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Abstract: In this note we give a completely different proof to a functional inequality estab-
lished by Ismail and Laforgia for the survival function of the gamma distribution
and we show that the inequality in the question is in fact the so-called new-is-
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the Esseen-Mitrinović inequality.
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1. Functional Inequalities Involving the Incomplete Gamma
Function

Let

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt, erf(x) =

2√
π

∫ x

0

e−t2 dt

and

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt

denote, as usual, the distribution function of the standard normal law, the error func-
tion and the complementary error function. Esseen [6, p. 291] in 1961 proved the
following interesting inequality related to the distribution functionΦ: for all x, y ≤ 0
we have

(1.1) Φ(x + y) ≤ 2Φ(x)Φ(y).

Another interesting inequality, which was published by Mitrinović [6, p. 291] in
1968 and proved by Weinacht, is: for all real numbersx, y ≥ 0 we have

(1.2) erf(x) erf(y) ≥ erf(x) + erf(y)− erf(x + y),

with equality if and only ifx or y is an end point of the closed interval[0, +∞].
Recently, in 2003, Alzer [1, Theorem 1] extended and complemented the inequality
(1.2), showing in particular that (1.2) is valid for all real numbersx andy. More-
over, Alzer pointed out that inequalities (1.1) and (1.2) are not only similar, but even
equivalent. Observe that sinceerf(x) + erfc(x) = 1, inequality (1.2) is equivalent to
the inequality

(1.3) erfc(x + y) ≤ erfc(x) erfc(y) for all x, y ∈ R.
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Now for all p > 0 andx ∈ R let

Γ(p, x) =

∫ ∞

x

tp−1e−t dt, γ(p, x) =

∫ x

0

tp−1e−t dt

and

Γ(p) =

∫ ∞

0

tp−1e−t dt

denote the upper incomplete gamma function, the lower incomplete gamma function
and the gamma function, respectively. Recently, in 2006, motivated by the inequality
(1.2), Ismail and Laforgia [4, Theorem 1.1], with their clever use of Rolle’s theorem,
proved that the functionq : [0,∞) → (0, 1], defined byq(x) := Γ(p, x)/Γ(p), when
p ≥ 1 satisfies the following inequality

(1.4) q(x + y) ≤ q(x)q(y) for all x, y ≥ 0.

Moreover, they showed that whenp ∈ (0, 1], the above inequality is reversed. In this
section our aim is to show that inequality (1.4) can be deduced easily using some
well-known facts from probability theory. Before we state our main results we need
the following technical lemma.

Lemma 1.1. Let us consider the continuously differentiable functionϕ : [0,∞) →
(0,∞). If ϕ(0) ≥ 1 andϕ is log-concave, then for allx, y ≥ 0 we haveϕ(x + y) ≤
ϕ(x)ϕ(y). Moreover, ifϕ(0) ≤ 1 andϕ is log-convex, then the above inequality is
reversed.

Proof. First suppose thatϕ(0) ≥ 1 and ϕ is log-concave. Let the functionφ :
[0,∞) → R be defined byφ(x) := log ϕ(x) − xϕ′(x)/ϕ(x). Clearly we have
φ′(x) = −x(ϕ′(x)/ϕ(x))′ ≥ 0 and consequentlyφ is increasing. Thusφ(x) ≥
φ(0) = log ϕ(0) ≥ 0 for all x ≥ 0. Hence it is easy to verify that the functionx 7→
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[log ϕ(x)]/x is decreasing on(0,∞), which implies that the functionx 7→ log ϕ(x)
is sub-additive on[0,∞). Therefore for allx, y ≥ 0 we haveϕ(x + y) ≤ ϕ(x)ϕ(y).

Now suppose thatϕ(0) ≤ 1 andϕ is log-convex. Thenφ is decreasing and this
implies thatφ(x) ≤ φ(0) = log ϕ(0) ≤ 0 for all x ≥ 0. Hence the functionx 7→
[log ϕ(x)]/x is increasing on(0,∞), which implies that the functionx 7→ log ϕ(x)
is super-additive on[0,∞). This completes the proof.

Let f be a probability density function whose support is the interval[a, b] and let
F : [a, b] → [0, 1], defined by

F (x) =

∫ x

a

f(t) dt,

be the corresponding cumulative distribution function. The functionF : [a, b] →
[0, 1], defined by

F (x) = 1− F (x) =

∫ b

x

f(t) dt,

is known as the corresponding reliability function or the survival function. From
the theory of probabilities – see for example Bagnoli and Bergstrom [3, Theorem
1,2] – it is well-known thatif the density functionf is continuously differentiable
and log-concave on(a, b), then the survival functionF is also log-concave on(a, b).
Moreover,if f is continuously differentiable and log-convex on(a, b) and if f(b) =
0, then the reliability functionF is also log-convex on(a, b).

We are now in a position to present an alternative proof of (1.4) and its reverse.

Proof of (1.4). Recall that the gamma distribution has support[a, b] = [0,∞) and
density functionf(x) = xp−1e−x/Γ(p). From definitions, the gamma distribution
has the cumulative distribution functionx 7→ γ(p, x)/Γ(p) and consequently the
functionq defined above is actually the survival function of the gamma distribution,
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sinceΓ(p, x) + γ(p, x) = Γ(p). Easy computations show that[log f(x)]′′ = (1 −
p)/x2. First suppose thatp ≥ 1. Then the density functionf is log-concave and
consequently the functionq is log-concave too. Butq(0) = 1, thus from Lemma1.1
we conclude that (1.4) holds. Now assume thatp ∈ (0, 1]. Then the density function
f is log-convex and satisfiesf(b) = f(∞) = 0. Hence the reliability functionq is
log-convex too. Application of Lemma1.1yields the reverse of (1.4).

The above argument yields the following general result which we state without
proof, since the proof of the next theorem goes along the lines introduced above in
the proof of (1.4).

Theorem 1.2.Letf be a continuously differentiable density function which has sup-
port [0,∞). If f is log-concave, then for allx, y ≥ 0 we have

(1.5) F (x + y) ≤ F (x)F (y).

Moreover, iff is log-convex, then the above inequality is reversed.

We note that after we finished the first draft of this manuscript we discovered that
the inequalityF (x+y) ≤ F (x)F (y) is in fact not new. More precisely, the above in-
equality is known in economic theory as the new-is-better-than-used property, since
if X is the time of death of a physical object, then the probabilityP (X ≥ x) = F (x)
that a new unit will survive to agex, is greater than the probability

P (X ≥ x + y)

P (X ≥ y)
=

F (x + y)

F (y)

that a survived unit of agey will survive for an additional timex. For more details,
the interested reader is referred to An’s paper [2, Section 4.2], where among other
things a slightly different proof of (1.5) is given.
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2. Functional Inequalities Involving the Survival Functions of
Other Distributions

Let us consider the density functionf1 : [0,∞) → (0,∞), defined by

f1(x) =
e−xu(x)∫∞

0
e−tu(t) dt

,

whereu : [0,∞) → (0,∞) is a continuously differentiable function such thatt 7→
e−tu(t) is integrable. Clearly we have that[log f1(x)]′′ = [log u(x)]′′. Consider the
survival functionF 1 : [0,∞) → (0, 1], defined by

F 1(x) =

∫ ∞

x

f1(t) dt .

Then clearlyF 1(0) = 1 and

F 1(x) =

∫ ∞

x

e−tu(t) dt

/∫ ∞

0

e−tu(t) dt .

Thus, applying Theorem1.2we have the following generalization of (1.4). Note that
it can be easily seen the first part of the next corollary is in fact equivalent to the first
part of Theorem 1.3 due to Ismail and Laforgia in [4].

Corollary 2.1. If u is log-concave, then for allx, y ≥ 0 we haveF 1(x + y) ≤
F 1(x)F 1(y). Moreover, ifu is log-convex ande−xu(x) tends to zero asx tends to
infinity, then the above inequality is reversed.

Now consider the following distributions: Weibull distribution, chi-squared dis-
tribution and chi distribution. These distributions have support[0,∞) and density
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functions forp > 0 as follows

f2(x) = pxp−1e−xp

, f3(x) =
x(p−2)/2e−x/2

2p/2Γ(p/2)

and

f4(x) =
xp−1e−x2/2

2(p−2)/2Γ(p/2)
.

Recall that the Weibull distribution withp = 2 – as well as the chi distribution with
p = 2 – is sometimes known as the Rayleigh distribution and the chi distribution
with p = 3 is sometimes called the Maxwell distribution. With some computations
we get

[log f2(x)]′′ =
1− p

x2
(1 + pxp), [log f3(x)]′′ =

2− p

2x2

and

[log f4(x)]′′ =
1− p

x2
− 1.

Thus the density functionf2 of the Weibull distribution is log-concave ifp ≥ 1 and
is log-convex ifp ∈ (0, 1]. Moreover, it is easy to verify that ifp ∈ (0, 1], then
f2(∞) = 0. Analogously, the density functionf3 of the chi-squared distribution is
log-concave ifp ≥ 2, is log-convex ifp ∈ (0, 2] andf3(∞) = 0. Finally, note that
the density functionf4 of the chi distribution is log-concave too whenp ≥ 1. For
the log-concavity of the functionsf2, f3, f4 and other known density functions, the
interested reader is referred to Bagnoli’s and Bergstrom’s paper [3, Section 6]. Now,
let us define the survival functions of these distributionsF i : [0,∞) → (0, 1] by

F i(x) =

∫ ∞

x

fi(t) dt,
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wherei = 2, 3, 4. Clearly we haveF i(0) = 1 for eachi = 2, 3, 4. Thus, applying
Theorem1.2we have the following result.

Corollary 2.2. If p ≥ 1 then for allx, y ≥ 0 we have the inequalityF i(x + y) ≤
F i(x)F i(y), wherei = 2, 4. Whenp ∈ (0, 1] and i = 2 the above inequality is
reversed. Ifp ≥ 2, then for allx, y ≥ 0 the inequalityF 3(x + y) ≤ F 3(x)F 3(y)
holds. Moreover, whenp ∈ (0, 2] the above inequality is reversed.
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3. Concluding Remarks

In this section we list some remarks related to the results of the previous sections.

1. First note that the density functionx 7→ e−x2
/
√

2π of the normal distribution
is clearly log-concave onR. Thus we have that the tail functionΦ : R → (0, 1),
defined byΦ(x) = 1−Φ(x), is log-concave too onR. Since2Φ(x

√
2) = 1+erf(x)

anderf(x) + erfc(x) = 1, we have thaterfc(x) = 2Φ(x
√

2), which implies that the
complementary error function is log-concave as well onR. Sinceerfc(0) = 1, the
application of Lemma1.1yields a new proof of inequality (1.2).

2. Recall that due to Petrović [7], [6, p. 22], we know that ifφ is a convex function
on the domain which contains0, x1, x2, . . . , xn ≥ 0, then

φ(x1) + φ(x2) + · · ·+ φ(xn) ≤ φ(x1 + · · ·+ xn) + (n− 1)φ(0).

If n = 2 andφ(0) = 0, then the last inequality shows thatφ is a super-additive
function. Thus ifϕ is defined as in Lemma1.1, ϕ(0) = 1 andϕ is log-convex, then
from Petrovíc’s result easily follows thatx 7→ log ϕ(x) is super-additive.

3. A function f with domain(0,∞) is said to be completely monotonic if it pos-
sesses derivativesf (n) for all n = 1, 2, 3, . . . and if (−1)nf (n)(x) ≥ 0 for all x > 0.
Due to Kimberling [5] we know thatif the continuous functionh : [0,∞) → (0, 1]
is completely monotonic on(0,∞), then we get thatx 7→ log h(x) is super-additive,
i.e., for all x, y ≥ 0 we haveh(x)h(y) ≤ h(x + y).

We note that the reverse of (1.4) is actually an immediate consequence of Kimber-
ling’s result. To prove this, first let us considerp = 1. Thenq(x) = e−x and clearly
we have equality in (1.4). Now suppose thatp ∈ (0, 1). Then from the Leibniz rule
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for derivatives we have

(−1)nq(n)(x)Γ(p) = (−1)n ∂nΓ(p, x)

∂xn

= (−1)n ∂n−1[xp−1(−e−x)]

∂xn−1

= e−x

n−1∑
k=0

Ck
n−1

k∏
m=1

(m− p)xp−k−1 ≥ 0

for all x ≥ 0 andp ∈ (0, 1). Thus the functionq is completely monotonic. Now
sinceq maps[0,∞) into (0, 1], from Kimberling’s result the reverse of (1.4) holds.
Moreover, using the above argument related to Corollary2.1we have the following
result:

Corollary 3.1. If the functionu is completely monotonic, thenF 1 satisfies the in-
equality

F 1(x)F 1(y) ≤ F 1(x + y)

for all x, y ≥ 0.
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[6] D.S. MITRINOVIĆ, Analytic Inequalities,Springer-Verlag, Berlin, 1970.
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