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ABSTRACT. An algorithmic description of the dependence of the oscillation pattern of the ratio

f

/
= of two functionsf andg on the oscillation pattern of the ratié, of their derivatives

ig given. This tool is then used in order to refine and extend the \?ao-lyer inequality, arising in
bioequivalence studies. The convexity conjecture by Topsge concerning information inequalities
is addressed in the context of a general convexity problem. This paper continues the series of
results begun by the I'Hospital type rule for monotonicity. Other applications of this rule are
given elsewhere: to certain information inequalities, to monotonicity of the relative error of a
Padé approximation for the complementary error function, and to probability inequalities for
sums of bounded random variables.
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1. I'H osPITAL TYPE RULES FOR OSCILLATION

Let —oo < a < b < co. Let f andg be differentiable functions defined on the inter{alb).
!

Assume thay andg’ are nonzero offa, b), so that the ratiosfr and = are defined otta, b).

It follows that functiong, being differentiable and hence cor?tinuous, does not change sign on
(a,b). In other words, eitheg > 0 on the entire intervala, b) or g < 0 on (a,b); assume that
the same is true foy'.

The following result, which is reminiscent of the I'Hospital rule for computing limits, was
stated and proved in|[3].

Proposition 1.1. Suppose thaf(a+) = g(a+) = 0 or f(b—) = g(b—) = 0.
' f

(1) If = isincreasing ona, b), then( ) > 0 on(a,b), and so,~ is increasing or(a, b).
g

Q [~
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/

f f

(2) If = is decreasing offa, b), then (—) < 0on(a,b), and so,~ is decreasing offa, b).
9 g

g/
Note that the conditions
() ¢’ is nonzero and does not change sign @) and
(i) glat+)=00rg(b—) =0
already imply thay is nonzero and does not change sign(erb); hence, one hagg’ > 0 on
(a,b) orgg’ < 0on(a,b).
In contrast with the I'Hospital Rule for limits, Propositipn [L.1 may be generalized as follows,
without requiring thatf andg vanish at an endpoint of the interval.

2 ! /
Proposition 1.2. Suppose thayg’ > 0 on (a,b), limsupgfi (i) (¢) > 0, and L, is
cla |g (C)| g g
f

increasing on(a, b). Then(—) > 0on(a,b).
9

Proof. As in the proof of Proposition 1.1 in[3], fix any € (a, b) and consider the functioh,
defined by the formula

he(y) := f'(x)g(y) — ¢ (=) f(y)-
Forally € (a,z),

d%hx(y) = ['(x)g'(y) — g (@) f () = g' ()9 () (

g(x) gy

becausg’ is nonzero and does not change sign(@yb) and = is increasing orja, b). Hence,
g

1o Wy,

the functionh,, is increasing orfa, x); moreover, being continuous, is increasing ofta, x|.
Now, fix anyc, € (a,z). Then for allc € (a, ¢

f'(@) (9(z) = g(c)) = ¢'(z) (f(x) = f(c)) = ha(2) = halc)

(1.1) >0,
where
(1.2) £ := hy(x) — hy(cop).
Next,
L.3) g(zy (g) (2) = P@)g() — ¢ (2)F(2)
(L.4) — (@) (9(x) — 9(e)) — ¢ (=) (F(x) — ()
(1.5) + (;18 — ‘;c,((;)) -g(c)g'(z)
9(0)2 i , o) - ld' ()]
1.6 I (1) @ e

here it is taken into account that is nonzero and does not change sign(amnb), so that
g(@) _ g ()l
gc) g _
Of the three summands in (1.4)[—(1.6),
e in view of (I1.1), the first summand, ifi (1.4), is no less than the fixed 0 defined by

(1.2), for allc € (a, c);
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L'H OSPITAL RULES FOR OSCILLATION 3

e the second summand, in (IL.5), is nonnegative (and even positive) foe&l, ¢, be-
!
cause— is increasing orja, b) andg(c)g’(z) > 0; the latter inequality follows because

g9’ > 0on(a,b) andg’ does not change sign a@n, b);
e as to the last summand, ih,_(_)LG), its limit superiorcag « is nonnegative, by the

conditionlinsliup |§E(C>)2| (g) (c) > 0.

On the other hand, the left-hand side[of [1.3), which is the sum of the three summ4gndk in (1.4) —
) does not depend enNow the mequahty(f) (x) > e[> 0] follows if we letc | a. O
9

, . g(=)* (FY f’
Corollary 1.3. (1) If g¢ > 0on(a,b), hmsup| ] =) (z) >0, and IS increasing
zla |G\T g

on(a,b), then (g), > 0on(a,b).

(2) If g¢" > 0on(a,b), hmmf g(z)° (i) (x) <0, andf; is decreasing ofta, b), then

<i>/<00n(a,b). e

9
g@)?® (f\ /-
(3) If g¢’ < 0on(a,b), hmlnf ( ) (x) <0, andg

, 9@ \g
(g) < 0on(a,b). |
(4) If g¢" < 0on(a,bd), limsup 9(@) (i> (x) >0, andf is increasing on(a, b), then

<§>/>Oon(a7b). a1 |9'(@)] \g

is decreasing ofia, b), then

Proof. Part 1 of Corollary 13 repeats Propositjon|1.2. Part 2 can be obtained from Part 1 by
replacingf by —f. Then Parts 3 and 4 can be obtained from Parts 1 and 2 by repléging
andg(z) forall z € (a,b) by f(a + b — ) andg(a + b — x), respectively. O

Remark 1.4. As seen from the proof of Proposition[1.2] the following variant of Corollary[1.3]
holds. Fix any ¢ € (a,b).

(1) If g¢" > 0 on (c,b), (f) (¢c) > 0, and i is increasing on (c, b), then (i) > 0 on
g

(c,b). ! /

(2) If g¢ > 0 on (c,b) (;) ) <0, and —, is decreasing on (c, b), then (g) < 0on
(c,b). /

(3) If g¢’ < 0 on (a,c) (g) ) <0, and —/ is decreasing on (a, c), then (g) < 0on
(a,c). / /

(4) If g¢ < 0 on (a,c), (i> ) > 0, and —, is increasing on (a, c), then (i> > 0 on
(a,c). ! !
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Remark 1.5. It may not be immediately obvious that Proposition| 1.2 — or, rather, Corollary
[1.3 —is indeed a generalization of Proposifion 1.1. However, the conditions

fim sup £ (i) (2) >0

sla - |9'(@)] \g

it 00 (5) @) 20

and

are necessary fo]; to be increasing ofu, b), because the f > 0on(a,b). Therefore, by

g
Part 1 (say) of Propositign 1.1, its conditions imply that
2 /
lim sup gEx) (£> () >0

wla - |9'(@)] \g

and /
2
lim inf 9(z) (z) (x) > 0.
o Jg'(x)] \ g
Finally, as already mentioned, the condition of Corollary 1.3 that> 0 on (a,b) or gg’ < 0
on (a, b) obviously follows from the conditions of Propositipn 1.1 thatloes not change sign
on(a,b) andg(a+) = 0 or g(b—) = 0. Thus, Parts 1 and 4 of Corolldry 1.3 generalize Part 1 of
Propositior) 1.11; similarly, Parts 2 and 3 of Corollary|1.3 generalize Part 2 of Propgsitjon 1.1.

2 /
Remark 1.6. Another possible question is whether the conditiansup \i@)l (g) () >0
zla

of Propositio may be replaced by the simpler conditionsup (f) (x) > 0, which is
g

xla

/
necessary as well fd; to be increasing ofu, b). The answer is no; the conditidim sup (f> (x) >
g

. zla
f

0, or even the conditio (a+) > 0, is too weak.

A generic counter-example may be constructed as followsf lagtdG be functions defined on
R such that

e f(0)=0, f(0+) = f'(0) =0,andf” < 0 on (0, o), so thatf < 0on|0,c0);

e G>0,G'<0,andG"” > 0 on(—o0, 0];

for instance, one may choose héier) = —z? Vz € R andG(y) = e Vy € R. Next, define
g by the formula

Then
e g>0 andg > 0 on(0,00), so thatgg’ > 0 on (0, co);
_G'(f(@)) [ () e :
= > (0 for z > 0, so that= is increasing o0, co);
E )) ([ (@) ! g 9 o1, 00)

Thus, all the conditions of Propositipn 1.2 would be satisfied:fer 0 and anyb > 0 — if

9@ (fY '
only the conditiorlim sup - 7@ \g () > 0 were replaced b J (0+) > 0.
zla
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L'H OSPITAL RULES FOR OSCILLATION 5

Nonetheless, one ha( f/g > (0+) = % > 0, SO that(i) < 0in a right neighbor-
g

hood(0, §) of 0, so thati is notincreasing or{0, ¢).
g

/
This counter-example shows that the conditiomsup (i) (x) > 0, or even the condition
9

zla

(i) (a+) > 0, is just too easy to satisfy — it is enough to Jéta+) = 0 andg = G o f, and
g

then one can havéi) (a+) = 0.

g
/
On the other hand, if it is required tha(i> (04) > 0 — or just that
g
. 1\ - g@)? (FY .
limsup ( =] (z) > 0, then the conditiortim sup -~ =) (z) > 0 obviously follows.
zla g zla ’g (I)| g )
Moreover, it is seen from the proof of Proposition|1.2 that in this case the conditiorf—/thmt
g
increasing or(a, b) may be relaxed to the condition thgl{ is non-decreasing ofu, b). Thus,
g
one has
' /'
Proposition 1.7. If g¢' > 0 on (a,b), limsup (—) () > 0, and = is non-decreasing on
f . zla g g
(a,b), then (E) > 0on(a,b).

Remark 1.8. Propositior] 1.7 may also be complemented by the other three similar cases, just
as Cases 2, 3, and 4 of Corollary|1.3 complement Propo§itipn 1.2.

Similarly, the conditions tha<§> (c)>0 andf is increasing ortc, b) in Part 1 of Remark
4 may be replaced by the conditions t?(aé) >0 anngC is non-decreasing oft, b),

with the same conclusion to hol i) > 0 on (c,b); similar changes may be made in the
other three parts of Remgrk 1L.4.

2 /
What can be said in the absence of restrictions likesup |gfzc))‘ <i> (x) > 0? Hereis
xrla g x g
an answer. !

Proposition 1.9.

(1) Suppose thayg’ > 0 and f is increasing on(a, b). Then there is some € [a, b]

such that(i) < 0on (a,c) and (i> > 0 on(c,b). (In particular, if c = a, then
g g
(f) > 0 on the entire intervala, b); if ¢ = b, then (i < 0on(a,b).)
g g
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/

(2) Suppose thagg’ > 0 and = is decreasing offa, b). Then there is somec [a, b] such

g
that (g) > 0 on(a,c)and (5) <0on(cb).

(3) Suppose thagg’ < 0 and = is increasing on(a, b). Then there is somec [a, b] such
/ g /
that (z> > 0 on(a,c)and <z> <0on(eb).
g g
(4) Suppose thagg’ < 0 and? is decreasing ofta, b). Then there is somec [a, b] such

that <i>/ < 0on(a,c)and <i>/ > 0on(cb).

g g

/!

Proof. Let us prove Part 1 of the proposition; thus, we assume hergythat 0 and? is

p={rewn: (1) w=o}
f

/
If E=(,then <§> < 0on(a,b), which implies the conclusion of Part 1 of the proposition,

with ¢ := b.
If £ #0,letc:=inf E, so thatc € [a,)). If ¢ ¢ E, then there exists a sequer(eg) in F

such that,, | c. Then(i> (¢n) > 0 for all n, and so,
g

TG (i)(x) >0

e |9'(2)] \g

increasing or{a, b). Let

Therefore, according to Propositi.éi) > 0on(cb). If c € E, thenc € (a,b) and
g

/
(i) (¢c) > 0; using now Part 1 of Rema.4, one comes to the same conclusion — that

g
(i) > 0 on(c,b). On the other hand, by the constructionfofindc, one has(i) < 0on
g )

(a, ). This implies that the conclusion of Part 1 of the proposition holds in the Eagé), too.
The other three parts of the proposition follow from Part 1 of it; cf. the proof of Corollary
1.3 O

!/

Theorem 1.10. Suppose thagg’ > 0 and§ is increasing or(a, b).

(1) The following statements are equivalent:
(@) (g) > 0on(a,b);
(b) g > 0 in a right neighborhood o#..

(2) The following statements are equivalent:

(@) 3c € (a,b) (g)/ < 0on(a,c)and (g)/ > 0on(c,b);
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L'H OSPITAL RULES FOR OSCILLATION 7

(b) (i) < 0 in a right neighborhood of. and (i
g

) > 0 in a left neighborhood of
g

(3) The following statements are equivalent:

€)) (g)/ < 0on(a,b);

(b) (g) < 0 in aleft neighborhood of.

This theorem is immediate from Part 1 of Proposifiorj 1.9.

!/
Remark 1.11. If the condition thatL, is increasing orfa, b) in the preamble of Theorem 1{10
g

is replaced by the condition the(g is decreasing offa, b), then all of the conclusions of the

theorem will hold provided that all the inequality signs in them are switched to the opposite

ones. Similarly, if the conditioyg’ > 0 in the preamble of Theorem 1]10 is replaced by

gg’ < 0, then all of the conclusions of the theorem will hold provided that all the inequality

signs in them are switched to the opposite ones. If both conditions in the preamble of Theorem
!

1.1Q are switched to the opposite ones—-is decreasing offa,b) and gg' < 0, then all

the three parts of Theorem 1]10 will hold without any changes. — Cf. Parts 2, 3, and 4 of
Propositiorj 1.9.

Thus, Theorem 1.10 and Remark 1.11 provideomplete qualitative description of the
f

oscillation pattern ofi on an interval of monotonicity OL based on thécal behavior of=-
g g

near the endpoints of the interval.

Remark 1.12. Yet, whenever possible and more convenient, Propositign 1.1 may be used in-
stead of the more general Theorgm 1.10 and Refnark 1.11.

Remark 1.13. In Part 1(b) of Theorem 1.10, the condition tI'(a{) > 0 in a right neighbor-
g

hood of the left endpoint may be relaxed to the condition thll-;tis non-decreasing in a right

g
neighborhood ofi, with Part 1(a) of the theorem to hold. (Similar changes may be made in the
other two parts of Theorem 1J10, as well as concerning Remark 1.11.) This too follows from
Propositiory 1.9, because in each of the four parts of Propo§itipn 1.9 the conclusion implies that
f /

E is nonzero and does not change sign in some right neighborhoodd the same is
true for some left neighborhood 6f hence, under the conditions of Proposition 1.9 or, equiv-

alently, under those of Theorgm 1,10 and Remark|1.11, if (Sa)non-decreasing in a right
g

neighborhood of, then (i

g
Remark 1.14. In all the above statements, the “strict” terms “increasing” and “decreasing” and
the “strict” signs “>" and “ <” may be replaced, simultaneously and throughout, by their “non-
strict” counterparts: “non-decreasing”, “non-increasing>™and “ <"respectively (however,

/

/
) > 0 in a right neighborhood af.

it still must be assumed thgtand ¢’ are nonzero offa, b), just for the ratios“i andil to be
g g
defined on(a, b)).
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2 /!
In particular, it follows that the conditiong/’ > 0 on(a,b) orgg’ < 0on(a,b), li{n ‘gf(i)l <£> (x)
zla |g'(x)] \ g
!/
= 0, and= is constant orja, b) imply thati is constant onja, b).
g g
/!

Even if the ratio=— is not monotone, something can be said on the behavigr bhsed on
g

/

that of —. Below we shall state the most general result of this work, Theprem 1.16. Toward

g . _— . . : : :
that end, we need the following two definitions, which will be accompanied by discussion.

Definition 1.1. Let us say that a functiop is n waves upon the interval(a, b), wheren is
a natural number, if there exist real numbegs= a < a; < -+ < a, = b (which we
shall call theswitching points forp) such thatp is increasing on the intervalg;, as;1)

—1
for all j € {0,1,...,{71

J} and decreasing on the intervdls,; ., asj1o) for all j €

— 92 .
{O, 1,..., o 5 J }; here, as usual,z| stands for the integer part of a real numbein such
a situation, one might prefer to say.‘quarter-waves up” rather tham"waves up”.

Definition 1.2. If, for some natural number, a functionp is n waves up on the intervdk, b)
with the switching pointsi, a4, . .., a,, andr is another function defined ofa, b), let us say
thatthe waves of- on (a, b) follow the waves o if there exist some nonnegative integer
and real numbers_ | =a <c¢y < ¢ < --- < ¢, = bsuch that

. : : -1
(1) r is increasing on the intervalg,;, co;11) for all i € {0, 1,..., {mTJ } and de-

creasing on the intervalgs; 1, c2;12) foralli € < —1,0,1,. .., mTQ :
(2) there is a strictly increasing mdp, 1,...,m — 1} 3 k — ¢(k) € {0,1,...} such that
forallk € {0,1,...,m — 1} one has
(i) ¢(k) €{0,1,...,n— 1},
(i) cx € [ar), arp+1), and
(i) ¢(k)is eveniffk is even.

We make standard assumptions suck@9g,...,m — 1} = 0 if m = 0. Hence, ifm = 0,
then necessarily the mdp= () (as usual, a map is understood as a set of ordered pairs satisfying
certain conditions).

Mutually interchanging the terms “increasing” and “decreasing” (concerning oalyd
but, of course, not) in Definitions[ 1.1 andl 1]2, one can define the notiomss“n wavesdown
on(a,b)” and, in the latter case too, the notion “the waves oh (a, b) follow the waves of”.
If pis constant orfa, b), let us say thap is 0 waves up an® waves down ofja, b).

Note that Condition 2 of Definition 1.2 implies < n, while Condition 1 of Definitiof 1]2
implies that either is m waves up ona,b) (whenc, = a) or m + 1 waves down or{a, b)
(whency > a).

Also, since the intervalg;, a,.1) are disjoint for differeng’s, the Condition 2(ii) of Defini-
tion[1.2 implies that the mapis uniquely determined.

Remark 1.15. Somewhat informally, the phrase “the waves d6llow the waves ofy” may be
restated this way: as one proceeds from left to right,

(i) » may switch from decrease to increase only on intervals of incregsarmud
(i) » may switch from increase to decrease only on intervals of decrease of
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the intervals of increase/decreasepoére considered here to be semi-open, with the left
endpoints included, except for the left-most interval, which is open.

Example 1.1. Suppose that a functiom is increasing or{ag, a;) and decreasing ofu,, a,),
whereay = a < a; < ay = b, S0 thatp is n waves up ona, b) = (ag, az), With n = 2; suppose
further that the waves of a functionon (a, b) follow the waves ofp. Then exactly one of the
following five cases takes place:

(1) r is decreasing on the entire interyal, a,), which corresponds ta = 0, ¢q = a», and
¢ = () in Definition[1.2;

(2) r is increasing on the entire intervaly, as), which corresponds to = 1, ¢q = ag, and
£(0) = 0;

(3) there is somey, € (ap,a;) such thatr is decreasing ortag, co) and increasing on
(co, az), which corresponds tow = 1, ¢y > ag, and?(0) = 0;

(4) thereis some, € [ay, as) such that is increasing offao, c;) and decreasing ofa;, as),
which corresponds to = 2, ¢y = ao, £(0) = 0, and/(1) =

(5) there are some, € (agp,a;) ande; € [ag,az) such thatr is decreasing offay, o),
increasing or(co, ¢;), and decreasing oft,, a»); this corresponds to, = 2, ¢y > ay,
¢(0) =0, and/(1) =

In particular, ifp is 2 waves up or{a, b) and the waves aof on (a, b) follow the waves ofy,
then it follows that- is at most2 waves up or at most waves down ofta, b).

Definitiong 1.1 and 1]2 are also illustrated below in Exaiple 1.2 and, especially, in Example
[1.3. The following is a further generalization of the previous results.
fl

Theorem 1.16. Suppose thagg > 0 and is n waves up ora, b), wheren is a natural

number. Then
(1) the waves 03‘Zj on (a, b) follow the waves ofi/;

g g
f

(2) in particular, = is at most: waves up or at most+ 1 waves down ofu, b), depending

on whether<i> > 0 in a right neighborhood of or not.
g
In addition to this theorem, i, a1, . .., a, are the switching points fofg, then on each of
g

!
the intervalda;_1,a;),7 = 1, ..., n, of the monotonicity of]i,, the increase/decrease pattern of
9

f

= can be determined according to Theotem [L.10 and Regmark 1.11 (or, alternatively, according

g
to Proposition 1]1; cf. Remafk 1]12).
Thus, Theorer 1.16, Theorgm 1.10, Remjark]|1.11, and Propdsition 1.1 provitepdete

gualitative description of how the oscillation pattern off on (a,b) and the local behavior
g

S

of = near the endpoints df:,b) and near the switching points efg in (a,b) determine the
g

g
oscillation pattern ofi on(a,b).
9

’ f

Proof of Theorer 1.16Let p := — andr := —. In view of Remark 1.15, an informal proof of
the theorem is immediate from Proposnﬁl 9, Thedrem|1.10, Rgmark 1.11, and Rermark 1.4.
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Indeed, Proposition 1.9 implies that, on any interval of increase (decreasedmally a switch

from decrease to increase (respectively, from increase to decreasg)ayf occur. Moreover,
Remar implies that, at the left endpoint ; of any interval[a;_1, a;) Of increase (de-
crease) op, only a switch from decrease to increase (respectively, from increase to decrease)
of » may occur. Thus, one has Part 1 of the theorem. Part 2 of the theorem follows by Theorem
[1.10.

The formal proof of Theorein 1.16 is conducted by induction,ias follows.

Let us begin withn = 1. Thenp is increasing on the entire interval, b) = (ao, a1), and the
statement of the theorem follows by Part 1 of Propositioh 1.9 and Part 1 of Theorem 1.10, with
co = c;atthatym = 1and((0) =0if c <b;m=0andl =0 if c = b.

Let nown € {2,3,...}. By induction, there are some, € {0,...,n —1} andc_; = a <
o< cp <+ < epm = a,_1 Such that

_ . . —1
(1) r is increasing on the intervalg,;, c2;.1) for all i € {0, 1,..., V“Q J } and de-

. H _ 2
creasing on the interval(gy;.1, cit2) foralli € < —1,0,1,..., m12 J } and

(2) thereis a strictly increasing mdp, 1,...,m; — 1} > k— £(k) € {0,1, ...} such that
forallk € {0,1,...,m; — 1} one has
(i) ¢(k) €{0,1,...,n—2},
(i) ¢ € [ag(k),ag(k)+1), and
(iii)y ¢(k) is even iffk is even.
Further, there may be four cases, depending on whethedm, are even or odd.

—1 -2
Case 1.1.n = 2p, m; = 2q, both even  Then VQ J = V2 J =p—-1,

-1 -2 . . . .
Vm? J = m12 = ¢ — 1, p is decreasing ofta,,_1,a,), andr is decreasing on

(Cmi—1,n—1), DECAUSEQ,_1, AY) = (a2(p—1)+17a2(p—1)+2) and(cy, -1, ap-1) = (CQ(q—1)+1702(q—1)+2);
moreover,r is decreasing ofic,,, 1, a,_1], sincer is differentiable and hence continuous. It
follows that/(a,—1) < 0. Hence, by Part 2 of Remafk 1.4,is decreasing offa,_1, a,).
Therefore,r is decreasing oltc,,, 1, a,). Let nowm := m,, redefinec,,, = ¢,, asa,, and
retain the mag. Then, with suchn, ¢y, ¢4, ..., c,, and/, one sees that indeed the waves of

!
r= S follow the waves ofp = i/ In particular, it is seen now from Definiti.2 and The-
g 9

orem|1.10 thati is at mostn waves up or at most + 1 waves down orfa, b), depending on
g

/

whether(i> > 0 in a right neighborhood af or not.
9

Case 1.2.n even, m; odd Then p is decreasing ofia,_1,a,) andr is increasing on
(¢my—1,an—1). Hence, by Part 2 of Propositi¢n 1.9, there is same [a,,_1, a,| such that:
is increasing offa,,_1, c¢) and decreasing ofe, a,,). It follows thatr is increasing otic,,, 1, ¢).
Now, if ¢ < a,, letm := m; + 1, redefine:,,,_; = ¢,,, asc, letc,, := a, andl(m—1) :=n—1,
and retain the previously defined valugs) forall &k € {1,...,m; — 1} ={1,...,m —2}. If
¢ = ay, letm := my, redefine:,,,, = ¢, asa,,, and retain the mag Then the sought conclusion
again follows.

The other two casefase 2.1.n odd, m; evenandCase 2.2.n odd, m; odd, are quite
similar. Namely, Case 2.1 is similar to Case| 1.2, and Case 2.2 is similar t§ Cpse 1.1. O

J. Inequal. Pure and Appl. Math2(3) Art. 33, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

L'H OSPITAL RULES FOR OSCILLATION 11

Remark 1.17. Theoreni 1.16 holds if the terms “up” and “down” are mutually interchanged
everywhere in the statement. The effect of replacinggf> 0 by g¢’ < 0 is that either in the
/

)

assumption regarding the waves-efor in the conclusion regarding the waves-ofbut not in

9 Y
both) the terms “up” and “down” must be mutually interchanged; cf. Remark 1.11.
f/

As Theorem 1.16 shows, there is a relation between the funcyti@ﬂgi andp = =. Next,
g g

we shall look at their relation from another viewpoint. Let us write

,_(f)_fb—fy_p—r
s (1) Z _

g 9> 9/9

If we now let

gl
a.7) h ==,

g
then

7,,/

1.8 — T

moreover, since each of the functiop&nd ¢’ does not change sign on the interval, one sees
that

(1.9) h does not change sign
on the interval. Vice versa, if (1.9) is true, then solving (1.7)Jgields
(L10) gla)| =exp [ ho)de and (o) = r(a)gla),

so thatf andg can be restored (up to a nonzero constant factor) basedaadh, wherer is
an arbitrary differentiable function arfdis any function which is nowhere zero and does not
change sign (on the interval). Thus;';\ndh can serve as a kind of “free parameters” to represent
all admissible pairs = f andp = —, via ).
Another helpful obsegrvation is ?mmedlate from (1.8) and]|(1.7) (as usual, it is assumed that
signu = 1if u > 0, signu = —1if u < 0, andsignu = 0 if u = 0):
Proposition 1.18.
(1) Letgg’ > 0 on(a,b). Thensignr’ = sign(p — r) on (a, b).
(2) Letgg’ < 0on(a,b). Thensignr’' = —sign(p — r) on(a,b).
This proposition quite agrees with the intuition. Indeed, if one is only interested in local
behavior ofp andr in a neighborhood of a point € (a, b), then one may re-definéandg in a
right neighborhood ofi — without changing values of andg in the neighborhood of point
— in such away thaf (a+) = g(a+) = 0. Let us interpreta, b) as a time interval. Then, for
y in the neighborhood of the interior poimtof (a, b), the ratio

fly) _ fly) = flat)
1.11 r(y) = =
(L11) ) 9(y)  9(y) —gla+)
may be interpreted as tlaveragerate of change of relative tog over the time intervala, y),

while )
My

is interpreted as thenstantaneousate of change off relative tog at the time momeny,.
Intuitively, it is clear that, if at some time momentthe instantaneous relative ragieexceeds
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(say) the average relative ratgthen the latter must be increasing at that point of time, and vice
versa. A corroboration of this comes from the generalized mean value theorem, which implies,
in view of (1.11), that-(y) = p(z) for somez € (a,y), whencep(y) > r(y) provided thatp is
increasing orfa, y|.

Now we are ready to complement Theoriem 1.16 by
Proposition 1.19. For p andr as in Theorerp 1.16 or Remdrk 1117, an equality of the form

(1.12) cr = ayr), forsomek =0,1,...,m —1

(which is admissible according to Definitipn [L.2, Part 2(ii)) in fact is only possibig i§ the
left endpoint of the interval(a, b); that is, only ifk = ¢(k) = 0.

Proof. Assume the contrary — that under the conditions of Thedrenj 1.16 (Say) ¢ is an
interior point of(a, b) such that|(1.12) takes place. Then it follows from Definition$ 1.1/ arjd 1.2
that one of the following two cases must take place: either

(i) there is some& > 0 such thatp andr are both decreasing dia — 6, ¢) and are both
increasing oric, ¢ + 9) or
(i) there is some& > 0 such thatp andr are both increasing ofr — J, ¢c) and are both
decreasing olic, ¢ + ¢).
Consider case (i). Sinceis decreasing ofic — 4, ¢), the limit p(c—) exists; moreover, in
view of the generalized Mean Value Theorem,
f'le) . flx)— f(c)
c) = ——= = lim ————— = p(c—).
Further, in view of Remark 1.13 and Propositjon 1.18, there is sbmé such that'(z) < 0
andr(z) > p(x) > p(c—) = p(c) Vx € (c — d,c); also,p(c) = r(c), sincec is the point of a
local minimum forr, and so;”(¢c) = 0. Hence, in view of[(1]8) andl (1.7),
d g () —r'(z) —r'(z) —r'(x) d
—In|g ()| = = > = = ——1n(r(z) —r(c
O =y S @ T @ 0 @ =@ e U )

forall z € (¢ — 4, ¢). Integration of this inequality yields

113 glas) _ rla) —r(c)

g(@1) = r(zz) —r(c)
whenever — 0 < x; < x5 < ¢. Letnowzs T ¢ (While x4 is fixed). Then (by the continuity of
r andg) the right-hand side of (1.13) tendsdo while its left-hand side tends to the finite limit

g(c)

g (1)
Quite similarly, one shows that case (ii) is impossible. (Note that the assumptiopn ithat

increasing oric, ¢ + ¢) was not even used here.) O

. This contradiction show that case (i) is impossible.

On the other hand, examples whgn= a, takes place are many and very easy to construct;
to obtain a simplest one, let:= 0, b := oo, f(z) := 2%, andg(z) := .
Remark 1.20. If g were allowed to be discontinuous at some point(sjaob) and one were
only concerned with the possibility that bothand p could be extended by continuity to the
entire interval(a, b), then the conclusion of Propositibn 119 — and even that of Therery 1.16
— would not hold. For example, let:= —2/3, b := oo; f(x) := —2%e~2/* andg(z) := e~ 2/*
for z # 0. Thenr(z) = —2? andp(z) = —z? — z?, so that both- andp can obviously be
extended by continuity to the entire interval b) = (—2/3,00). Here,p is n waves down on
(a,b), with n = 2 and the switching points, = —2/3, a; = 0, anda, = co. If it were true that
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, i 2 Lo o . L
Figure 1.1: p(z) = 7 sin z, thin line; r(z) = sin (ac 5 ), thick line

the waves of- on (a, b) follow (in the sense of Definitioh 1l.2) the wavesmfthen one would
necessarily have here; = —2/3, ¢ = 0, ¢; = 0o, andm = 1, whence

(114) Co = a1 = 0

would be an interior point of the intervéd, b), in contrast with the conclusion of Proposition
[1.19. Even the conclusion of Theorém 1.16 does not hold in this situation; indeed, if the conclu-
sion of Theorerh 1.16 were true here, tHen ([L.14) would irfily = 1, which would contradict

the requirement that(k) be even whenever is even.

Remark 1.21. Formula [1.8) provides yet another insight into the relation betweandr.
Indeed, at any point, of local extrema of-, one must have/(z,) = 0, which impliesp (zo) =

r (z0), SO thatp attains all the extreme valuesoinside the interval, and then may even exceed
them. It follows that the amplitude of the oscillationssd no less than that of Together with
Theorenj 1.16, this means that the waves ofay be thought of as obtained from the waves of
p by a certain kind of delaying and smoothing down procedure.

Here are two examples to illustrate above results and observations.
Example 1.2.Leta := 0, b := 27, f(z) = V3 gin (w — %), andg(z) = e*V3, This
corresponds to the choice ofz) = sin <:1c — %) andh = /3in ) and ), so that

77
cos (:U— —) 9
p(x) = sin (x - z) b6/ % gng.

6 V3 V3
Figure[1.1 above shows that indeed the waves afe of a smaller amplitude and are delayed
(by the constant shif@) relative to the waves gi. It is also seen that the wavesoandr are

interwoven; more exactly, the graphsmoéndr intersect each other at the points of extrema of
T.
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Figure 1.2: p, thin line; r, thick line

Example 1.3.Now, leta := 0, b := 7.5,

r(z) = 75+/0Z(u— 1/2)(u — 2)(u —4)*(u — 7) du
Ll T, 220, 807

69(: 51’ ?x — ?x?’ +1762% — 1122 + 75 and

—4)2 2+10
h(z) = (x 4; v , which corresponds to

g(x) =C -exp /Or h(u) du

3 2
x° — 62° + 397 )
50 ,  where C'is any nonzero constant,

=(C -exp
f(x) =r(x)g(x)

1 7 221 307 3 _ 622439
=C- <6x6 — §x5 + ?xll — ?xg’ + 1762 — 1122 + 75) exp & z0+ :v’
Fa) = (¢~ 1/2)(x —2)(z —49*(x ~7), and
¢ (5 221 , 307

1
p(x) = g% — 3% + =%~ ng + 1762 — 1122 + 75

(z—1/2)(x = 2)(x —4)*(x — 7)
40 (x —4)2+22+10

The graphs op andr are demonstrated by Figdre]l.2. The points of change from increase to

decrease or vice versa feplus the endpoints of the interval, b) = (0, 7.5) are given by the
table

C_1 1| C C1 | Cy| C3

0 052 |7 |75
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so thatm = 3; here and in what follows we use the notation of Definitipng 1.1[and 1.2. The
points of change from increase to decrease or vice versaghus the endpoints of the interval
(a,b) = (0,7.5) are given by the table

ap | a1 a2 as | a4 a5
0 [1.18...1282...14 |657...17.5

so thatr = 5. The map/ in Definition[1.2 is given by the table

k 0[1]2
kY [o[1]4

One can see that indeeg ¢ (Gg(k), ag(k)_H) fork € {0,1,...,m — 1}, and{(k) is even iffk is
even.

As in Exampl¢ 1.2, one can see here that the wavesioé of smaller amplitude and delayed
relative to the waves gf. Again, the waves op andr are interwoven in the sense described in
Examplg 1.P.

On the interval 0, 0.5), the instantaneous relative ratés less than the average relative rate
r; this is the same as being negative oi0, 0.5), which one can see too.

On the next interval0.5, 2), one hag > r, which is the same as > 0.

Further to the right, on the intervé®, 7), one hagp < r andr’ < 0 (except that at = 4
one hag = r andr’ = 0), so thatr is decreasing everywhere ¢, 7); the graphs op andr
look as ifr “feels” to some extent the up and down (quarter-)waves méarx = 4, and yet;
“misses” these (quarter-)waves @f

Finally, on the interva(7,7.5), one hag > r andr’ > 0.

The delay-and-flatten manner of the waves tif follow the waves op is especially manifest
to the right ofx = 5.

2. APPLICATIONS

In the first subsection of this section, we shall apply the results above to obtain a refinement
of an inequality for the normal family of probability distributions due to Yao and lyer; this
inequality arises in bioequivalence studies; we shall also obtain an extension to the case of
the Cauchy family of distributions. In the second subsection below, the convexity conjecture by
Topsgel[6] concerning information inequalities is addressed in the context of a general convexity
problem.

Other applications of I'Hospital type rules are given:[ih [3], to certain information inequali-
ties; in [4], to monotonicity of the relative error of a Padé approximation for the complementary
error function; in[[5], to probability inequalities for sums of bounded random variables.

2.1. Refinement and Extension of the Yao-lyer Inequality.

2.1.1. The normal caseConsider the ratio

P(IX| < 2)
2.1 =——
of the cumulative probability distribution functions
(2.2) F(z) :=P(|X|<z) and G(z):=P(Z] < 2)

of random variable§X| and|Z|, whereZ ~ N(0,1), X ~ N(u,0?), n € R, ando > 0.
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Consider also the ratio

Z— Z4+ @
F(z) 1 “”<a) 1 *”(o)
=0 e Tem T e
In [2], a simple proof was given of the Yao-lyer [1] inequality
(2.3) r(z) > min(r(0+),r(c0)) Vz € (0,00) V(u,0) # (0,1),
which arises in bioequivalence studies; hegie) := lim r(z) = 1 and, by the usual 'Hospital
Rule for limits, o

z > 0.

e(5) e
r(0+4) = p(04) = 2 = g oxp (‘%) |

wherey is the standard normal density. Of course, in the trivial dase) = (0, 1), one has
r(z)=1 Vz>0.

The proof of the Yao-lyer inequality given inl[2] was based on the following lemma.
Lemma 2.1. For all x € R ando > 0, there exists somec [0, oo] such thaf is increasing on
(0,b) and decreasing ofb, co). (In other wordsy is eitherl wave down or at mogwaves up
on (0, 00)).

Based on this lemma and results of the previous section, we shall obtain the following refine-
ment of the Yao-lyer inequality, from which the inequality is immediate.

Theorem 2.2.Lety € Rando > 0.

2
(1) If o < 1ando? + (H) < 1, thenr is decreasing ofi0, co) fromr (0+) to r(c0) = 1.
o
2
(2) If o < 1ando?+ (H) > 1, then there exists some= (0, co) such that- is increasing
g

on (0, ¢| fromr(0+) to r(c) and decreasing ofr, co) fromr(c) to 1. Moreover,c > b,
whereb is defined by Lemnja 2.1.

(3) If o =1 andu = 0, thenr = 1 everywhere o010, co).

(4) If o = 1andyu # 0, thenr is increasing on0, co) fromr (0+) to 1.

(5) If o > 1, thenr is increasing on0, co) fromr (0+) to 1.

Proof. On (0, c0), one has

o
(2.4 ==
where
(2.5) Q:=pG—-F
andF" andG are the distribution functions defined above. Furtherno),
(2.6) Q =/,G
and
zZ— U Z+ U
, zZ— U @(T) zZ+ SO(T)

en = () S ) e o
so thatp/(0+) = 0. Now, by the usual I'Hospital Rule and in view ¢f (2.6),

, z , "(z '(0+

i S~ (0~ 20
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this and [(2.4) imply
(2.8) ' (0+) = 0.

Therefore, using Lemnia 2.1, Theorém 1.16, and Refnark 1.17, one seesdleither1
wave down on(0, co) or at most2 waves up or{0, co). To discriminate between these cases, it
suffices to consider the sign dfin a right neighborhood df and that in a left neighborhood of

Q.

By (2.4) and|[(2.5), one hasgn 1’ = sign @ andsign Q" = sign p’ on (0, o). Also, by [2.5),
Q(0+) = 0. It follows that, in a right neighborhood 6f sign @) = sign @)’, and so,
(2.9) signr’ = sign p/,

provided thaty’ does not change sign in such a neighborhood. But, as we/sd@a;) = 0.
Hence, [(2.P) implies that, in a right neighborhood)pf

2.10 signr’ = sign p”
( g gnp’,

provided thap” does not change sign in such a neighborhood.
Further, one has the identity

20p"(2) = [(1 _ %) n (Z B 20—2#)2] Y ((:(Z)ﬂ)

1 z4+p 2
|0-3) ) | e o
In particular,
"
/1 _ 2 H 2 o v <E>
(2.11) P(0+) = {a v (U) 1] o)
By (2.10) and[(2.1]1), in a right neighborhood®f
2 2
(2.12) signr’ = sign [02 + <H> — 1} if o+ <H> # 1.
o o

2
It is not difficult to see thap™ (0+) = 0. By (2.11), in the case? + (ﬁ> = 1, one has

o
p"(0+) = 0; also in this case, one can see that

PV (04) = —2 (ﬁ)4 7 <§> <0 if A0
o2/ op(0)

It follows now from (2.10) that, in a right neighborhood @f

2
(2.13) P <0 i o+ <ﬁ> —1 and p#0.
o
2
Of course, ifo? + (H =1 and pu=0,thens =1, so that this is the trivial case, in which

g
r = 1 everywhere orf0, co). Thus, (2.12) and (2.13) provide a complete description of the sign
of " in a right neighborhood df.
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Let us now consider the sign of in a left neighborhood ofc. Let 2 — oo; then [2.7)
implies thaty’(z) — 0if o < 1 andp’(z) — o if 0 > 1 oro = 1 andu # 0. Therefore, in
view of (2.4) and[(25), in a left neighborhood «f,

(2.14) signr’ =sign(oc — 1) if o # 1;
(2.15) >0 if o=1 and p#0.

Recall that- is eitherl wave down on0, co) or at most waves up or{0, co).
7]

2
Consider now Part 1 of the theorem, wher: 1 ando? + (—) < 1. Then(2.12) and (2.13)
g

imply " < 0 in a right neighborhood di. Hence; is decreasing in a right neighborhoodpf
and so, any waves-up pattern is impossiblerfol hereforey is 1 wave down on0, co), that

is, in this case- is decreasing everywhere 00, co). Thus, Part 1 of the theorem is completely
proved.

2

Assume next thatr < 1 ando? + (g) > 1, as in Part 2 of the theorem. Then (2.12)
and [2.14) imply, respectively, that > 0 in a right neighborhood of and+’ < 0 in a left
neighborhood ofo. Now Part 2 of the theorem follows using Theorem 1.16.

Part 3 of the theorem is trivial, and only serves the purpose of completeness.

If o = 1andu # 0, as in Part 4 of the theorem, then (2.12) and (2.15) implyithat 0 in
a right neighborhood dj, as well as in a left neighborhood of. Sincer may have at most
waves up on0, o), Part 4 of the theorem now follows.

The proof of Part 5 of the theorem is quite similar to that of Part 4; the difference is that in

this case one us€s (2|14) instead of (R.15). O

2.1.2. The Cauchy caseln this subsectiory; is still assumed to have the form defined py|2.1)
and [2.2), butX and Z are now assumed to have, respectively, the Cauchy distribution with
arbitrary parameters € R andb > 0 and the standard Cauchy distribution, with the densities

1 1 1 1
b zZ—a 2 o pOJ(Z) T 1+ 22
1+ b

We shall show that the analogue
r(z) > min(r(0+),r(c0)) Vz e (0,00) V(a,b) # (0,1)

of the Yao-lyer[[1] inequality{ (2]3) takes place in this case too; notedthatb are the location
and scale parameters, respectively, of the Cauchy distribution, jusaado are those of the
normal distribution. Here, it is easy to see that

pa,b(z) .

r(0+) = and r(oc0) = 1.

a’ + b?
Moreover, we shall show that the following analogue of Thedrein 2.2 takes place in this Cauchy
distribution setting.
Theorem 2.3.Leta € R andb > 0.

Q) If o* — b* + a® (a® + 26> +3) < 0, thenr is decreasing or(0, co) from r (0+) to

r(oo) = 1.

(2) If b* —b*+a? (a® 4 2b* + 3) = 0 anda # 0, thenr is decreasing oif0, oo) fromr (0+)
tor(co) = 1.

(3) If b* — b + a? (a®> +2b* + 3) = 0 anda = 0, thenb = 1, andr = 1 everywhere on
(0, 00).
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(4) If b* — bv* + a® (a® + 20* + 3) > 0, then there exists somee (0, o0) such thatr is
increasing on(0, ¢] fromr(0+) to r(c) and decreasing oft, co) fromr(c) to 1.

Proof. Consider the ratio

 F(2)
where
_ W
R(y) = o)’
y = 2%,
f) ="+ (@ +0° +1)y+ (a* +0°),
9y) = y? +2 (0 —a®) y+ (a* + )’
=((z— a)’ + b)) ((= + a)® + ),
so thatg > 0 on (0, o).
One has
217 WP 2) = R () = (g — 19) ), = >0

It follows thatp’(0+) = 0, whence[(2]8) holds in this case too; ¢f. {2.4)(2.6).

Next,
7\ 2(1 + 3a® — b?
<_,) (y) = ( ) PR Yy > 0.
f (2y + a2+ b2 +1)
g/

Therefore,= is at mostl wave up or down orf0, o), and so, by Theorem 1.1%, is at most

/

2 waves up or down of0, c0), and then so ar& = S andp (recall (2.16)); again by Theorem

[1.18, this and (2]8) imply thattoo is at mos® Wavegs up or down off, co).
Further, sincef andg are polynomials of the same degree, it follows from (2.17) that) —

0 asz — oo. Hence (cf.[(24) and (2.5))] < 0 in a left neighborhood ofo. This and the fact

thatr is at most waves up or down of0, co) imply that either

(i) ris constant ori0, co) or
(i) ris decreasing everywhere 0b, co) or
(iii) there exists some € (0, co) such that- is increasing ori0, ¢| and decreasing da, o).
To discriminate between these three cases, it suffices to know the sigma right neigh-
borhood of0. Since [[2.P) holds in this case top, (4.17) implies
(2.18) signr'(z) = sign(f'g — fg')(y)
for z in a right neighborhood df; remember that, by definition, = 22. Further,
(f'g = f9)(0+) = (a® + %) [b' = 0% +a® (a® + 20" + 3) ] .
Hence, in a right neighborhood 0f
signr’ = sign [b4 —b* + a? (a2 + 2% + 3)} if ' — b +ad? (a2 + 2b* + 3) # 0.
Now Parts 1 and 4 of the theorem follow.
In the remaining case, wheh — b% + a* (a* + 2b*> + 3) = 0, one hag f'g — f¢')(0+) = 0;
hence, by[(2.18), fot in a right neighborhood df,

signr’(z) = sign(f'g — fg')(y) = sign(f'g — fg')'(y) = sign(f"g — fg")(y).
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However,
(f"g— fg")(0+) =2(g — [)(0+) =b* — b +a® (a® + 20> — 1) = —4a® < 0

provided that* — b* + a? (a* + 20* + 3) = 0 anda # 0, and then we see that < 0 in a right
neighborhood of. This yields Part 2 of the theorem.

Part 3 is trivial.

The theorem is completely proved. O

2.2. Application: the convexity problem. Let us consider here the problem of the convexity
of the ratioz of two sufficiently smooth functiong andg. Suppose first that the derivatives

g
andg’ are rational functions. One has

/ / /
(2.19) (£> = ﬁ, f—,l = é, and f—? = é,
9 g g1 92 92 93
where
/ 2
g
fl::?g_fa 913:?;
" 12
(2.20) hi=lg -1 =2t
f f/l/ ! f// /// 93 = 391/2 2g/g///
Here, at each of the two steps, froaé] to 2 and fromé to é we proceed to isolate the

g1 92 92 93
presumably most complicated expression in the numerator or denominator (or both) and get

instead its derivative, which is presumably a simpler (in this case, rational) expression.

In these two steps, one getsé%, which is a rational function.
g3

Note also that the convexity/concavity éfcorresponds to the increase/decreaséof
g1
Thus, the I'Hospital type results of Sectign 1 allow one to determine the intervals of convexity

f

of = in a completely algorithmic manner by reduction of the convexity problem to that of the

f

oscillation pattern of the rational functioF{?, and then going the same stepsckto — and
g3 9

at that studying the signs of the derivatives of the ra{f}éstocally, near the switching points

gs
(from increase to decrease or vice versa) of each of the réﬁés starting froms = 2to 1 to
Js+1
0, Wheref0 = f. In some cases, though, such as the following Exa@e 2.1, the situation may
9o g

clear up before getting all the way ’cfé
g3

Example 2.1.In [6], a simple proof (due to Arjomand, Bahrangiri, and Rouhani) of the mono-

- . H L
tonicity of the function(0,1/2) > p lnp(% is given; hereg := 1 —pandH(p,q) =
—plnp — qln ¢ is the entropy function; that proof is based on the identity
Hpa) _ » 4

Inp-lng  Ilng Inp
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and the convexity o{i inp € (0,1). Seel[3] for another simple proof of the monotonicity of
np
H(p,q)
Inp-Ing
The convexity ofli is also easy to prove using our results. Indeed, lfiépe = ¢, g(p) =
np

— based on the I'Hospital type rule, stated above as Propon 1.1.

Inp, fi(p) = —plnp — q, g1(p) = pIn’p, fo(p) = 1, andgs(p) = —2 — Inp. Moreover,
fi(l=) =¢1(1—) =0andf{(p) = —lnp > 0 forp € (0,1), so thatf, < 0on(0,1). Since%
2
is obviously decreasing o), 1), Propositio implies that so gé; hence,ﬁ IS increasing
1 0
on (0, 1) (note thatf; < 0 andg; > 00on (0, 1) ). By (2.19), the convexity ofq— now follows.
np

Let us now illustrate the proposed approach with a more involved example.
Example 2.2.Let f(x) = In(1 + 2%) andg(x) = arccot z. We shall use results of Sectiph 1 to

analyze the convexity properties éfon (a,b) = (—o0,0). One has, for all reat,
9

fi(z) = —2zarccotz —In (1 +2*) and gi(z) = —(1 + 2®)arccot’s
and, for allx # 0,

fa() = —l; go(x) = — — arccot x;
/ _ 1x. / _ ! 1
fQ(x) - ﬁa 92(55) - _m.

Hence, for allz # 0,
fi(z) _ falw)
o) gs(x)
which is increasing in: € (—oo, 0) and decreasing im € (0, 00).
Now let us analyze the signs ¢f andg), on the interval§—oo, 0) and(0, co) and the local

f f

=—(1+47),

behavior ofg—z near the switching points oo, 0, andoo of g—i, thus making the first step back,
from g to ﬁ. Sincegy (o) = 0 andg)(z) < 0 for all z # 0, one hag, > 0 on (0, c0); it
is obvious thaiy, < 0 on (—oc,0); thus,% is defined on each of the intervals-oo, 0) and
(0,00). In addition, fy(c0) = ¢g2(c0) = 0. Hence, by Propositioﬂ. g’z is decreasing on

(22

/
> near—oo and0, note that
g2

(0,00). To analyze the signs

PaR() (f—> (=)

—m <0 as T — —O00,

— arccotx — {

92 T 1442 —7m/2<0 as = —0.
Now Remark 1.111 implies tha([tg is decreasing on the interval oo, 0); thus,é is decreasing
92

92
on each of the intervals-oo, 0) and(0, co).
Further, let us analyze the signsgefandg; on the interval§—oo, 0) and(0, co) and the local

S

behavior of— near the switching points-co, 0, andoo of L2 thus making the second (and
g1 92
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/
final) step back, fronﬂ{rz toﬁ = (i) . Forallz # 0, one hag) (z) = —(1+2?) arccot? z < 0
92 g1 g
andg;(z) = 2zgs(x)arccotx > 0; thus,ﬁ is defined on each of the intervals oo, 0) and
g1
/
(0, 00). It remains to determine the sign éfﬁ) near the endpoints:oo, 0, andoo:
g1
/
2
(ﬁ) () ~——5 <0 as z— —oo,
g1 T
/
4
(ﬁ) =220 and
g1 m
!/
2
(ﬁ> () ~—>0 as x— 0.
g1 x
/
Therefore,(i) = I switches once from decrease to increase-enc,0) and then is in-
g g1

creasing o0, co).
We conclude that there is somes (—o0, 0) such thati is concave orf—oo, ¢) and convex
g
on (¢, o0); in fact,c = —0.751 . .. .

Of course, the steps like the ones described by [2[19){(2.20) will work not only in the case
when bothf’ and¢’ are rational functions but also in other cases wlfeandg’ are given by
simpler expressions thghandg.

Topswgel[6] conjectured that

In (—FIIQ;))
n
2.21 _
(2.21) In (4pq)
is convex inp € (0,1), where agairy := 1 —pandH(p) := H(p,q) := —plnp — qlng.

Here the derivativg’ of f := In (ﬁ) Is not a rational function. However, one can still use
n

the same kind of algorithm as the one demonstrated in |(2.19)t(2.20), beﬁ’ause% and

1. . . I
H"(p) = —— is rational; then the problem reduces again to that of the oscillation pattern of a

rational function plus local analysis near the switching points. In this sense, the problem can be
solved in a rather algorithmic manner. Indeed, one can write here

f3 Pm
2.22 55_m
( ) g3 Qn
where P,,(p) and Q,,(p) are polynomials inH (p) of some degrees: andn over the field
R(p, H'(p)) of all rational expressions ip and H'(p); in fact, in {2.22), one has: = 2 and
n = 3; moreover, her€),(p) = H(p)®.

Consider such a rational expressgfﬁ over the fieldR (p, H'(p)). Let us call the summ +n

: . . P, ..
of the degrees of the numerator and denominator the height of the rational expr&@sm‘n

n
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, . . . P
P,, = 0, define the height as 1. If the height of the rational expressuacgz is greater thaif)

n

(as we have itin (2.22) fo£ given by (2.21)), let us rewrit% so that the leading coefficient
g

n

of either the numerator or denominatorligas we have it in casg is given by |(2.2]1) for the
g

denominator),, (p) = H(p)?); then, without loss of generality, one may assume that the leading
/

coefficient of eitherP,, or Q,, is alreadyl. ThenQ—T too is a rational expression over the field
o ! . Py o
R(p, H' (p)), but its height is at most. + n — 1 vs. the heightn + n of — (the derivatives

P/ andQ)’, of P,, and@,, are taken here of course jin); indeed, sincg{” is rational inp, the
derivative P, (p) in p of any polynomial

Po(p) = Ru(p, H'(p)) - H(p)™ + Rin—1(p, H' (p)) - H(p)™ " + - + Ro(p, H'(p))

in H(p) — with the coefficientsk,,,(p, H' (p)), ..., Ro(p, H'(p)) being rational expressions in
pandH'(p) — is again a polynomial irf (p) of degree at most: over the fieldR (p, H'(p));
moreover, the degree &t (p) is at mostn — 1 over the fieldR (p, H'(p)) in case the leading
coefficientR,,(p, H'(p)) is 1 (or any other nonzero constant).

P
Therefore, the basic step, fro\gﬁ to -2, reduces the height at least by Repeating such

basic steps, one comes to an expressmn of height at imegtich then itself belongs to the
field R(p, H'(p)) of all rational expressions imand H'(p) only — rather than irp, H'(p), and
H(p). Thus,H (p) will be eliminated.

An analogous (even if very long) series of steps afterwards will elimiféte), and then
one will have just to consider the monotonicity of a ratio of polynomials with certain real
coefficients.

(As in all statements of Section 1, when considering the relation betvCeand— one

needs also to control the sign@jf’. In particular, if eitherP,, or @Q,, is constant%nd thg leading
coefficient of the other one of these two is also constant, then the basic step needs to be modified,;
yet, such an exception would be only easier to deal with.)

; After all these, say, steps have been done, one has of course to go the/Sastepsackto

=, studying at that the signs of the derivative of each of the ra[tidscally, near the switching
gs

points (from increase to decrease or vice versa) of the F&ﬁé for the integer values of

gs+1
fo . f

s going down fromN to 0, where . Here, at each of the switching points, one might

need to use repeatedly the usual I Hospital Rule for limits, eliminatiig) and thend’(p) in
the same manner as described above. Numerical approximations might also be needed. Remark
[1.12 may be useful at some of these steps.

However, all this long process is essentially algorithmic and will necessarily come to an end

/
after afinite number of steps, and then the oscillation pattern of the Féhi@: (i) will be
(51 g

completely determined. Thus, the convexity patterF(rorf/iII be completely determined.
g
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Of course, the numbelN of the basic steps in this case will be many more than two (in
contrast with above Examplgs P.1 2.2), and the volume of calculations will be enormous.
For this reason, we shall not pursue this problem further at this point.

In contrast with this convexity problem, the proof of the monotonicity of the ratio [2.21)
based on a I'Hospital type rule is very simple; see [3].

REFERENCES

[1] Y.-C. YAO AND H. IYER, On an inequality for the normal distribution arising in bioequivalence
studies J. Appl. Prob, 36 (1999), 279-286.

[2] 1. PINELIS, On the Yao-lyer inequality in bioequivalence studigsth. Ineq. & Appl, (2001), to
appear.

[3] I. PINELIS, L'Hospital Type rules for monotonicity, with applicationk,Ineq. Pure & Appl. Math.,
3(1) (2002), Article 5. lattp://jipam.vu.edu.au/v3n1/010 01.htmi ).

[4] I. PINELIS, Monotonicity Properties of the Relative Error of a Padé Approxi-
mation for Mills’ Ratio, J. Ineq. Pure & Appl. Math., 3(2) (2002), Article 20.
(http://jipam.vu.edu.au/v3n2/012 01.html ).

[5] I. PINELIS, L'Hospital type rules for monotonicity: an application to probability inequalities
for sums of bounded random variablek, Ineq. Pure & Appl. Math.3(1) (2002), Article 7.
(http://jipam.vu.edu.au/v3n1/013 01.html ).

[6] F. TOPS@QE, Bounds for entropy and divergence for distributions over a
two-element set, J. Ineq. Pure & Appl. Math. 2(2) (2001), Article 25.
http://jipam.vu.edu.au/v2n2/044 00.html

J. Inequal. Pure and Appl. Math2(3) Art. 33, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/v3n1/010_01.html
http://jipam.vu.edu.au/v3n2/012_01.html
http://jipam.vu.edu.au/v3n1/013_01.html
http://jipam.vu.edu.au/v2n2/044_00.html
http://jipam.vu.edu.au/

	1. L'Hospital Type Rules for Oscillation 
	2. Applications
	2.1. Refinement and Extension of the Yao-Iyer Inequality
	2.2. Application: the convexity problem

	References

