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ABSTRACT. Suppose two bounded subsets ofRn are given. Parametrise the Minkowski combi-
nation of these sets byt. The Classical Brunn-Minkowski Theorem asserts that the1/n-th power
of the volume of the convex combination is a concave function oft. A Brunn-Minkowski-style
theorem is established for another geometric domain functional.
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1. I NTRODUCTION

Let Ω be a bounded domain inRn. Define

(1.1) I(k, ∂Ω) =

∫
Ω

dist(z, ∂Ω)kdµz for k > 0.

Heredist(z, Ω) denotes the distance of the pointz ∈ Ω to the boundary∂Ω of Ω. The integration
uses the ordinary measure inRn and is over allz ∈ Ω. Whenn = 2 andk = 1 this functional
was introduced, in [1], in bounds of the torsional rigidityP (Ω) of plane domainsΩ. See also
[10] where the inequalities

(1.2)
I(2, ∂Ω)

I(2, ∂B1)
≤ P (Ω)

P (B1)
≤ 128

3

I(2, ∂Ω)

I(2, ∂B1)

are presented. HereB1 is the unit disk and

I(2, ∂B1) =
π

6
=

|B1|2

6π
.

This inequality is one of many relating domain functionals such as these: see [9, 2, 7]. As an
example, proved in [9], we instance

(1.3) (ṙ(Ω))4 ≤ P (Ω)

P (B1)
≤

(
|Ω|
|B1|

)2

≤
(
|∂Ω|
|∂B1|

)4
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giving bounds for the torsional rigidity in terms of the inner-mapping radiusṙ, the area|Ω| and
the perimeter|∂Ω|.

We next define the Minkowski sum of domains by

Ω0 + Ω1 := {z0 + z1| z0 ∈ Ω0, z1 ∈ Ω1} ,

and
Ω(t) := {(1 − t)z0 + tz1| z0 ∈ Ω0, z1 ∈ Ω1}, 0 ≤ t ≤ 1.

The classical Brunn-Minkowski Theorem in the plane is that
√
|Ω(t)| is a concave function oft

for 0 ≤ t ≤ 1, and it also happens that|∂Ω(t)| is, for convexΩ, a linear, hence concave, function
of t. Given a nonnegative quasiconcave functionf(t) for which, withα > 0, f(t)α is concave,
we say thatf is α-concave. In [3] it was shown that, for convex domainsΩ, the torsional
rigidity satisfies a Brunn-Minkowski style theorem: specificallyP (Ω(t)) is 1/4-concave. Thus
inequalities (1.3) show that the 1/4-concave functionP (Ω(t)) is sandwiched between the 1/4-
concave functions|Ω(t)|2 and |∂Ω(t)|4. In [6] it is shown that the polar moment of inertia
Ic(Ω(t)) about the centroid ofΩ, for which

(1.4)

(
|Ω|
|B1|

)2

≤ Ic(Ω)

Ic(B1)
≤

(
|∂Ω|
|∂B1|

)4

,

holds, is also 1/4-concave. (The 1/4-concavity ofṙ(Ω(t))4 has also been established by Borell.)
In this paper we show that the same 1/4-concavity of the domain functions holds for the quan-
tities in inequalities (1.2). Our main result will be the following.

Theorem 1.1. LetK denote the set of convex domains inRn. For Ω0, Ω1 ∈ K, I(k, ∂Ω(t)) is
1/(n + k)-concave int.

Our proof is an application of the Prekopa-Leindler inequality, Theorem 2.2 below.

2. PROOFS

The proof will use two little lemmas, Theorems 2.1 and 2.3, and one major theorem, the
Prekopa-Leindler Theorem 2.2. None of these three results is new: the new item in this paper
is their use.

Theorem 2.1(Knothe). Let0 < t < 1 andΩ0, Ω1 ∈ K. With

zt = (1 − t)z0 + tz1,

we have

(2.1) dist(zt, ∂Ω(t)) ≥ (1 − t) dist(z0, ∂Ω0) + t dist(z1, ∂Ω1).

Proof. Let zt ∈ Ω(t) be as above. Denote the usual Euclidean norm with| · |. Let wt ∈ ∂Ω(t)
be a point such that

|zt − wt| = dist(zt, ∂Ω(t)).

Define the directionu by

u =
zt − wt

|zt − wt|
.

Define v0 ∈ Ω0, andv1 ∈ Ω1 as the points on these boundaries which are on the rays, in
directionu, from z0 andz1 respectively. Thus

v0 = z0 + |z0 − v0|u, v1 = z1 + |z1 − v1|u.

Now letp be any unit vector perpendicular tou. The preceding definitions give that

〈wt − ((1 − t)v0 + tv1), p〉 = 0,

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 33, 4 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


BRUNN-M INKOWSKI THEOREM 3

from which, on defining

vt = (1 − t)v0 + tv1 we havewt = vt + ηu.

for some numberη. Now, we do not know (or care) ifvt is on the boundary ofΩ(t), but we do
know thatvt is in the closed setΩ(t). Using the convexity ofD(t) we have thatvt is on the ray
joining zt with wt, and betweenzt andwt. From this,

dist(zt, ∂Ω(t)) = |zt − wt| ≥ |zt − vt|,
= (1 − t)|z0 − v0| + t|z1 − v1|,
≥ (1 − t) dist(z0, ∂Ω0) + t dist(z1, ∂Ω1),

as required. �

Theorem 2.2(Prekopa-Leindler). Let0 < t < 1 and letf0, f1, andh be nonnegative integrable
functions onRn satisfying

(2.2) h ((1 − t)x + ty) ≥ f0(x)1−tf1(y)t,

for all x, y ∈ Rn. Then

(2.3)
∫

Rn

h(x) dx ≥
(∫

Rn

f0(x) dx

)1−t (∫
Rn

f1(x) dx

)t

.

For references to proofs, see [5].

Theorem 2.3(Homogeneity Lemma). If F is positive and homogeneous of degree 1,

F (sΩ) = sF (Ω) ∀s > 0, Ω ,

and quasiconcave

(2.4) F (Ω(t)) ≥ min(F (Ω(0)), F (Ω(1))) ∀0 ≤ t ≤ 1, ∀Ω0, Ω1 ∈ K,

then it is concave:

F (Ω(t)) ≥ (1 − t)F (Ω(0)) + tF (Ω(1)) ∀0 ≤ t ≤ 1 .

Proof. See [5]. ReplaceΩ0 by Ω0/F (Ω0), Ω1 by Ω1/F (Ω1). Using the homogeneity of degree
1, and applying (2.4), we have

F

(
(1 − t)

Ω0

F (Ω0)
+ t

Ω1

F (Ω1)

)
≥ 1 .

With

t =
F (Ω1)

F (Ω0) + F (Ω1)
, so(1 − t) =

F (Ω0)

F (Ω0) + F (Ω1)
,

the last inequality onF becomes

F

(
Ω0 + Ω1

F (Ω0) + F (Ω1)

)
≥ 1 .

Finally, using the homogeneity we have

F (Ω0 + Ω1) ≥ F (Ω0) + F (Ω1) ,

and using homogeneity again,

F ((1 − t)Ω0 + tΩ1) ≥ (1 − t)F (Ω0) + tF (Ω1) ,

as required. �
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Proof of the Main Theorem 1.1.Knothe’s Lemma 2.1 and the AGM inequality give

(2.5) dist(zt, ∂Ω(t)) ≥ dist(z0, ∂Ω0)
(1−t) dist(z1, ∂Ω1)

t,

and similarly for any positivek-th power of the distance. Denote the characteristic function of
Ω by χΩ. A standard argument, as given in [5] for example, establishes that

χΩ(t)((1 − t)z0 + tz1) ≥ χΩ0(z0)
1−tχΩ1(z1)

t.

So, with

h(z) = dist(z, ∂Ω(t))χΩ(t)(z),

f0(z) = dist(z, ∂Ω0)χΩ0(z),

f1(z) = dist(z, ∂Ω1)χΩ1(z),

the conditions of the Prekopa-Leindler Theorem are satisfied. This gives thatI(k, ∂Ω(t)) is log-
concave int. Now defineF (Ω(t)) := I(k, ∂Ω(t))1/(n+k). The functionF is quasiconcave in
t (as it inherits the stronger property of logconcavity int from I(k, ∂Ω(t))). SinceI(k, ∂Ω(t))
is homogeneous of degreen + k, F is homogeneous of degree 1. The Homogeneity Lemma
applied toF yields thatI(k, ∂Ω(t)) is 1/(n + k)-concave. �
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