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Abstract

An algorithmic description of the dependence of the oscillation pattern of the

f s

ratio ~ of two functions f and g on the oscillation pattern of the ratio = of

! [/
their d]erivatives is given. This tool is then used in order to refine and extehjd the
Yao-lyer inequality, arising in bioequivalence studies. The convexity conjecture
by Topsge concerning information inequalities is addressed in the context of a
general convexity problem. This paper continues the series of results begun by
the 'Hospital type rule for monotonicity. Other applications of this rule are given
elsewhere: to certain information inequalities, to monotonicity of the relative
error of a Padé approximation for the complementary error function, and to
probability inequalities for sums of bounded random variables.

2000 Mathematics Subject Classification: 26A48, 26D10, 26A51, 26D15, 60E15,

62P10.

Key words: L'Hospital’s Rule, Monotonicity, Oscillation, Convexity, Yao-lyer inequal-
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Let —oco < a < b < oco. Let f andg be differentiable functions defined on the
interval (a, b).
. f
Assume thay andg’ are nonzero ofia, b), so that the ratlosl:; and? are
defined on(a,b). It follows that functiong, being differentiable and hence
continuous, does not change sign(and). In other words, eitheg > 0 on the
entire interval(a, b) or g < 0 on (a, b); assume that the same is true §or

The following result, which is reminiscent of the I'Hospital rule for comput-
ing limits, was stated and proved if|[

Proposition 1.1. Suppose thaf(a+) = g(a+) = 0 or f(b—) = g(b—) = 0.

1. If = is increasing on(a, b), then <i> > 0 on (a,b), and so,i is in-
g g
creasing on(a, b).
" : £\ f.
2. If = is decreasing orfa, b), then (—) < 0on(a,b), and so,~ is de-
9 g

creasing on(a, b).
Note that the conditions
(i) ¢’ is nonzero and does not change sign@rb) and

(i) gla+)=0o0rg(b—) =0
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already imply thay is nonzero and does not change sign(@rb); hence, one
hasgg’ > 0 on(a,b) orgg’ < 0on(a,b).

In contrast with the I'Hospital Rule for limits, Propositidnl may be gen-
eralized as follows, without requiring thitand ¢ vanish at an endpoint of the
interval.

2 /
Proposition 1.2. Suppose thagg’ > 0 on (a, b), lim sup % (i) (c) >0,
cla g\c g
/ !/
and? is increasing ona, b). Then<£> > 0on(a,b).

Proof. As in the proof of Propositio.1in [3], fix any z € (a,b) and consider
the functionh, defined by the formula

ha(y) := f'(x)g(y) — ¢'(x) f(y)-
Forally € (a,x),

=W = I'@g W) — g (@) (5) = g (2)g' ) (% - %) -0

becausg’ is nonzero and does not change sigr{@rb) and= is increasing on

(a,b). Hence, the functionh,, is increasing oria, z); moreover, being continu-
ous,h, is increasing ona, x].
Now, fix anyc, € (a,z). Then for allc € (a, ¢

f(@) (9(x) = g(e)) — g'(x) (f(x) — fle)) = ha(2) — ha(c)
(1.1) >e>0
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where
(1.2) € := hy(x) — hy(co).

Next,

L3) gl (f) (2) = f@)g(x) — ¢ (2) (2)

g
(1.4) = 1'(2) (9(x) — 9(0)) — g'(=) (F(z) — £(0)) ospral Type Mo o
f’(l’) f/(c) , Oscillation, With Applications
(1.5) + (g/(x) g (c) 9(e)g'(x) losif Pinelis
g0 (Y N
(L6) + 29 (g CRIGE e Page
here it is taken into account thetis nonzero and does not change sigriarb), ConEns
sothat! (7) _ 1910)] XX >
g'(c) 19l _ < >
Of the three summands in.@) — (1.6),
L . . . . Go Back
e inview of (1.1), the first summand, inl(4), is no less than the fixed> 0
defined by (.2), for all ¢ € (a, co|; Close
e the second summand, id.f), is nonnegative (and even positive) for all Quit
Page 5 of 53

c € (a, ¢, becausef— is increasing orfa, b) andg(c)g'(x) > 0; the latter

inequality follows becausgg’ > 0 on (a,b) andg’ does not change sign 3. Ineq, Pure and Appl. Math. 2(3) Art. 33, 2001
on(a,b); http://jipam.vu.edu.au
b )


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au/

e as to the last summand, ifi.¢), its limit superior as: | a is nonnegative,

2 /
by the conditiorlim sup gsc) (f) (c) > 0.
cla ’g (C)‘ g

On the other hand, the left-hand side df3), which is the sum of the three sum-
mands in {.4) — (1.6), does not depend an Now the inequality(i) (x) >
g

e[> 0] follows if we letc | a. O

Corollary 1.3.

1. If g¢’ > 0on(a, b),lin;lsaup “ZEZ; (g) (x) >0, andﬂ

>/>Oon(a,b).

is increasing ona, b), then(

Q |

2. If g¢ > 00on(a,b), hmlmf ’g(( ))| (g) (x) <0, andf is decreasing on
xrla g

(a,b), then (5), < 0on(a,b).

3. Ifg¢’ <0on(a,b), hmmf |g(( ))| (i) (z) <0, andf is decreasing on
g g

(a,b), then (g)/ <o0on(a,b).
g(z)° (i)/( ) >0, and

9

: f’
4.1f g¢ < 0on(a,b), limsup
«1b - |g'(2)]

is mcreasmg
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on (a,b), then (i) > 0on(a,b).
g
Proof. Part 1 of Corollaryl.3 repeats Propositioh.2. Part 2 can be obtained
from Part 1 by replacing by —f. Then Parts 3 and 4 can be obtained from
Parts 1 and 2 by replacingxz) andg(x) for all z € (a,b) by f(a + b — x) and
g(a + b — z), respectively. O

Remark 1.1. As seen from the proof of Proposition 1.2, the following variant
of Corollary 1.3 holds. Fix any ¢ € (a,b).

/ /
1. If g¢’ > 0 on (c,b), (g) (¢c) > 0, and § is increasing on (c,b), then
/
<i> > 0on(c,b).
g
AY f!
2. If g¢" > 0 on (c,b), (—) (c) <0, and = is decreasing on (c,b), then
g g
/
<i> < 0on(cb).
g

! /
3. If g¢ < 0 on (a,c), (i) (¢) <0, and f—/ is decreasing on (a, c), then
g g

<§>/ < 0on(a,c).
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/ /
4. If g¢' < 0 on (a,c), <i> (¢) > 0, and f—/ is increasing on (a, c), then
g g
f)'
=] >0on/(a,c).
¢ (0.0

Remark 1.2. It may not be immediately obvious that Propositibr2 — or,
rather, Corollary1.3—is indeed a generalization of Propositiaril. However,

the conditions ) )
lim sup 9(z) (i) () >0

ela - |9'(2)l \ g
and ) )
lim inf ggx) <i> (x) >0
a1b - |g'(x) \g
f /
are necessary forz to be increasing or{a,b), because then =) > 0 on

g Y
(a,b). Therefore, by Part 1 (say) of Propositidnl, its conditions imply that
2 /
lim supM (i) () >0

wia - |9'(@)] \g B

lim inf 20 (i) () >0

=16 Jg'(x)] \ g
Finally, as already mentioned, the condition of Corolldry that g¢' > 0 on

and

(a,b) or g¢" < 0 on(a,b) obviously follows from the conditions of Proposition

1.1that ¢’ does not change sign dn,b) andg(a+) = 0 or g(b—) = 0. Thus,

L'Hospital Type Rules for
Oscillation, With Applications

losif Pinelis

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 8 of 53

J. Ineq. Pure and Appl. Math. 2(3) Art. 33, 2001

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au/

Parts 1 and 4 of Corollaryl.3 generalize Part 1 of Propositiof.1; similarly,
Parts 2 and 3 of CorollaryL.3generalize Part 2 of Propositioh. 1.

Remark 1.3. Another possible question is whether the condition

2 !
lim sup !ZEQH (g) (x) > 0 of Proposition1.2 may be replaced by the sim-
zla

/
pler conditionlim sup (i) (z) > 0, which is necessary as well f(‘fr to be
zla g g

/
increasing on(a, b). The answer is no; the conditidim sup <i> (x) >0, or
zla g

/
even the conditior(i> (a+) > 0, is too weak.
g

A generic counter-example may be constructed as follows. flaatd G be
functions defined oR such that

e f(0) =0, f'(04+) = f(0) = 0,and f* < 0 on(0,00), so thatf < 0 on
0, 00);

e G>0,G'<0,andG"” > 0 on(—o0,0];

for instance, one may choose hefér) = —2? Vo € RandG(y) = eV
Yy € R. Next, defing by the formula

g(x) = G(f(x)), z€R.
Then

e g>0andg > 00on(0,0c0), sothatgg’ > 0 0on (0, co);
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. L,/ /(x) = —G/é/((;gg)lgx) > 0 forz >0, so thatg—: is increasing on
(0, 00);
AN
P (0+)=0

Thus, all the conditions of Propositian2 would be satisfied fot = 0 and
2 /
gla)” <i> (x) > 0 were replaced
g

anyb > 0 — if only the conditiodim sup

/ ala |9 (2)]
by <§) (04) > 0.

1 o
Nonetheless, one hz< f/g ) (0+) = ——= >0, so that(g) <0ina

G(0)
right neighborhood0, ¢) of 0, so thati is notincreasing on(0, 4).
g

/
This counter-example shows that the conditionsup <i> (x) > 0, or
g

zla
/
even the conditior(i> (a+) > 0, is just too easy to satisfy — it is enough to
g

let f/(a+) =0andg = G o f, and then one can ha\éi) (a+) = 0.
g

On the other hand, if it is required th%i) (0+) > 0 — or just that
g

/ 2 /
lim sup (i> (z) > 0, then the conditiofim sup gSa:) (i) (x) > 0 obvi-
zla g zla |g <I>| g
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ously follows. Moreover, it is seen from the proof of Proposifiahithat in this
/

case the condition tha]% is increasing or{a, b) may be relaxed to the condition
9
/

that = is non-decreasing ofu, b). Thus, one has
g

/ !
Proposition 1.4. If g¢’ > 0 on (a,b), lim sup (i> () > 0, and = / is non-
g g

zla
/
decreasing orta, b), then (i> > 0on(a,b).
g
Remark 1.4. Proposition1.4 may also be complemented by the other three

similar cases, just as Cases 2, 3, and 4 of Coroltagcomplement Proposition
1.2

/ /
Similarly, the conditions tha<§> (¢c)>0 and f is increasing or{c, b) in

Part 1 of Remark..1 may be replaced by the conditions tk(ai) (¢)>0and
r 1Y
9

is non-decreasing ofr, b), with the same conclusion to hol<€ >0on

(c, b); similar changes may be made in the other three parts o

What can be said in the absence of restrictionsliikeup

of Rem
(f>
zla g

0? Here is an answer.
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Proposition 1.5.

/

1. Suppose thayg’ > 0 and 7 is increasing on(a, b). Then there is some

¢ € [a,b] such that(§> < 0on(a,c) and (g) > 0 on (cb). (In
particular, if ¢ = a, then (i> > ( on the entire intervala, b); if ¢ = b,
g

then (g), <0on(a,b).)

!/

2. Suppose thagg’ > 0 and§ is decreasing ona, b). Then there is some

¢ € [a,b] such that(i)/ > 0 on(a,c)and (i)/ <0on(eb).

g g
!/

3. Suppose thagg’ < 0 and = is increasing on(a, b). Then there is some
g
¢ € [a,b] such that(g) > 0 on(a,c)and (g) <0on(c,b).

!/

4. Suppose thagg’ < 0 and§ is decreasing ona, b). Then there is some

c € [a,b] such that(z>/ < 0on(a,c)and (i)/ > 0on(cb).

g g
Proof. Let us prove Part 1 of the proposition; thus, we assume hergghat 0
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f/

and= is increasing ona, b). Let
g
._ NEAY
E:=<xe€(ab): =) () >0>.
g
If £ =0, then ! < 0 on(a,b), which implies the conclusion of Part 1

g
of the proposition, with: := b.
If £ # 0, letc := inf E, so thatc € [a,b). If ¢ ¢ E, then there exists a
sequencéc, ) in E such that,, | c¢. Then (i ) > 0 for all n, and so,
9

fim sup L2 (i) (r) > 0.

wie 19'(2)] \g

Therefore, according to Propositidn2, (g) > 0on(cb). If c € E, then
f

/
¢ € (a,b) and (—) (¢) > 0; using now Part 1 of Remark.1, one comes to
9
the same conclusion — th{ti

g) > 0 on(c,b). On the other hand, by the

/
construction ofE' andc¢, one has ! < 0 on(a,c). This implies that the

conclusion of Part 1 of the proposition holds in the cAs¢ (), too.

The other three parts of the proposition follow from Part 1 of it; cf. the proof

of Corollary1.3. O
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!/

Theorem 1.6. Suppose thajg’ > 0 and 7 is increasing ona, b).
1. The following statements are equivalent:
Ay :
(a) J > 0on(a,b);
(b) (i) > 0 in a right neighborhood of.
g

2. The following statements are equivalent:
AY AY .
(@) Jece (a,b) (=) <O0on(a,c)and| =) >0on(c,b);
g g
(b) (i) < 0 in a right neighborhood of: and <i> > 0in a left
g g
neighborhood ob.

3. The following statements are equivalent:
AN .
(@) g <o0on(a,b);
(b) <§) < 0in a left neighborhood of.

This theorem is immediate from Part 1 of Propositio&
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!/
Remark 1.5. If the condition thatji, is increasing on(a, b) in the preamble of
g

Theoreml.6 is replaced by the condition tha[g is decreasing ora, b), then

all of the conclusions of the theorem will hold provided that all the inequality
signs in them are switched to the opposite ones. Similarly, if the condition

gg’ > 0in the preamble of Theorem6 is replaced bygg’ < 0, then all of

the conclusions of the theorem will hold provided that all the inequality signs
in them are switched to the opposite ones. If both conditions in the preamble of
/

Theoreml.6are switched to the opposite ones—is decreasing offa, b) and

g9’ < 0, then all the three parts of Theoret6 will hold without any changes.
— Cf. Parts 2, 3, and 4 of Propositidn5.

Thus, Theorem.6and Remark..5provide acomplete qualitative descrip-

tion of the oscillation pattern oalf on an interval of monotonicity of» based

g
on thelocal behavior ofi near the endpoints of the interval.
g

Remark 1.6. Yet, whenever possible and more convenient, Propositibmay
be used instead of the more general Theotefrand Remark..5.

/
Remark 1.7. In Part 1(b) of Theoreni..6, the condition that<z> > 0ina
g

right neighborhood of the left endpoimtmay be relaxed to the condition thét
g
is non-decreasing in a right neighborhoodafwith Part 1(a) of the theorem to
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hold. (Similar changes may be made in the other two parts of Thebrgras

well as concerning Remark5.) This too follows from Propositioh.5, because
/

in each of the four parts of Propositioh5 the conclusion implies th ti

g

is nonzero and does not change sign in some right neighborhooedcoé the

same is true for some left neighborhoodbpthence, under the conditions of

Propositionl1.5or, equivalently, under those of Theorénd and Remark..5, if

(say)g is non-decreasing in a right neighborhood @fthen <i) > 0ina

g L'Hospital Type Rules for
right neighborhood ofi. Oscillation, With Applications
Remark 1.8. In all the above statements, the “strict” terms “increasing” and losif Pinelis
“decreasing” and the “strict” signs “>" and “ <" may be replaced, simulta-
neously and throughout, by their “non-strict” counterparts: “non-decreasing”, Title Page

“non-increasing”, “ >” and “ <"respectively (however, it still must be as-

¥ Iz Contents
sumed thay and ¢’ are nonzero or{a, b), just for the ratios— and = to be « N
g g
defined ona, b)).
In particular, it follows that the conditiongg’ > 0 on(a, b) or g¢’ < 0 on(a,b), < 4
2 / /

m gfx) (i) (z) =0, andf is constant or{a, b) imply that? is constant Go Back
zle |g'(x)| \ g g —
on(a,b).

/ Quit

Even if the ratio= is not monotone, something can be said on the behavior
g’ Page 16 of 53
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which will be accompanied by discussion.

Definition 1.1. Let us say that a functiopis n waves upon the interval(a, b),
wheren is a natural number, if there exist real numbets=a < a; < --- <
a, = b (which we shall call theswitching points fop) such thai is increasing
n

., { g 1J } and decreasing

on the intervalgay;, as;+1) for all j € {O, 1,.

n—2

..,{ 5 J};here,asusual,

| z] stands for the integer part of a real numberin such a situation, one might
prefer to say “n quarter-waves up” rather than ¥, waves up”.

on the intervalgas;1, azj10) forall j € < 0,1,.

Definition 1.2. If, for some natural number, a functionp is n waves up on the
interval (a, b) with the switching pointag, a4, .. ., a, andr is another function
defined ona, b), let us say thathe waves of on (a, b) follow the waves of if
there exist some nonnegative integeand real numbers_; = a < ¢y < ¢ <
-++ < ¢y = bsuch that

m—1

1. risincreasing on the intervalgs,;, co;+1) foralli € ¢ 0,1,. .., {TJ }

and decreaSing on the intervm&i 1, C9; 2) for all
1€ e ,
y YUy by ) 9

2. there is a strictly increasing mafo, 1, . .
such that for allk € {0,1, ..

om—1}3k— (k)€ {0,1,...}
.,m — 1} one has

() ¢(k) € {0,1,...,n—1},

L'Hospital Type Rules for
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(II) Ck € [ag(k), ag(k)_,_l), and
(iii) ¢(k) is even iffk is even.

We make standard assumptions sucH@d,...,m —1} = 0 if m = 0.
Hence, ifm = 0, then necessarily the mdp-= ) (as usual, a map is understood
as a set of ordered pairs satisfying certain conditions).

Mutually interchanging the terms “increasing” and “decreasing” (concerning
only p andr but, of course, not) in Definitions1.1and1.2, one can define the

notions ‘p is n wavesdownon (a, b)” and, in the latter case too, the notion “the L'Hospital Type Rules for
waves ofr on (a, b) follow the waves ofy”. If p is constant orfa, b), let us say Oscillation, With Applications
thatp is 0 waves up an® waves down orja, b). losif Pinelis

Note that Condition 2 of Definitiod.2 impliesm < n, while Condition 1
of Definition 1.2 implies that either is m waves up or{a, b) (whenc, = a) or Title Page
m + 1 waves down orja, b) (whency > a).

Also, since the intervals:;, a;1) are disjoint for differenj’s, the Condition Contents
2(ii) of Definition 1.2 implies that the map is uniquely determined. <« >
Remark 1.9. Somewhat informally, the phrase “the waves &llow the waves < 4
of p” may be restated this way: as one proceeds from left to right, Go Back

(i) » may switch from decrease to increase only on intervals of increage of Close
and Quit
(i) » may switch from increase to decrease only on intervals of decregse of Page 18 of 53

the intervals of increase/decreaseodre considered here to be semi-open,
. . . . . . J. Ineq. Pure and Appl. Math. 2(3) Art. 33, 2001
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Example 1.1.Suppose that a functignis increasing or{ao, a;) and decreasing
on(ay,asz), whereay = a < a; < ay = b, so thatp is n waves up orfa, b) =
(ap,az), with n = 2; suppose further that the waves of a functioon (a, b)
follow the waves of. Then exactly one of the following five cases takes place:

1. ris decreasing on the entire intervialy, a- ), which corresponds to. = 0,
co = ag, and? = () in Definition1.2;

2. risincreasing on the entire intervédy, as), which corresponds tov = 1,
Co = Qy, and€(0) =0;

3. there is somey € (ag,a;) such thatr is decreasing oray, ¢o) and in-
creasing on(cy, az), which corresponds to = 1, ¢y > ag, and/(0) = 0;

4. there is some; € [aq,az) such thatr is increasing on(ag, ¢;) and de-
creasing on(cy, az), which corresponds tor = 2, ¢y = ay, ¢(0) = 0, and
(1) =1;

5. there are some, € (ag,a;) andc; € [a1,a) such thatr is decreasing
on (ayg, o), iNcreasing on(cy, ¢; ), and decreasing ofy, a); this corre-
sponds ton = 2, ¢y > aop, £(0) = 0, and/(1) = 1.

In particular, if p is 2 waves up orfa, b) and the waves of on (a, b) follow
the waves op, then it follows that is at most2 waves up or at most waves
down on(a, b).

Definitions1.1and1.2 are also illustrated below in Example? and, espe-
cially, in Examplel.3. The following is a further generalization of the previous
results.
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/

Theorem 1.7. Suppose thagg’ > 0 and§ is n waves up orfa, b), wheren is
a natural number. Then

g
.

2. in particular, = is at mostn waves up or at most + 1 waves down on
9

/!
1. the waves 01]j on (a, b) follow the waves OL/;
9

(a,b), depending on whethe(ri) > 0 in a right neighborhood of. or
g

not.
!
In addition to this theorem, i, a4, ..., a, are the switching points fojé,
g
then on each of the intervals;_1,a;), i« = 1,...,n, of the monotonicity of

f/

, the increase/decrease patterrf(icxfan be determined according to Theorem

g’
1.6and Remark..5 (or, alternatlvely, according to Propositiarl; cf. Remark
1.6).

Thus, Theorem..7, Theoreml.6, Remarkl.5, and Propositiord.1provide a
complete qualitative descriptionof how the oscillation pattern Gé on(a,b)
and the local behavior oé near the endpoints @f, b) and near the switching

g
/

points off—, in (a, b) determine the oscillation pattern gfon (a,b).
g g
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!/

Proof of Theoremi.7. Let p := — andr := i In view of Remarkl.9, an
informal proof of the theorem is |mmed|ate from Propositiof Theoreml.6,
Remarkl.5 and Remarki.1 Indeed, Propositiod.5implies that, on any in-
terval of increase (decrease) gfonly a switch from decrease to increase (re-
spectively, from increase to decrease)-aohay occur. Moreover, Remark 1
implies that, at the left endpoint,_; of any intervalla,_+, a;) of increase (de-
crease) op, only a switch from decrease to increase (respectively, from increase
to decrease) of may occur. Thus, one has Part 1 of the theorem. Part 2 of the L"Hospital Type Rules for
theorem follows by Theorer.6. Oscillation, With Applications

The formal proof of Theorer.7is conducted by induction in, as follows. losif Pinelis

Let us begin withh = 1. Thenp is increasing on the entire intervial, b) =
(ap,ay), and the statement of the theorem follows by Part 1 of Propositisn

and Part 1 of Theorem.6, with ¢, := ¢; at that,;m = 1 and/(0) = 0if ¢ < b; Title Page
m=0andl{=0if c=0b. Contents
Let nown € {2,3,...}. By induction, there are some,; € {0,...,n — 1} <« >
andc_1 =a<c¢y<c; <+ < €y = a,_1 Such that
m 1 < | 2
.. . . . 1
1. risincreasing on the interva(s,;, co;,1) foralli € {O, 1,..., L 5 J } Go Back
and decreasing on the intervéis; . 1, c; 1) for all Close
mq — 2
e{—l,o,l,...,{ 5 J}and Quit
2. there is a strictly increasing maf®, 1,...,m; — 1} > k — (k) € Page 21 of 53

{0,1,...} such that for alk € {0,1,...,m; — 1} one has
J. Ineq. Pure and Appl. Math. 2(3) Art. 33, 2001

(i) ¢(k) € {0,1,...,n— 2}, http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au/

(II) Ck € [ag(k), ag(k)+1), and
(i) ¢(k)is eveniffk is even.

Further, there may be four cases, depending on whetlagidm, are even
or odd.

2 2
my — 1 my — 2 . )
p—1, L J = L J = q — 1, p is decreasing offa,,_1, a, ), andr

-1 -2
Case 1.1.n = 2p, m; = 2q, both even Then V J = V J =

2 2
is decreasing Offc,,, 1, a,—1), becauséa,_1, a,) = (azp—1)+1, a2(p-1)+2) and
(Cmy—15@n-1) = (C2(g-1)+1, C2(q—1)42); MOreovery is decreasing ofic,,, 1, an—_1),
sincer is differentiable and hence continuous. It follows thdt,, ;) < 0.
Hence, by Part 2 of Remark1, r is decreasing ofa,,_1,a,). Therefore; is
decreasing or{c,,, 1, a,). Let nowm := m;, redefinec,,, = ¢,, asa,, and
retain the map/. Then, with suchn, ¢y, cq,...,c,, and/, one sees that in-
/

deed the waves of = f follow the waves of = —. In particular, it is seen

g g
now from Definitionl.2 and Theoremnl.6 that S is at mostn waves up or at

g
/
mostn + 1 waves down offia, b), depending on whethe(i) > 0 in a right
g

neighborhood of: or not.

Case 1.2.n even,m; odd Thenp is decreasing ofa,_1, a,) andr is in-
creasing on(c,,, _1,a,—1). Hence, by Part 2 of Propositioh.5, there is some
¢ € lan-1,a,) such that- is increasing ona,_1, ¢) and decreasing ofx, a,).
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It follows thatr is increasing onc,,, 1, c). Now, ifc < ay,, letm :=m; + 1,
redefinec,,_1 = ¢, aSc, lete, := a, and{(m — 1) := n — 1, and retain the
previously defined valuggk) forall k € {1,...,m; — 1} ={1,...,m —2}.
If ¢ = ay,, letm := m,, redefinec,,, = ¢,, asa,, and retain the mag. Then
the sought conclusion again follows.

The other two case§;ase 2.1.n odd, m,; evenandCase 2.2.n odd, m,
odd, are quite similar. Namely, Case 2.1 is similar to Chseand Case 2.2 is
similar to Casel.. 1. O

Remark 1.10. Theoreml.7 holds if the terms “up” and “down” are mutually
interchanged everywhere in the statement. The effect of replaciag of 0

by g¢' < 0 is that either in the assumption regarding the Wavelobr in
[

the conclusion regarding the waves:of(but not in both) the terms “up” and
“down” must be mutually interchanged; cf. Remarl&.

f

As Theoreml.7 shows, there is a relation between the functions = and
g
!

p = L/ Next, we shall look at their relation from another viewpoint. Let us
write )

, (f) _fla—fgd  p—r

r=\(=] = 3 = -

g g 9/9
If we now let
/

(1.7) ho="2
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then

/

.
1.8 .
(1.8) p=ro

moreover, since each of the functiopnsand ¢’ does not change sign on the
interval, one sees that

(2.9) h does not change sign
. ) . . . . L'Hospital Type Rules for
on the interval. Vice versa, ifl(9) is true, then solvingl(.7) for g yields Oscillation, With Applications
losif Pinelis
@10) g =exp [h(a)de and fx) = r()gle),
Title Page
so thatf andg can be restored (up to a nonzero constant factor) basecod
h, wherer is an arbitrary differentiable function aridis any function which ConEns
is nowhere zero and does not change sign (on the interval). Tramgjh can <« >
serve as a kind of “free parameters” to represent all admissiblemairé and < >
g
!
p= L via (1.9). Co 2ES
g
Another helpful observation is immediate from.§ and (L.7) (as usual, it Close
is assumed thatignu = 1if v > 0, signu = —1if u < 0, andsignu = 0 if Quit

u=0). Page 24 of 53
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2. Letgg’ < 0on(a,b). Thensignr’ = —sign(p — r) on(a,b).

This proposition quite agrees with the intuition. Indeed, if one is only in-
terested in local behavior ¢f andr in a neighborhood of a point € (a,b),
then one may re-defingandyg in a right neighborhood af — without chang-
ing values off andg in the neighborhood of point — in such a way that
f(a+) = g(a+) = 0. Let us interpreta, b) as a time interval. Then, fayin
the neighborhood of the interior pointof (a, b), the ratio

1) ) = 18 Ly = flen il puioch
may be interpreted as tlaweragerate of change of relative tog over the time losif Pinelis
interval (a, y), while

(y) = f'(y) Title Page

g’(y) Contents

is interpreted as thimstantaneousate of change of relative tog at the time
momenty. Intuitively, it is clear that, if at some time momentthe instanta- <44 >»
neous relative rate exceeds (say) the average relative ratéhen the latter < >
must be increasing at that point of time, and vice versa. A corroboration of
this comes from the generalized mean value theorem, which implies, in view of Go Back
(1.19), thatr(y) = p(z) for somez € (a,y), whencep(y) > r(y) provided that Close
p is increasing orfa, y|. out

Now we are ready to complement Theoréri by

Proposition 1.9. For p andr as in Theoreni.7 or Remarkl.10 an equality of Page 25 of 53
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(which is admissible according to Definitidn2, Part 2(ii)) in fact is only possi-
ble if ¢4, is the left endpoint of the interval(a, b); that is, only ifk = ¢(k) = 0.

Proof. Assume the contrary — that under the conditions of Theatengsay),
¢ := ¢ is an interior point of a, b) such that{.12) takes place. Then it follows

from Definitionsl.1and1.2that one of the following two cases must take place:

either

(i) thereis somé > 0 such thap andr are both decreasing dn — ¢, ¢) and
are both increasing ofr, ¢ + ) or

(i) thereis somé > 0 such thap andr are both increasing ofz — ¢, ¢) and
are both decreasing dn, ¢ + ).

Consider case (i). Singeis decreasing ofr — 9, ¢), the limit p(c—) exists;
moreover, in view of the generalized Mean Value Theorem,

f'e) . flx) = flc)
c) = = lim ————= = p(c—).
A= gt = e gta) =gt =)
Further, in view of Remark.7 and Propositiorl.8, there is somé > 0 such
thatr'(x) < 0 andr(z) > p(x) > p(c—) = p(c) Vz € (¢ — d,c); also,
p(c) = r(c), sincec is the point of a local minimum for, and so;”(¢) = 0.
Hence, in view of {.8) and (L.7),

in x :g’(:r): —r'(z)
e (=00 = @ — o

dx
—r'(@) = —r'(z) = —i n(r(z) —r(c
> T =~ L (r(a) ~ r(0))

L'Hospital Type Rules for
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forall z € (¢ — 4, ¢). Integration of this inequality yields

o) _ (o) = (o)
(1) g ()~ () —1(e)

wheneverc — 0 < x; < x3 < ¢. Letnowzy T ¢ (while z; is fixed). Then
(by the continuity ofr andg) the right-hand side ofl(13 tends tooco while its
left-hand side tends to the finite Iimifﬂ. This contradiction show that case

(i) is impossible. g(z1)

Quite similarly, one shows that case (ii) is impossible. (Note that the as-

sumption thap is increasing oric, ¢ + ¢) was not even used here.) O

On the other hand, examples when= a, takes place are many and very
easy to construct; to obtain a simplest oneglet 0, b := oo, f(x) := 22, and

g(x) == x.

Remark 1.11. If ¢ were allowed to be discontinuous at some point(ob)
and one were only concerned with the possibility that baodind p could be ex-
tended by continuity to the entire interv@al, b), then the conclusion of Propo-
sition 1.9 — and even that of Theorein7 — would not hold. For example,

leta := —2/3, b := oo; f(x) = —2%e72/* and g(x) := e 2/* for x # 0.
Thenr(z) = —2? andp(z) = —2? — 23, so that bothr and p can obviously
be extended by continuity to the entire interyalb) = (—2/3,00). Here,p
is n waves down offa, b), with n = 2 and the switching points, = —2/3,

a; = 0, anday = oo. If it were true that the waves afon (a, b) follow (in the
sense of Definitiord.2) the waves op, then one would necessarily have here
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c.1=-2/3,¢0 =0, ¢, =00, andm = 1, whence
(114) Co = a1 = 0

would be an interior point of the intervak, b), in contrast with the conclusion
of Proposition1.9. Even the conclusion of Theoreh’ does not hold in this
situation; indeed, if the conclusion of TheorénT were true here, thenl(14)
would imply¢(0) = 1, which would contradict the requirement th&t:) be
even whenevek is even.

Remark 1.12. Formula (L.8) provides yet another insight into the relation be-
tweenp andr. Indeed, at any point, of local extrema of-, one must have
r'(xo) = 0, which impliesp (xy) = r(x), So thatp attains all the extreme
values ofr inside the interval, and then may even exceed them. It follows that
the amplitude of the oscillations @fis no less than that of. Together with
Theoreml.7, this means that the wavesromay be thought of as obtained from
the waves op by a certain kind of delaying and smoothing down procedure.

Here are two examples to illustrate above results and observations.

Example 1.2.Leta := 0, b := 2x, f(x) := ¢"V3sin (x — %), andg(z) :=

V3. This corresponds to the choicefr) = sin <x - %) andh = /3 in
(1.7)and (1.9), so that

= —sinz.

V3 V3

p(z) = sin (x— %) +M
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. 2 . o . T N Contents
Figure 1:p(x) = —= sinz, thin line;r(x) = sin (x — —>, thick line
V3 6 «“ b
. . . < | 2
Figure 1 above shows that indeed the waves afe of a smaller amplitude and
are delayed (by the constant shgfb relative to the waves gf. It is also seen Go Back
that the waves op andr are interwoven; more exactly, the graphsgoénd Close
intersect each other at the points of extrema.of Quit
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Example 1.3.Now, leta := 0, b := 7.5,

r(z) = 75+/0$(u— 1/2)(u — 2)(u —4)*(u — 7) du
1, 7. 221, 307

=5 — 5% + < - ?xg +1762% — 1122 + 75 and
h(z) := (z = 4>2;(; 7+ 10, which corresponds to
g(x) =C -exp /96 h(u) du
0
=C -exp v - 62(2] i 39x7 where C' is any nonzero constant,

f(z) =r(z)g(z)
1 221
—C. <6$6 _ 5:1:5 + ?le _ glﬁ +1762% — 1122 + 75)
2% — 622 4 39z
60 ’
r(z) = (2 —1/2)(x — 2)(x — 4)*(x — 7), and
1 221
O e e L
(v —1/2)(z = 2)(x —4)*(x = T7)
(z —4)2+ 22 + 10 '

X exp

+ 40

The graphs op andr are demonstrated by Figube The points of change
from increase to decrease or vice versarf@lus the endpoints of the interval
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Figure 2:p, thin line;r, thick line

L'Hospital Type Rules for
Oscillation, With Applications

losif Pinelis

Title Page

Contents
44 44
| | 2
Go Back
Close
Quit
Page 31 of 53

J. Ineq. Pure and Appl. Math. 2(3) Art. 33, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au/

(a,b) = (0,7.5) are given by the table

C_1 | Cy C1 | Ca | C3

0 052 |7 |75

so thatm = 3; here and in what follows we use the notation of Definitidns
andl1.2. The points of change from increase to decrease or vice verggfos
the endpoints of the intervék, b) = (0, 7.5) are given by the table

ap | aq a9 as | Qg as
0 [1.18...1282...14 |6.57...]75

so thatn = 5. The mag in Definition 1.2is given by the table

k. JJO[1]2
(kY J[o[1]4

One can see that indeefl € (ayw), ar+1) for k € {0,1,...
((k) is even iffk is even.

As in Examplel.2, one can see here that the waves afe of smaller am-
plitude and delayed relative to the wavespofAgain, the waves op andr are
interwoven in the sense described in Exanpl2

On the interval0, 0.5), the instantaneous relative ratés less than the av-
erage relative rate; this is the same as being negative oK0, 0.5), which one
can see too.

On the next interval0.5, 2), one hag > r, which is the same as > 0.

Further to the right, on the intervét, 7), one hag < r andr’ < 0 (except
that atz = 4 one has = r and»’ = 0), so thatr is decreasing everywhere on

,m— 1}, and
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(2,7); the graphs op andr look as ifr “feels” to some extent the up and down
(quarter-)waves of nearr = 4, and yet; “misses” these (quarter-)waves of
Finally, on the interva(7,7.5), one hag > r andr’ > 0.
The delay-and-flatten manner of the waves: &b follow the waves op is
especially manifest to the right af= 5.
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In the first subsection of this section, we shall apply the results above to obtain
a refinement of an inequality for the normal family of probability distributions

due to Yao and lyer; this inequality arises in bioequivalence studies; we shall
also obtain an extension to the case of the Cauchy family of distributions. In

the second subsection below, the convexity conjecture by Top$aericern-

ing information inequalities is addressed in the context of a general convexity

problem.
Other applications of I'Hospital type rules are given: i, [to certain in-

formation inequalities; in4], to monotonicity of the relative error of a Padé

approximation for the complementary error function; ifp fto probability in-
equalities for sums of bounded random variables.

2.1.1. The normal case Consider the ratio

 P(X| < 2)
(2.1) r(z) = m?

> 0,
of the cumulative probability distribution functions
(2.2) F(z):=P(|X|<z2) and G(2):=P(|Z| < 2)

of random variable§X | and|Z
ando > 0.

, WwhereZ ~ N(0,1), X ~ N(p,0?), u € R,
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Consider also the ratio

Fl(z) 1 9"(2;”) 1 ‘p<ziﬂ>

=m0 e e e 0 Y

In [2], a simple proof was given of the Yao-lyet][inequality

(2.3) r(z) > min(r(0+),r(c0)) Vz e (0,00) V(u,0) # (0,1),
L'Hospital Type Rules for
which arises in bioequivalence studies; hefeo) := lim r(z) = 1 and, by the Oscillation, With Applications

Z—>00

usual I'Hospital Rule for limits, losif Pinelis

W
' (;) 1 b ( p? ) Title Page

T(O+) = p<0+) = ——2 = —eX L

op(0) g 207 Contents
wherey is the standard normal density. Of course, in the trivial ¢ase) = < >
(0,1),onehas(z) =1 Vz>0. p >

The proof of the Yao-lyer inequality given ic]Jwas based on the following

lemma. Go Back
Lemma 2.1. For all » € R ando > 0, there exists somiee [0, co] such thatp Close
is increasing on(0, b) and decreasing o(b, co). (In other wordsy is eitherl Quit

wave down or at mogtwaves up ono, co)).
Page 35 of 53
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Theorem 2.2.Lety € Rando > 0.

0

2
1. 1fe <1lando? + (—) < 1, thenr is decreasing orf0, oo) fromr (0+)

o
tor(oco0) = 1.

I

2
2.1f o < 1ando? + (—) > 1, then there exists sonaec (0, co) such that
o
r is increasing on0, ¢| from r(0+) to r(c) and decreasing ofr, co) from

r(c) to 1. Moreover,c > b, whereb is defined by Lemma 1.
3. If o =1 andu = 0, thenr = 1 everywhere o140, co).
4. 1f o = 1andu # 0, thenr is increasing or(0, co) fromr (0+) to 1.

5. If o > 1, thenr is increasing on0, co) fromr (0+) to 1.

Proof. On (0, c0), one has

r Q
2.4 X
where
(2.5) Q:=pG—F

andF" andG are the distribution functions defined above. Furtherno),

(2.6) Q' =pG

L'Hospital Type Rules for
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and

2.7) 0 (2) = (z— Z}’“‘) ’

()

200 (2)

+
+(z—z2'u> , z2>0,
o

so thaty’(0+) = 0. Now, by the usual I'Hospital Rule and in view df.¢),
Qz) . Q) 0O+

Iim —=% = lim =
10

20 G(2)2 =0 2G(2)p () 20(0)

this and 2.4) imply
(2.8) r'(0+) = 0.

Therefore, using Lemma.1, Theoreml.7, and Remark..10 one sees that
r is eitherl wave down on(0, co) or at most2 waves up on0, cc). To dis-
criminate between these cases, it suffices to consider the signirof right
neighborhood o6 and that in a left neighborhood oé.

By (2.4) and @.6), one hasign r’ = sign () andsign (' = sign p’ on (0, co).
Also, by 2.5, Q(0+) = 0. It follows that, in a right neighborhood df,
sign Q = sign ', and so,

(2.9) signr’ = sign p’,

L'Hospital Type Rules for
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provided thaty’ does not change sign in such a neighborhood. But, as we saw,
0’ (0+) = 0. Hence, 2.9 implies that, in a right neighborhood 6f

2.10 signr’ = sign p”
( g gnp’,

provided thap” does not change sign in such a neighborhood.
Further, one has the identity

M
2 90(—> L'Hospital Type Rules f
o) = | (1= LY 4 (s 2= 0 e
o o v (2)
losif Pinelis
; (z + ,u)
2
+ 1_i + Z_Z+M g ., 2>0. Title Page
o? o? ¢ (2)
Contents
In particular, pp b
W
(2.11) "04) = |02+ (£ S ¢<5> ‘ ’
. p = |0 - 735 (0) Go Back
By (2.10 and @.11), in a right neighborhood df, Close
Quit
(2 12) : /L 2 2 2 : 2 1% 2
. signr’ = sign |0 + p -1 if o+ o # 1. Page 38 of 53
. . " X u 2 J. Ineq. Pure and Appl. Math. 2(3) Art. 33, 2001
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one hag"(0+) = 0; also in this case, one can see that

il
¢ (3)
o (0)
It follows now from .10 that, in a right neighborhood of

pW(0+):—2(“)4 <0 if pu#0.

o2

2
(2.13) P <0 if 02+(ﬂ) —1 and u#£0.

g

2
Of course, ifo? + (H> =1 and p=0,thens =1, sothatthisis the trivial

case, in which :% everywhere orf0, co). Thus, .12 and .13 provide a
complete description of the sign ofin a right neighborhood df.

Let us now consider the sign ofin a left neighborhood ofo. Let z — oc;
then @.7) implies thaty’(z) — 0if o < 1 andp/'(z) — ccif o > 1o0ro =1
andyu # 0. Therefore, in view ofZ.4) and @.5), in a left neighborhood ofc,

(2.14) signr’ =sign(ec — 1) if o #1;
(2.15) >0 if o=1 and pu#0.

Recall thatr is either1 wave down on(0, co) or at most2 waves up on
(0, 00).
2
Consider now Part 1 of the theorem, when< 1 ando? + <H> < 1.
g
Then .12 and .13 imply " < 0 in a right neighborhood of. Hence,

r is decreasing in a right neighborhood @fand so, any waves-up pattern is

impossible forr. Therefore; is 1 wave down on0, co), that is, in this case
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is decreasing everywhere ¢f, co). Thus, Part 1 of the theorem is completely
proved.

2
Assume next that < 1 ando? + (l—L) > 1, as in Part 2 of the theorem.

Then €.12 and @€.14) imply, respectivgly, that’ > 0 in a right neighborhood
of 0 andr’ < 0in a left neighborhood ofo. Now Part 2 of the theorem follows
using Theorem..7.
Part 3 of the theorem is trivial, and only serves the purpose of completeness.
If o =1andu # 0, as in Part 4 of the theorem, theh 12 and .15 imply
thatr’ > 0 in a right neighborhood of, as well as in a left neighborhood of
oo. Sincer may have at most waves up or{0, o), Part 4 of the theorem now
follows.
The proof of Part 5 of the theorem is quite similar to that of Part 4; the
difference is that in this case one us2sl{) instead of 2.15). O

2.1.2. The Cauchy case In this subsectiony is still assumed to have the
form defined by 2.1) and @.2), but X andZ are now assumed to have, respec-
tively, the Cauchy distribution with arbitrary parameters R andb > 0 and
the standard Cauchy distribution, with the densities

1 1 1
pa,b(z) = and pO,l(Z) =—-
™ m

We shall show that the analogue

r(z) > min(r(0+),r(c0)) Vz € (0,00) V(a,b) # (0,1)
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of the Yao-lyer [] inequality 2.3) takes place in this case too; note thand
b are the location and scale parameters, respectively, of the Cauchy distribution,
just asi ando are those of the normal distribution. Here, it is easy to see that

r(0+) = and 7r(c0) = 1.

a? + b2

Moreover, we shall show that the following analogue of Theozettakes place
in this Cauchy distribution setting.

L'Hospital Type Rules for

Theorem 2.3.Leta € R andb > 0. Oscillation, With Applications
1. If bt — B2 + a2 (a® + 2b% + 3) < 0, thenr is decreasing orf0, co) from losif Pinelis
r(0+) tor(oco) = 1.
) ) Title Page
2.1f b* — b? + a®(a* + 20> +3) = 0 anda # 0, thenr is decreasing on
(0, 00) fromr (04) to 7(c0) = 1. GOz
3.1f b* — b* + a®(a* + 20> +3) = 0 anda = 0, thenb = 1, andr = 1 A S
everywhere or0, co). < 4
4. 1f b* — b + a? (a® + 2b* 4 3) > 0, then there exists somes (0, c0) such Go Back
thatr is increasing on0, ¢] fromr(0+) to (c) and decreasing oft, co) Close
fromr(c) to 1.
Quit

Proof. Consider the ratio Page 41 of 53
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where

f(y)
R(y) Ty)’
y =z
f) =y + (> +b+1)y+ (a®> + %),
g(y) =y +2 (0 — a®) y + (> + %)

=((=— a)? +b°) ((z+a)2+b2) ,

so thatg > 0 on (0, o).
One has

p(2) =gy’ R(y) =

It follows thaty’(0+) = 0, whence 2.8) holds in this case too; cf2(4)—(2.6).

eany 4 (Fg— i), =>0,

Next,
AN 2 2
2(1+3a"—b
(g_> (y) = 1+ 3a )2= y>0.
I 2y + a2+ b2+ 1)
/
Therefore, =~ J - is at mostl wave up or down orf0, oo), and so, by Theorem

1.7, 9 is at most waves up or down of0, oo), and then so ar& = S andp

g
(recall 2.16); again by Theorem.7, this and 2.8) imply thatr too is at most
2 waves up or down of0, co).
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Further, sincef andg are polynomials of the same degree, it follows from
(2.17) thatp'(z) — 0 asz — oo. Hence (cf. 2.4 and @.5), " < 0 in a left
neighborhood ofo. This and the fact that is at most2 waves up or down on
(0, 00) imply that either

(i) = is constant orf0, cc) or
(i) ris decreasing everywhere ¢f o) or

(iii) there exists some € (0, 00) such thatr is increasing on0, ¢| and de-
creasing oric, co).

To discriminate between these three cases, it suffices to know the sign of
in a right neighborhood df. Since £.9) holds in this case too2(17) implies

(2.18) signr’(z) = sign(f'g — f9)(y)

for z in aright neighborhood df; remember that, by definition,= 22. Further,
(f'lg—fg)(0+) = (a® + V) [b* = b° + a* (a® +2b° + 3)] .

Hence, in a right neighborhood 0f

signr’ = sign [b4 — b+ a? (a2 + 2% + 3)} if  b*—b*+a? (a2 + 2% + 3) # 0.

Now Parts 1 and 4 of the theorem follow.
In the remaining case, wheéh — v? + a* (a* + 2b* + 3) = 0, one hag f'g —
fg')(0+) = 0; hence, by %.18), for z in a right neighborhood df,

signr’(z) = sign(f'g — fg')(y) = sign(f'g — f¢') (y) = sign(f"g — f9") ().
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However,

(f"g = fg")(0+) =2(g — [)(0+) = b* = b* +a* (a® + 20 — 1) = —4a® < 0

provided that* — b% + a? (a* + 26> + 3) = 0 anda # 0, and then we see that

r’ < 0in aright neighborhood di. This yields Part 2 of the theorem.
Part 3 is trivial.
The theorem is completely proved. O

Let us consider here the problem of the convexity of the rétiof two suffi-

g
ciently smooth functiong andg. Suppose first that the derivativésandg’ are
rational functions. One has

(2.19) (f)':ﬁ A_b g L5
g a9 g9 95 g3
where

/ 2
g
flizgg—f, 9132?;
" g/2
(2.20) fo = ?9, —f 9= 2? -G
f3 — f///g// . f//g///7 g3 = 39//2 _ 29/9/1/.
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EE

Here, at each of the two steps, er’% to J2 and from== to =, we proceed to

. g1 g2 92 g3

isolate the presumably most complicated expression in the numerator or denom-
inator (or both) and get instead its derivative, which is presumably a simpler (in
this case, rational) expression.

In these two steps, one getsii), which is a rational function.
gs

f

Note also that the convexity/concavityefcorresponds to the increase/decrease
g

L'Hospital Type Rules for

of ﬁ Oscillation, With Applications
g1 . . . losif Pinelis
Thus, the I'Hospital type results of Sectidnallow one to determine the
intervals of convexity of]—( in a completely algorithmic manner by reduction of Title Page
g
the convexity problem to that of the oscillation pattern of the rational function,
J; ¥ Contents
23 and then going the same stdpmckto = and at that studying the signs of % N
g3 g
the derivatives of the ratioé locally, near the switching points (from increase < >
9s
to decrease or vice versa) of each of the ra{iﬁé, starting froms = 2to 1 to E IS
Gs+1
f f Close
0, where—2 := =, In some cases, though, such as the following Exardle Quit
90 g
the situation may clear up before getting all the wayf—% Page 45 of 53
g3
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H(p.q)
Inp-Ing
q:=1—pandH(p,q) := —plnp — qInq is the entropy function; that proof is
based on the identity

of the monotonicity of the functiof®, 1/2) > p — is given; here

Hpg) __p» g
Inp-Ing Ing Inp

and the convexity ofq— inp € (0,1). See E] for another simple proof of the

( )

monotonicity ofm based on the I'Hospital type rule, stated above as
Proposition1.1
The convexity o{nip is also easy to prove using our results. Indeed, here
f®) = ¢, 9(p) = np, fi(p) = —plnp — ¢, ¢1(p) = pln®p, fo(p) = 1, and
g2(p) = —2 — Inp. Moreover,f1(1—) = g1(1—) = 0and f{(p) = —lnp >0
for p € (0,1), so thatf, < 0on(0,1). Since% is obviously decreasing on
2

(0,1), Proposition1.1implies that so |sg— hence,— N is increasing on(0, 1)
g1

(note thatf; < 0 andg; > 0on(0,1)). By 2.19, the convexity o{— now
np
follows.

Let us now illustrate the proposed approach with a more involved example.

Example 2.2.Let f(z) = In(1 + z?) andg(z) = arccot . We shall use results

of Sectiorll to analyze the convexity properties—‘]é)bn (a,b) = (—o0,0). One
g
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has, for all realz,
fi(z) = —2zarccotz —In (1 +2*) and gi(z) = —(1 + 2*)arccot’s

and, for allz # 0,

1 1
f2($) = 92(13) = — — arccot x;
1x t 1
o) =2z o) =y

Hence, for allx # 0,

~ 58 ea),

which is increasing inc € (—oo, 0) and decreasing in: € (0, c0).
Now let us analyze the signsg@fandg), on the intervalg—oo, 0) and(0, co)

and the local behavior 01112 near the switching points-co, 0, andco of é
g2 g3

thus making the first step back, fro];?-l to é Sincegy (o) = 0 andgy(z) < 0

gs g2
for all z # 0, one hagy, > 0 on (0, c0); it is obvious thaty, < 0 on (—oo, 0);

thus,é is defined on each of the intervals oo, 0) and (0, c0). In addition,
92
fa(00) = go(c0) = 0. Hence, by Propositiof. 1, f is decreasing o0, co).
92
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i/

To analyze the signs
92

) near —oo and0, note that

1?5 () i () = T arccotz — —m<0 & & oo,
92 7 T 112 —7m/2<0 as x— 0.

fo

Now Remarkl.5 implies that— is decreasing on the intervél-oo, 0); thus,

g2
J2 is decreasing on each of the intervalsoco, 0) and (0, co).
g2

Further, let us analyze the signs @f and g; on the intervalg —oco, 0) and

(0, 00) and the local behavior oﬁ near the switching points-oo, 0, andoo of
g1

f2 , thus making the second (and final) step back, fréﬁmo = (i) .
g2’ 92 9 g

For all x # 0, one hasg,(z) = —(1 + z?)arccot?’x < 0 and gj(z) =

2.go(x) arccot = > 0; thus, - is defined on each of the intervals oo, 0) and
g1

/
(0, 00). It remains to determine the sign éfé) near the endpoints:-oo, 0,
g1
and oo:

T2

(ﬁ)( )N—i<0 as x — —oQ,
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(é)/(x)~g>0 as & — 00.

g1 x
/
Therefore,(i) = I switches once from decrease to increase(-eno, 0)
g g1

and then is increasing of0, o).

f

We conclude that there is somec (—o0,0) such that= is concave on
g

(—o0, ¢) and convex offc, co); in fact,c = —0.751 ... . _
L'Hospital Type Rules for

Of course, the steps like the ones described$g-(2.20 will work not DR EE, Ui S PIeER

only in the case when botfi andg’ are rational functions but also in other cases losif Pinelis
when f" andg’ are given by simpler expressions thAandg.
Topsw@e §] conjectured that Title Page
Contents
In (7(2 )) «“ b
n
(2.21) —_— 7 < >
In (4pq)
. . . Go Back
is convex inp € (0,1), where againy := 1 — p andH(p) := H(p,q) =
o H\ . ) Close
—plnp — ¢Ilng. Here the derivative/’ of f := In | — | is not a rational
In2 Quit

function. However, one can still use the same kind of algorithm as the one
! Page 49 of 53

_ H 1. .
demonstrated in19-(2.20), becausg’ = 7 andH"(p) = —— is rational;

then the problem reduces again to that of the oscillation pattern of a rational 2 ineq. Pure and Appl. ath. 2(3) Art. 33, 2001
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function plus local analysis near the switching points. In this sense, the problem
can be solved in a rather algorithmic manner. Indeed, one can write here

(2.22) Jo _ D

g3 a @’
where P,,(p) and @Q,,(p) are polynomials inH (p) of some degrees: andn
over the fieldR (p, H'(p)) of all rational expressions inand H'(p); in fact, in
(2.22, one hasn = 2 andn = 3; moreover, her€),,(p) = H(p)®.

P L'Hospital Type Rules for
Consider such a rational expressi&ﬁ over the fieldR(p, H'(p)). Let us Oscillation, With Applications
call the summ + n of the degrees of the numerator and denominator the height ot PUElE
: . P , : .
of the rational expressmg; if P,, = 0, define the height as 1. If the height
Pn 7 Title Page
of the rational expressiozugﬁ is greater thari (as we have it in4.22) for g CamiEE
: . P, : . ,
given by @.21)), let us rewrlteQ— so that the leading coefficient of either the 4 dd
" < >
numerator or denominator is(as we have it in casé is given by @.21) for
Go Back
the denominator),,(p) = H(p)?); then, without loss of generality, one may |
/ Close

) . ) ) P
assume that the leading coefficient of eitligy or @), is alreadyl. ThenQ—’f‘ -
n ui
too is a rational expression over the fi H' , but its height is at most
b dtdp, H'(p)) 9 Page 50 of 53

. P, L
m-+n—1vs. the heightn +n of Q_ (the derivatives”/, and@)’, of P,,, and@,,

n
are taken here of course jn; indeed, sincd{” is rational inp, the derivative e e () At 35,2000
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P! (p) in p of any polynomial

P(p) = Ru(p, H'(p))-H(p)" + Ryu1(p, H'(p))-H (p)™ "+ - -+Ro(p, H'(p))
in H(p) — with the coefficientsk,,(p, H'(p)), . . ., Ro(p, H'(p)) being rational
expressions ip and H'(p) — is again a polynomial it (p) of degree at most
m over the fieldR (p, H'(p)); moreover, the degree &t (p) is at mostm — 1

over the fieldR (p, H'(p)) in case the leading coefficief,,(p, H'(p)) is 1 (or
any other nonzero constant).

/
Therefore, the basic step, frogf to P— reduces the height at least by Ostmgtslggamﬁi Fulles o
, pplications

1. Repeating such basic steps, one comes to an expression of height at most osit Pinlis
0, which then itself belongs to the fiel(p, H'(p)) of all rational expressions
in p and H'(p) only — rather than irp, H'(p), andH (p). Thus,H (p) will be
eliminated. Title Page

An analogous (even if very long) series of steps afterwards will eliminate Contents
H'(p), and then one will have just to consider the monotonicity of a ratio of
polynomials inp with certain real coefficients. « dd

(As in all statements of Sectiap when considering the relation betweén S '

/ g Go Back

and? one needs also to control the signgaf. In particular, if eitherP,, or ——
@, is constant and the leading coefficient of the other one of these two is also Quit

constant, then the basic step needs to be modified; yet, such an exception would
be only easier to deal with.) Page 51 of 53
After all these, sayV, steps have been done, one has of course to go the
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f

the ratios=> locally, near the switching points (from increase to decrease or

s
vice versa) of the ratiefsi, for the integer values of going down fromN\ to
Js+1
0, whereé = i Here, at each of the switching points, one might need to use

do 9
repeatedly the usual 'Hospital Rule for limits, eliminatifidp) and thenH’(p)

in the same manner as described above. Numerical approximations might also

be needed. Remark6 may be useful at some of these steps.
However, all this long process is essentially algorithmic and will necessarily
come to an end after fnite number of steps, and then the oscillation pattern

of the ratioé = (1) will be completely determined. Thus, the convexity
(51 g

pattern ofi will be completely determined.

Of course, the numbe¥ of the basic steps in this case will be many more
than two (in contrast with above Exampl@sl and 2.2), and the volume of
calculations will be enormous. For this reason, we shall not pursue this problem
further at this point.

In contrast with this convexity problem, the proof of the monotonicity of the
ratio (2.21) based on a I'Hospital type rule is very simple; sep [
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