6and Remark1.5(or, alternatively, according to Proposition1.1; cf. Remark
1.6).

Thus, Theorem1.7, Theorem1.6, Remark1.5, and Proposition1.1provide a

complete qualitative descriptionof how the oscillation pattern of
f ′

g′
on (a, b)

and the local behavior of
f

g
near the endpoints of(a, b) and near the switching

points of
f ′

g′
in (a, b) determine the oscillation pattern of

f

g
on (a, b).
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Proof of Theorem1.7. Let ρ :=
f ′

g′
andr :=

f

g
. In view of Remark1.9, an

informal proof of the theorem is immediate from Proposition1.5, Theorem1.6,
Remark1.5, and Remark1.1. Indeed, Proposition1.5 implies that, on any in-
terval of increase (decrease) ofρ, only a switch from decrease to increase (re-
spectively, from increase to decrease) ofr may occur. Moreover, Remark1.1
implies that, at the left endpointak−1 of any interval[ak−1, ak) of increase (de-
crease) ofρ, only a switch from decrease to increase (respectively, from increase
to decrease) ofr may occur. Thus, one has Part 1 of the theorem. Part 2 of the
theorem follows by Theorem1.6.

The formal proof of Theorem1.7is conducted by induction inn, as follows.
Let us begin withn = 1. Thenρ is increasing on the entire interval(a, b) =

(a0, a1), and the statement of the theorem follows by Part 1 of Proposition1.5
and Part 1 of Theorem1.6, with c0 := c; at that,m = 1 and`(0) = 0 if c < b;
m = 0 and` = ∅ if c = b.

Let nown ∈ {2, 3, . . .}. By induction, there are somem1 ∈ {0, . . . , n− 1}
andc−1 = a ≤ c0 < c1 < · · · < cm1 = an−1 such that

1. r is increasing on the intervals(c2i, c2i+1) for all i ∈
{

0, 1, . . . ,

⌊
m1 − 1

2

⌋}
and decreasing on the intervals(c2i+1, c2i+2) for all

i ∈
{
−1, 0, 1, . . . ,

⌊
m1 − 2

2

⌋}
and

2. there is a strictly increasing map{0, 1, . . . ,m1 − 1} 3 k 7→ `(k) ∈
{0, 1, . . .} such that for allk ∈ {0, 1, . . . ,m1 − 1} one has

(i) `(k) ∈ {0, 1, . . . , n− 2},
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(ii) ck ∈ [a`(k), a`(k)+1), and

(iii) `(k) is even iffk is even.

Further, there may be four cases, depending on whethern andm1 are even
or odd.

Case 1.1.n = 2p, m1 = 2q, both even Then

⌊
n− 1

2

⌋
=

⌊
n− 2

2

⌋
=

p − 1,

⌊
m1 − 1

2

⌋
=

⌊
m1 − 2

2

⌋
= q − 1, ρ is decreasing on(an−1, an), andr

is decreasing on(cm1−1, an−1), because(an−1, an) =
(
a2(p−1)+1, a2(p−1)+2

)
and

(cm1−1, an−1) =
(
c2(q−1)+1, c2(q−1)+2

)
; moreover,r is decreasing on(cm1−1, an−1],

sincer is differentiable and hence continuous. It follows thatr′(an−1) ≤ 0.
Hence, by Part 2 of Remark1.1, r is decreasing on(an−1, an). Therefore,r is
decreasing on(cm1−1, an). Let nowm := m1, redefinecm1 = cm asan, and
retain the map̀ . Then, with suchm, c0, c1, . . . , cm, and `, one sees that in-

deed the waves ofr =
f

g
follow the waves ofρ =

f ′

g′
. In particular, it is seen

now from Definition1.2 and Theorem1.6 that
f

g
is at mostn waves up or at

mostn + 1 waves down on(a, b), depending on whether

(
f

g

)′

> 0 in a right

neighborhood ofa or not.

Case 1.2.n even,m1 odd Thenρ is decreasing on(an−1, an) and r is in-
creasing on(cm1−1, an−1). Hence, by Part 2 of Proposition1.5, there is some
c ∈ [an−1, an] such thatr is increasing on(an−1, c) and decreasing on(c, an).
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It follows thatr is increasing on(cm1−1, c). Now, ifc < an, let m := m1 + 1,
redefinecm−1 = cm1 asc, let cm := an and`(m − 1) := n − 1, and retain the
previously defined values̀(k) for all k ∈ {1, . . . ,m1 − 1} = {1, . . . ,m− 2}.
If c = an, let m := m1, redefinecm1 = cm asan, and retain the map̀. Then
the sought conclusion again follows.

The other two cases,Case 2.1.n odd, m1 evenandCase 2.2.n odd, m1

odd, are quite similar. Namely, Case 2.1 is similar to Case1.2, and Case 2.2 is
similar to Case1.1.

Remark 1.10. Theorem1.7holds if the terms “up” and “down” are mutually
interchanged everywhere in the statement. The effect of replacing ofgg′ > 0

by gg′ < 0 is that either in the assumption regarding the waves of
f ′

g′
or in

the conclusion regarding the waves of
f

g
(but not in both) the terms “up” and

“down” must be mutually interchanged; cf. Remark1.5.

As Theorem1.7shows, there is a relation between the functionsr =
f

g
and

ρ =
f ′

g′
. Next, we shall look at their relation from another viewpoint. Let us

write

r′ =

(
f

g

)′

=
f ′g − fg′

g2
=

ρ− r

g/g′
.

If we now let

(1.7) h :=
g′

g
,
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then

(1.8) ρ = r +
r′

h
;

moreover, since each of the functionsg and g′ does not change sign on the
interval, one sees that

(1.9) h does not change sign

on the interval. Vice versa, if (1.9) is true, then solving (1.7) for g yields

(1.10) |g(x)| = exp

∫
h(x) dx and f(x) = r(x)g(x),

so thatf andg can be restored (up to a nonzero constant factor) based onr and
h, wherer is an arbitrary differentiable function andh is any function which
is nowhere zero and does not change sign (on the interval). Thus,r andh can

serve as a kind of “free parameters” to represent all admissible pairsr =
f

g
and

ρ =
f ′

g′
, via (1.8).

Another helpful observation is immediate from (1.8) and (1.7) (as usual, it
is assumed thatsign u = 1 if u > 0, sign u = −1 if u < 0, andsign u = 0 if
u = 0):

Proposition 1.8.

1. Letgg′ > 0 on (a, b). Thensign r′ = sign(ρ− r) on (a, b).
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2. Letgg′ < 0 on (a, b). Thensign r′ = − sign(ρ− r) on (a, b).

This proposition quite agrees with the intuition. Indeed, if one is only in-
terested in local behavior ofρ andr in a neighborhood of a pointx ∈ (a, b),
then one may re-definef andg in a right neighborhood ofa — without chang-
ing values off and g in the neighborhood of pointx — in such a way that
f(a+) = g(a+) = 0. Let us interpret(a, b) as a time interval. Then, fory in
the neighborhood of the interior pointx of (a, b), the ratio

(1.11) r(y) =
f(y)

g(y)
=

f(y)− f(a+)

g(y)− g(a+)

may be interpreted as theaveragerate of change off relative tog over the time
interval(a, y), while

ρ(y) =
f ′(y)

g′(y)

is interpreted as theinstantaneousrate of change off relative tog at the time
momenty. Intuitively, it is clear that, if at some time momenty the instanta-
neous relative rateρ exceeds (say) the average relative rater, then the latter
must be increasing at that point of time, and vice versa. A corroboration of
this comes from the generalized mean value theorem, which implies, in view of
(1.11), thatr(y) = ρ(z) for somez ∈ (a, y), whenceρ(y) > r(y) provided that
ρ is increasing on(a, y].

Now we are ready to complement Theorem1.7by

Proposition 1.9. For ρ andr as in Theorem1.7or Remark1.10, an equality of
the form

(1.12) ck = a`(k), for somek = 0, 1, . . . ,m− 1
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(which is admissible according to Definition1.2, Part 2(ii)) in fact is only possi-
ble if ck is the left endpointa of the interval(a, b); that is, only ifk = `(k) = 0.

Proof. Assume the contrary — that under the conditions of Theorem1.7(say),
c := ck is an interior point of(a, b) such that (1.12) takes place. Then it follows
from Definitions1.1and1.2that one of the following two cases must take place:
either

(i) there is someδ > 0 such thatρ andr are both decreasing on(c− δ, c) and
are both increasing on(c, c + δ) or

(ii) there is someδ > 0 such thatρ andr are both increasing on(c− δ, c) and
are both decreasing on(c, c + δ).

Consider case (i). Sinceρ is decreasing on(c− δ, c), the limit ρ(c−) exists;
moreover, in view of the generalized Mean Value Theorem,

ρ(c) =
f ′(c)

g′(c)
= lim

x↑c

f(x)− f(c)

g(x)− g(c)
= ρ(c−).

Further, in view of Remark1.7 and Proposition1.8, there is someδ > 0 such
that r′(x) < 0 and r(x) > ρ(x) > ρ(c−) = ρ(c) ∀x ∈ (c − δ, c); also,
ρ(c) = r(c), sincec is the point of a local minimum forr, and so,r′(c) = 0.
Hence, in view of (1.8) and (1.7),

d

dx
ln |g (x)| = g′(x)

g(x)
=

−r′(x)

r(x)− ρ(x)

>
−r′(x)

r(x)− ρ(c)
=

−r′(x)

r(x)− r(c)
= − d

dx
ln (r(x)− r(c))
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for all x ∈ (c− δ, c). Integration of this inequality yields

(1.13)
g(x2)

g (x1)
>

r(x1)− r(c)

r(x2)− r(c)

wheneverc − δ < x1 < x2 < c. Let nowx2 ↑ c (while x1 is fixed). Then
(by the continuity ofr andg) the right-hand side of (1.13) tends to∞ while its

left-hand side tends to the finite limit
g(c)

g (x1)
. This contradiction show that case

(i) is impossible.
Quite similarly, one shows that case (ii) is impossible. (Note that the as-

sumption thatρ is increasing on(c, c + δ) was not even used here.)

On the other hand, examples whenc0 = a0 takes place are many and very
easy to construct; to obtain a simplest one, leta := 0, b := ∞, f(x) := x2, and
g(x) := x.

Remark 1.11. If g were allowed to be discontinuous at some point(s) of(a, b)
and one were only concerned with the possibility that bothr andρ could be ex-
tended by continuity to the entire interval(a, b), then the conclusion of Propo-
sition 1.9 — and even that of Theorem1.7 — would not hold. For example,
let a := −2/3, b := ∞; f(x) := −x2e−2/x and g(x) := e−2/x for x 6= 0.
Thenr(x) = −x2 andρ(x) = −x2 − x3, so that bothr andρ can obviously
be extended by continuity to the entire interval(a, b) = (−2/3,∞). Here,ρ
is n waves down on(a, b), with n = 2 and the switching pointsa0 = −2/3,
a1 = 0, anda2 = ∞. If it were true that the waves ofr on (a, b) follow (in the
sense of Definition1.2) the waves ofρ, then one would necessarily have here
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c−1 = −2/3, c0 = 0, c1 = ∞, andm = 1, whence

(1.14) c0 = a1 = 0

would be an interior point of the interval(a, b), in contrast with the conclusion
of Proposition1.9. Even the conclusion of Theorem1.7 does not hold in this
situation; indeed, if the conclusion of Theorem1.7 were true here, then (1.14)
would imply`(0) = 1, which would contradict the requirement that`(k) be
even wheneverk is even.

Remark 1.12. Formula (1.8) provides yet another insight into the relation be-
tweenρ and r. Indeed, at any pointx0 of local extrema ofr, one must have
r′(x0) = 0, which impliesρ (x0) = r (x0), so thatρ attains all the extreme
values ofr inside the interval, and then may even exceed them. It follows that
the amplitude of the oscillations ofρ is no less than that ofr. Together with
Theorem1.7, this means that the waves ofr may be thought of as obtained from
the waves ofρ by a certain kind of delaying and smoothing down procedure.

Here are two examples to illustrate above results and observations.

Example 1.2. Let a := 0, b := 2π, f(x) := ex
√

3 sin
(
x− π

6

)
, andg(x) :=

ex
√

3. This corresponds to the choice ofr(x) = sin
(
x− π

6

)
andh =

√
3 in

(1.7) and (1.8), so that

ρ(x) = sin
(
x− π

6

)
+

cos
(
x− π

6

)
√

3
=

2√
3

sin x.
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Figure 1:ρ(x) =
2√
3

sin x, thin line;r(x) = sin
(
x− π

6

)
, thick line

Figure1 above shows that indeed the waves ofr are of a smaller amplitude and

are delayed (by the constant shift
π

6
) relative to the waves ofρ. It is also seen

that the waves ofρ andr are interwoven; more exactly, the graphs ofρ andr
intersect each other at the points of extrema ofr.
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Example 1.3.Now, leta := 0, b := 7.5,

r(x) := 75 +

∫ x

0

(u− 1/2)(u− 2)(u− 4)2(u− 7) du

=
1

6
x6 − 7

2
x5 +

221

8
x4 − 307

3
x3 + 176x2 − 112x + 75 and

h(x) :=
(x− 4)2 + x2 + 10

40
, which corresponds to

g(x) = C · exp

∫ x

0

h(u) du

= C · exp
x3 − 6x2 + 39x

60
, where C is any nonzero constant,

f(x) = r(x)g(x)

= C ·
(

1

6
x6 − 7

2
x5 +

221

8
x4 − 307

3
x3 + 176x2 − 112x + 75

)
× exp

x3 − 6x2 + 39x

60
,

r′(x) = (x− 1/2)(x− 2)(x− 4)2(x− 7), and

ρ(x) =
1

6
x6 − 7

2
x5 +

221

8
x4 − 307

3
x3 + 176x2 − 112x + 75

+ 40
(x− 1/2)(x− 2)(x− 4)2(x− 7)

(x− 4)2 + x2 + 10
.

The graphs ofρ andr are demonstrated by Figure2. The points of change
from increase to decrease or vice versa forr plus the endpoints of the interval
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Figure 2:ρ, thin line;r, thick line
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(a, b) = (0, 7.5) are given by the table

c−1 c0 c1 c2 c3

0 0.5 2 7 7.5

so thatm = 3; here and in what follows we use the notation of Definitions1.1
and1.2. The points of change from increase to decrease or vice versa forρ plus
the endpoints of the interval(a, b) = (0, 7.5) are given by the table

a0 a1 a2 a3 a4 a5

0 1.18 . . . 2.82 . . . 4 6.57 . . . 7.5

so thatn = 5. The map̀ in Definition1.2 is given by the table

k 0 1 2
`(k) 0 1 4

One can see that indeedck ∈
(
a`(k), a`(k)+1

)
for k ∈ {0, 1, . . . ,m− 1}, and

`(k) is even iffk is even.
As in Example1.2, one can see here that the waves ofr are of smaller am-

plitude and delayed relative to the waves ofρ. Again, the waves ofρ andr are
interwoven in the sense described in Example1.2.

On the interval(0, 0.5), the instantaneous relative rateρ is less than the av-
erage relative rater; this is the same asr′ being negative on(0, 0.5), which one
can see too.

On the next interval,(0.5, 2), one hasρ > r, which is the same asr′ > 0.
Further to the right, on the interval(2, 7), one hasρ < r andr′ < 0 (except

that atx = 4 one hasρ = r andr′ = 0), so thatr is decreasing everywhere on
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(2, 7); the graphs ofρ andr look as ifr “feels” to some extent the up and down
(quarter-)waves ofρ nearx = 4, and yet,r “misses” these (quarter-)waves ofρ.

Finally, on the interval(7, 7.5), one hasρ > r andr′ > 0.
The delay-and-flatten manner of the waves ofr to follow the waves ofρ is

especially manifest to the right ofx = 5.
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2. Applications
In the first subsection of this section, we shall apply the results above to obtain
a refinement of an inequality for the normal family of probability distributions
due to Yao and Iyer; this inequality arises in bioequivalence studies; we shall
also obtain an extension to the case of the Cáuchy family of distributions. In
the second subsection below, the convexity conjecture by Topsøe [6] concern-
ing information inequalities is addressed in the context of a general convexity
problem.

Other applications of l’Hospital type rules are given: in [3], to certain in-
formation inequalities; in [4], to monotonicity of the relative error of a Padé
approximation for the complementary error function; in [5], to probability in-
equalities for sums of bounded random variables.

2.1. Refinement and Extension of the Yao-Iyer Inequality

2.1.1. The normal case Consider the ratio

(2.1) r(z) :=
P(|X| < z)

P(|Z| < z)
, z > 0,

of the cumulative probability distribution functions

(2.2) F (z) := P(|X| < z) and G(z) := P(|Z| < z)

of random variables|X| and|Z|, whereZ ∼ N(0, 1), X ∼ N(µ, σ2), µ ∈ R,
andσ > 0.
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Consider also the ratio

ρ(z) :=
F ′(z)

G′(z)
=

1

2σ
·
ϕ

(
z − µ

σ

)
ϕ (z)

+
1

2σ
·
ϕ

(
z + µ

σ

)
ϕ (z)

, z > 0.

In [2], a simple proof was given of the Yao-Iyer [1] inequality

(2.3) r(z) > min(r(0+), r(∞)) ∀z ∈ (0,∞) ∀(µ, σ) 6= (0, 1),

which arises in bioequivalence studies; herer(∞) := lim
z→∞

r(z) = 1 and, by the

usual l’Hospital Rule for limits,

r(0+) = ρ(0+) =
ϕ

(µ

σ

)
σϕ(0)

=
1

σ
exp

(
− µ2

2σ2

)
,

whereϕ is the standard normal density. Of course, in the trivial case(µ, σ) =
(0, 1), one hasr(z) = 1 ∀z > 0.

The proof of the Yao-Iyer inequality given in [2] was based on the following
lemma.

Lemma 2.1. For all µ ∈ R andσ > 0, there exists someb ∈ [0,∞] such thatρ
is increasing on(0, b) and decreasing on(b,∞). (In other words,ρ is either1
wave down or at most2 waves up on(0,∞)).

Based on this lemma and results of the previous section, we shall obtain the
following refinement of the Yao-Iyer inequality, from which the inequality is
immediate.
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Theorem 2.2.Letµ ∈ R andσ > 0.

1. If σ < 1 andσ2 +
(µ

σ

)2

≤ 1, thenr is decreasing on(0,∞) from r (0+)

to r(∞) = 1.

2. If σ < 1 andσ2 +
(µ

σ

)2

> 1, then there exists somec ∈ (0,∞) such that

r is increasing on(0, c] from r(0+) to r(c) and decreasing on[c,∞) from
r(c) to 1. Moreover,c ≥ b, whereb is defined by Lemma2.1.

3. If σ = 1 andµ = 0, thenr = 1 everywhere on(0,∞).

4. If σ = 1 andµ 6= 0, thenr is increasing on(0,∞) from r (0+) to 1.

5. If σ > 1, thenr is increasing on(0,∞) from r (0+) to 1.

Proof. On (0,∞), one has

(2.4)
r′

2ϕ
=

Q

G2
,

where

(2.5) Q := ρG− F

andF andG are the distribution functions defined above. Further, on(0,∞),

(2.6) Q′ = ρ′G
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and

(2.7) ρ′ (z) =

(
z − z − µ

σ2

) ϕ

(
z − µ

σ

)
2σϕ (z)

+

(
z − z + µ

σ2

) ϕ

(
z + µ

σ

)
2σϕ (z)

, z > 0,

so thatρ′(0+) = 0. Now, by the usual l’Hospital Rule and in view of (2.6),

lim
z↓0

Q(z)

G(z)2
= lim

z↓0

Q′(z)

2G(z)ϕ (z)
=

ρ′(0+)

2ϕ (0)
= 0;

this and (2.4) imply

(2.8) r′(0+) = 0.

Therefore, using Lemma2.1, Theorem1.7, and Remark1.10, one sees that
r is either1 wave down on(0,∞) or at most2 waves up on(0,∞). To dis-
criminate between these cases, it suffices to consider the sign ofr′ in a right
neighborhood of0 and that in a left neighborhood of∞.

By (2.4) and (2.6), one hassign r′ = sign Q andsign Q′ = sign ρ′ on(0,∞).
Also, by (2.5), Q(0+) = 0. It follows that, in a right neighborhood of0,
sign Q = sign Q′, and so,

(2.9) sign r′ = sign ρ′,
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provided thatρ′ does not change sign in such a neighborhood. But, as we saw,
ρ′(0+) = 0. Hence, (2.9) implies that, in a right neighborhood of0,

(2.10) sign r′ = sign ρ′′,

provided thatρ′′ does not change sign in such a neighborhood.
Further, one has the identity

2σρ′′(z) =

[(
1− 1

σ2

)
+

(
z − z − µ

σ2

)2
] ϕ

(
z − µ

σ

)
ϕ (z)

+

[(
1− 1

σ2

)
+

(
z − z + µ

σ2

)2
] ϕ

(
z + µ

σ

)
ϕ (z)

, z > 0.

In particular,

(2.11) ρ′′(0+) =

[
σ2 +

(µ

σ

)2

− 1

] ϕ
(µ

σ

)
σ3ϕ (0)

.

By (2.10) and (2.11), in a right neighborhood of0,

(2.12) sign r′ = sign

[
σ2 +

(µ

σ

)2

− 1

]
if σ2 +

(µ

σ

)2

6= 1.

It is not difficult to see thatρ
′′′
(0+) = 0. By (2.11), in the caseσ2 +

(µ

σ

)2

= 1,
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one hasρ′′(0+) = 0; also in this case, one can see that

ρIV (0+) = −2
( µ

σ2

)4 ϕ
(µ

σ

)
σϕ (0)

< 0 if µ 6= 0.

It follows now from (2.10) that, in a right neighborhood of0,

(2.13) r′ < 0 if σ2 +
(µ

σ

)2

= 1 and µ 6= 0.

Of course, ifσ2+
(µ

σ

)2

= 1 and µ = 0, thenσ = 1, so that this is the trivial

case, in whichr = 1 everywhere on(0,∞). Thus, (2.12) and (2.13) provide a
complete description of the sign ofr′ in a right neighborhood of0.

Let us now consider the sign ofr′ in a left neighborhood of∞. Let z →∞;
then (2.7) implies thatρ′(z) → 0 if σ < 1 andρ′(z) → ∞ if σ > 1 or σ = 1
andµ 6= 0. Therefore, in view of (2.4) and (2.5), in a left neighborhood of∞,

sign r′ = sign(σ − 1) if σ 6= 1;(2.14)

r′ > 0 if σ = 1 and µ 6= 0.(2.15)

Recall thatr is either1 wave down on(0,∞) or at most2 waves up on
(0,∞).

Consider now Part 1 of the theorem, whenσ < 1 andσ2 +
(µ

σ

)2

≤ 1.

Then (2.12) and (2.13) imply r′ < 0 in a right neighborhood of0. Hence,
r is decreasing in a right neighborhood of0, and so, any waves-up pattern is
impossible forr. Therefore,r is 1 wave down on(0,∞), that is, in this caser
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is decreasing everywhere on(0,∞). Thus, Part 1 of the theorem is completely
proved.

Assume next thatσ < 1 andσ2 +
(µ

σ

)2

> 1, as in Part 2 of the theorem.

Then (2.12) and (2.14) imply, respectively, thatr′ > 0 in a right neighborhood
of 0 andr′ < 0 in a left neighborhood of∞. Now Part 2 of the theorem follows
using Theorem1.7.

Part 3 of the theorem is trivial, and only serves the purpose of completeness.
If σ = 1 andµ 6= 0, as in Part 4 of the theorem, then (2.12) and (2.15) imply

that r′ > 0 in a right neighborhood of0, as well as in a left neighborhood of
∞. Sincer may have at most2 waves up on(0,∞), Part 4 of the theorem now
follows.

The proof of Part 5 of the theorem is quite similar to that of Part 4; the
difference is that in this case one uses (2.14) instead of (2.15).

2.1.2. The Cáuchy case In this subsection,r is still assumed to have the
form defined by (2.1) and (2.2), butX andZ are now assumed to have, respec-
tively, the Cáuchy distribution with arbitrary parametersa ∈ R andb > 0 and
the standard Cáuchy distribution, with the densities

pa,b(z) :=
1

πb
· 1

1 +

(
z − a

b

)2 and p0,1(z) :=
1

π
· 1

1 + z2
.

We shall show that the analogue

r(z) > min(r(0+), r(∞)) ∀z ∈ (0,∞) ∀(a, b) 6= (0, 1)
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of the Yao-Iyer [1] inequality (2.3) takes place in this case too; note thata and
b are the location and scale parameters, respectively, of the Cáuchy distribution,
just asµ andσ are those of the normal distribution. Here, it is easy to see that

r(0+) =
b

a2 + b2
and r(∞) = 1.

Moreover, we shall show that the following analogue of Theorem2.2takes place
in this Cáuchy distribution setting.

Theorem 2.3.Leta ∈ R andb > 0.

1. If b4 − b2 + a2 (a2 + 2b2 + 3) < 0, thenr is decreasing on(0,∞) from
r (0+) to r(∞) = 1.

2. If b4 − b2 + a2 (a2 + 2b2 + 3) = 0 and a 6= 0, thenr is decreasing on
(0,∞) from r (0+) to r(∞) = 1.

3. If b4 − b2 + a2 (a2 + 2b2 + 3) = 0 and a = 0, thenb = 1, and r = 1
everywhere on(0,∞).

4. If b4 − b2 + a2 (a2 + 2b2 + 3) > 0, then there exists somec ∈ (0,∞) such
that r is increasing on(0, c] from r(0+) to r(c) and decreasing on[c,∞)
from r(c) to 1.

Proof. Consider the ratio

(2.16) ρ(z) :=
F ′(z)

G′(z)
= b ·R(y),
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where

R(y) :=
f(y)

g(y)
,

y := z2,

f(y) := y2 +
(
a2 + b2 + 1

)
y +

(
a2 + b2

)
,

g(y) := y2 + 2
(
b2 − a2

)
y +

(
a2 + b2

)2

=
(
(z − a)2 + b2

) (
(z + a)2 + b2

)
,

so thatg > 0 on (0,∞).
One has

(2.17)
g(y)2

2bz
ρ′(z) = g(y)2R′(y) = (f ′g − fg′) (y), z > 0.

It follows thatρ′(0+) = 0, whence (2.8) holds in this case too; cf. (2.4)–(2.6).
Next, (

g′

f ′

)′

(y) =
2 (1 + 3a2 − b2)

(2y + a2 + b2 + 1)2 , y > 0.

Therefore,
g′

f ′
is at most1 wave up or down on(0,∞), and so, by Theorem

1.7,
g

f
is at most2 waves up or down on(0,∞), and then so areR =

f

g
andρ

(recall (2.16)); again by Theorem1.7, this and (2.8) imply thatr too is at most
2 waves up or down on(0,∞).
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Further, sincef andg are polynomials of the same degree, it follows from
(2.17) thatρ′(z) → 0 asz → ∞. Hence (cf. (2.4) and (2.5)), r′ < 0 in a left
neighborhood of∞. This and the fact thatr is at most2 waves up or down on
(0,∞) imply that either

(i) r is constant on(0,∞) or

(ii) r is decreasing everywhere on(0,∞) or

(iii) there exists somec ∈ (0,∞) such thatr is increasing on(0, c] and de-
creasing on[c,∞).

To discriminate between these three cases, it suffices to know the sign ofr′

in a right neighborhood of0. Since (2.9) holds in this case too, (2.17) implies

(2.18) sign r′(z) = sign(f ′g − fg′)(y)

for z in a right neighborhood of0; remember that, by definition,y = z2. Further,

(f ′g − fg′)(0+) =
(
a2 + b2

) [
b4 − b2 + a2

(
a2 + 2b2 + 3

)]
.

Hence, in a right neighborhood of0,

sign r′ = sign
[
b4 − b2 + a2

(
a2 + 2b2 + 3

)]
if b4−b2+a2

(
a2 + 2b2 + 3

)
6= 0.

Now Parts 1 and 4 of the theorem follow.
In the remaining case, whenb4− b2 + a2 (a2 + 2b2 + 3) = 0, one has(f ′g−

fg′)(0+) = 0; hence, by (2.18), for z in a right neighborhood of0,

sign r′(z) = sign(f ′g − fg′)(y) = sign(f ′g − fg′)′(y) = sign(f ′′g − fg′′)(y).
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However,

(f ′′g − fg′′)(0+) = 2(g − f)(0+) = b4 − b2 + a2
(
a2 + 2b2 − 1

)
= −4a2 < 0

provided thatb4 − b2 + a2 (a2 + 2b2 + 3) = 0 anda 6= 0, and then we see that
r′ < 0 in a right neighborhood of0. This yields Part 2 of the theorem.

Part 3 is trivial.
The theorem is completely proved.

2.2. Application: the convexity problem

Let us consider here the problem of the convexity of the ratio
f

g
of two suffi-

ciently smooth functionsf andg. Suppose first that the derivativesf ′ andg′ are
rational functions. One has

(2.19)

(
f

g

)′

=
f1

g1

,
f ′1
g′1

=
f2

g2

, and
f ′2
g′2

=
f3

g3

,

where

f1 :=
f ′

g′
g − f, g1 :=

g2

g′
;

f2 :=
f ′′

g′′
g′ − f ′, g2 := 2

g′2

g′′
− g;(2.20)

f3 := f ′′′g′′ − f ′′g′′′, g3 := 3g′′2 − 2g′g′′′.
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Here, at each of the two steps, from
f1

g1

to
f2

g2

and from
f2

g2

to
f3

g3

, we proceed to

isolate the presumably most complicated expression in the numerator or denom-
inator (or both) and get instead its derivative, which is presumably a simpler (in
this case, rational) expression.

In these two steps, one gets to
f3

g3

, which is a rational function.

Note also that the convexity/concavity of
f

g
corresponds to the increase/decrease

of
f1

g1

.

Thus, the l’Hospital type results of Section1 allow one to determine the

intervals of convexity of
f

g
in a completely algorithmic manner by reduction of

the convexity problem to that of the oscillation pattern of the rational function,
f3

g3

, and then going the same stepsback to
f

g
and at that studying the signs of

the derivatives of the ratios
fs

gs

locally, near the switching points (from increase

to decrease or vice versa) of each of the ratios
fs+1

gs+1

, starting froms = 2 to 1 to

0, where
f0

g0

:=
f

g
. In some cases, though, such as the following Example2.1,

the situation may clear up before getting all the way to
f3

g3

.

Example 2.1.In [6], a simple proof (due to Arjomand, Bahrangiri, and Rouhani)
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of the monotonicity of the function(0, 1/2) 3 p 7→ H(p, q)

ln p · ln q
is given; here

q := 1− p andH(p, q) := −p ln p− q ln q is the entropy function; that proof is
based on the identity

H(p, q)

ln p · ln q
= − p

ln q
− q

ln p

and the convexity of
q

ln p
in p ∈ (0, 1). See [3] for another simple proof of the

monotonicity of
H(p, q)

ln p · ln q
— based on the l’Hospital type rule, stated above as

Proposition1.1.

The convexity of
q

ln p
is also easy to prove using our results. Indeed, here

f(p) = q, g(p) = ln p, f1(p) = −p ln p − q, g1(p) = p ln2 p, f2(p) = 1, and
g2(p) = −2 − ln p. Moreover,f1(1−) = g1(1−) = 0 andf ′1(p) = − ln p > 0

for p ∈ (0, 1), so thatf1 < 0 on (0, 1). Since
g2

f2

is obviously decreasing on

(0, 1), Proposition1.1 implies that so is
g1

f1

; hence,
f1

g1

is increasing on(0, 1)

(note thatf1 < 0 andg1 > 0 on (0, 1) ). By (2.19), the convexity of
q

ln p
now

follows.

Let us now illustrate the proposed approach with a more involved example.

Example 2.2.Letf(x) = ln(1 + x2) andg(x) = arccot x. We shall use results

of Section1 to analyze the convexity properties of
f

g
on(a, b) = (−∞,∞). One
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has, for all realx,

f1(x) = −2x arccot x− ln
(
1 + x2

)
and g1(x) = −(1 + x2)arccot2x

and, for allx 6= 0,

f2(x) = −1

x
; g2(x) =

1

x
− arccot x;

f ′2(x) =
1

x2
; g′2(x) = − 1

x2 (1 + x2)
.

Hence, for allx 6= 0,

f ′2(x)

g′2(x)
=

f3(x)

g3(x)
= −

(
1 + x2

)
,

which is increasing inx ∈ (−∞, 0) and decreasing inx ∈ (0,∞).
Now let us analyze the signs ofg2 andg′2 on the intervals(−∞, 0) and(0,∞)

and the local behavior of
f2

g2

near the switching points−∞, 0, and∞ of
f3

g3

,

thus making the first step back, from
f3

g3

to
f2

g2

. Sinceg2(∞) = 0 andg′2(x) < 0

for all x 6= 0, one hasg2 > 0 on (0,∞); it is obvious thatg2 < 0 on (−∞, 0);

thus,
f2

g2

is defined on each of the intervals(−∞, 0) and (0,∞). In addition,

f2(∞) = g2(∞) = 0. Hence, by Proposition1.1,
f2

g2

is decreasing on(0,∞).
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To analyze the signs of

(
f2

g2

)′

near−∞ and0, note that

x2g2
2(x)

(
f2

g2

)′

(x) =
x

1 + x2
− arccot x →

{
−π < 0 as x → −∞,
−π/2 < 0 as x → 0.

Now Remark1.5 implies that
f2

g2

is decreasing on the interval(−∞, 0); thus,

f2

g2

is decreasing on each of the intervals(−∞, 0) and(0,∞).

Further, let us analyze the signs ofg1 andg′1 on the intervals(−∞, 0) and

(0,∞) and the local behavior of
f1

g1

near the switching points−∞, 0, and∞ of

f2

g2

, thus making the second (and final) step back, from
f2

g2

to
f1

g1

=

(
f

g

)′

.

For all x 6= 0, one hasg1(x) = −(1 + x2) arccot2 x < 0 and g′1(x) =

2xg2(x) arccot x > 0; thus,
f1

g1

is defined on each of the intervals(−∞, 0) and

(0,∞). It remains to determine the sign of

(
f1

g1

)′

near the endpoints:−∞, 0,

and∞: (
f1

g1

)′

(x) ∼ − 2

πx2
< 0 as x → −∞,(

f1

g1

)′

(0) =
4

π
> 0, and
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(
f1

g1

)′

(x) ∼ 2

x
> 0 as x →∞.

Therefore,

(
f

g

)′

=
f1

g1

switches once from decrease to increase on(−∞, 0)

and then is increasing on(0,∞).

We conclude that there is somec ∈ (−∞, 0) such that
f

g
is concave on

(−∞, c) and convex on(c,∞); in fact, c = −0.751 . . . .

Of course, the steps like the ones described by (2.19)-(2.20) will work not
only in the case when bothf ′ andg′ are rational functions but also in other cases
whenf ′ andg′ are given by simpler expressions thanf andg.

Topsøe [6] conjectured that

(2.21)
ln

(
H(p)

ln 2

)
ln (4pq)

is convex inp ∈ (0, 1), where againq := 1 − p andH(p) := H(p, q) :=

−p ln p − q ln q. Here the derivativef ′ of f := ln

(
H

ln 2

)
is not a rational

function. However, one can still use the same kind of algorithm as the one

demonstrated in (2.19)-(2.20), becausef ′ =
H ′

H
andH ′′(p) = − 1

pq
is rational;

then the problem reduces again to that of the oscillation pattern of a rational
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function plus local analysis near the switching points. In this sense, the problem
can be solved in a rather algorithmic manner. Indeed, one can write here

(2.22)
f3

g3

=
Pm

Qn

,

wherePm(p) andQn(p) are polynomials inH(p) of some degreesm andn
over the fieldR(p, H ′(p)) of all rational expressions inp andH ′(p); in fact, in
(2.22), one hasm = 2 andn = 3; moreover, hereQn(p) = H(p)3.

Consider such a rational expression
Pm

Qn

over the fieldR(p, H ′(p)). Let us

call the summ + n of the degrees of the numerator and denominator the height

of the rational expression
Pm

Qn

; if Pm = 0, define the height as−1. If the height

of the rational expression
Pm

Qn

is greater than0 (as we have it in (2.22) for
f

g

given by (2.21)), let us rewrite
Pm

Qn

so that the leading coefficient of either the

numerator or denominator is1 (as we have it in case
f

g
is given by (2.21) for

the denominatorQn(p) = H(p)3); then, without loss of generality, one may

assume that the leading coefficient of eitherPm or Qn is already1. Then
P ′

m

Q′
n

too is a rational expression over the fieldR(p, H ′(p)), but its height is at most

m+n−1 vs. the heightm+n of
Pm

Qn

(the derivativesP ′
m andQ′

n of Pm andQn

are taken here of course inp); indeed, sinceH ′′ is rational inp, the derivative
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P ′
m(p) in p of any polynomial

Pm(p) = Rm(p, H ′(p))·H(p)m+Rm−1(p, H
′(p))·H(p)m−1+· · ·+R0(p, H

′(p))

in H(p) — with the coefficientsRm(p, H ′(p)), . . . , R0(p, H
′(p)) being rational

expressions inp andH ′(p) — is again a polynomial inH(p) of degree at most
m over the fieldR(p, H ′(p)); moreover, the degree ofP ′

m(p) is at mostm − 1
over the fieldR(p, H ′(p)) in case the leading coefficientRm(p, H ′(p)) is 1 (or
any other nonzero constant).

Therefore, the basic step, from
Pm

Qn

to
P ′

m

Q′
n

, reduces the height at least by

1. Repeating such basic steps, one comes to an expression of height at most
0, which then itself belongs to the fieldR(p, H ′(p)) of all rational expressions
in p andH ′(p) only — rather than inp, H ′(p), andH(p). Thus,H(p) will be
eliminated.

An analogous (even if very long) series of steps afterwards will eliminate
H ′(p), and then one will have just to consider the monotonicity of a ratio of
polynomials inp with certain real coefficients.

(As in all statements of Section1, when considering the relation between
f

g

and
f ′

g′
one needs also to control the sign ofgg′. In particular, if eitherPm or

Qn is constant and the leading coefficient of the other one of these two is also
constant, then the basic step needs to be modified; yet, such an exception would
be only easier to deal with.)

After all these, sayN , steps have been done, one has of course to go the

sameN stepsbackto
f

g
, studying at that the signs of the derivative of each of
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the ratios
fs

gs

locally, near the switching points (from increase to decrease or

vice versa) of the ratio
fs+1

gs+1

, for the integer values ofs going down fromN to

0, where
f0

g0

:=
f

g
. Here, at each of the switching points, one might need to use

repeatedly the usual l’Hospital Rule for limits, eliminatingH(p) and thenH ′(p)
in the same manner as described above. Numerical approximations might also
be needed. Remark1.6may be useful at some of these steps.

However, all this long process is essentially algorithmic and will necessarily
come to an end after afinite number of steps, and then the oscillation pattern

of the ratio
f1

g1

=

(
f

g

)′

will be completely determined. Thus, the convexity

pattern of
f

g
will be completely determined.

Of course, the numberN of the basic steps in this case will be many more
than two (in contrast with above Examples2.1 and 2.2), and the volume of
calculations will be enormous. For this reason, we shall not pursue this problem
further at this point.

In contrast with this convexity problem, the proof of the monotonicity of the
ratio (2.21) based on a l’Hospital type rule is very simple; see [3].

http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au/


L’Hospital Type Rules for
Oscillation, With Applications

Iosif Pinelis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 53 of 53

J. Ineq. Pure and Appl. Math. 2(3) Art. 33, 2001

http://jipam.vu.edu.au

References
[1] Y.-C. YAO AND H. IYER, On an inequality for the normal distribution aris-

ing in bioequivalence studies. J. Appl. Prob., 36 (1999), 279–286.

[2] I. PINELIS, On the Yao-Iyer inequality in bioequivalence studies.Math.
Ineq. & Appl., (2001), to appear.

[3] I. PINELIS, L’Hospital Type rules for monotonicity, with appli-
cations, J. Ineq. Pure & Appl. Math., 3(1) (2002), Article 5.
(http://jipam.vu.edu.au/v3n1/010_01.html ).

[4] I. PINELIS, Monotonicity Properties of the Relative Error of a Padé Ap-
proximation for Mills’ Ratio, J. Ineq. Pure & Appl. Math.,3(2) (2002),
Article 20. (http://jipam.vu.edu.au/v3n2/012_01.html ).

[5] I. PINELIS, L’Hospital type rules for monotonicity: an applica-
tion to probability inequalities for sums of bounded random vari-
ables, J. Ineq. Pure & Appl. Math., 3(1) (2002), Article 7.
(http://jipam.vu.edu.au/v3n1/013_01.html ).

[6] F. TOPSØE, Bounds for entropy and divergence for distributions over a
two-element set,J. Ineq. Pure & Appl. Math., 2(2) (2001), Article 25.
http://jipam.vu.edu.au/v2n2/044_00.html

http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au/
http://jipam.vu.edu.au/v3n1/010_01.html
http://jipam.vu.edu.au/v3n2/012_01.html
http://jipam.vu.edu.au/v3n1/013_01.html
http://jipam.vu.edu.au/v2n2/044_00.html

	L'Hospital Type Rules for Oscillation 
	Applications
	Refinement and Extension of the Yao-Iyer Inequality
	The normal case
	The Cáuchy case

	Application: the convexity problem


