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1. Introduction

In the study of entire functions it is natural to ask whether simple conditions on the
Taylor coefficients of a function can be used to determine the location of its zeros.
For example, let(s) = > 2, n~* for Re(s) > 1 be the Riemann zeta function. The
meromorphic continuation af(s) to C has a simple pole at = 1 and has simple
zeros at the negative even integers. The Riengafumction is defined by

€(s) = gs(s — 1 T(/2)C(s).
Note thatl'(s/2) has simple poles at the non-positive even integers. It is relatively
straightforward to show that(s) is an entire function satisfying(s) = £(1 — s) for
all complexs and that the zeros df(s) satisfy0 < Re(s) < 1. The prime number
theorem is equivalent to the fact that the zerog @f satisfy the strict inequality
0 < Re(s) < 1, and the Riemann hypothesis is the conjecture that all of the zeros of
&(s) are on the linRRe(s) = 1/2. The&-function has a Taylor series representation

£(1/2 +i2) = Z(—l)kak(;—z)!,

wherea,;, > 0 for all k£, and it is possible to state inequality conditions on the coeffi-
cientsay, in this representation @f(s) that are equivalent to the Riemann hypothesis
(see for exampleq], [6], [7]). However, to date, the verification of such strong
conditions has been intractable. Instead, it is reasonable to consider weaker condi-
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tions on thez, that would be necessary should the Riemann hypothesis be true. Itis
known that a necessary condition for the zerog(ef to satisfyRe(s) = 1/2is

(1.1) Dy = (2k + 1)ai — (2k — Vag_1ax41 > 0, k>1.
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The set of inequalities inl(1) is an example of a class of inequalities called Turan-
type inequalities which we will explain in more detail is 8nd §!.

The Turan inequalities fof(s) have been studied by several authors. Matiya-
sevitch [LO] outlined a proof of the positivity oD,. In [3], Csordas, Norfolk, and
Varga gave a complete proof tha, > 0 for all £ > 1. Csordas and Varga improved
their earlier proof in4]. Conrey and Ghoshl] studied Turan inequalities for cer-
tain families of cusp forms. The argument of Csordas and Vargd] iis pased on
an integral representation &f, as

(1.2) D, = %/: /_Z W22 B (1) D () {(qﬂ . u2)/uv <_t¢q’)(<i)>>/dt} dudv,

where

(2.3) (I)(u) — Z (4n47r2€9U/2 _ 6n27re5“/2) 6—n27'r62u.

n=1

A long, detailed argument shows that the integrand of the innermost integfiabjn (
is positive, proving the Turan inequalities fgs). This important result relies heav-
ily on the representation ob(u) in (1.3), making the generalization to othér
functions from number theory difficult.

In this paper, we study the Turan inequalities from a different point of view. Our
main result is to represent the Turan inequalities in ternsbfraction-freeexpres-

sions. This allows us to derive, as corollaries, several previously known results. Our
method of proof is more combinatorial and algebraic in nature than the previously
used analytic method which relied on the Gauss-Lucas theorem about the location

of the zeros of the derivative of a polynomial.
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2. Statement of Main Results

Let G(z) be a real entire function of genadof the form

[e.9]

G(z) = Hl—i—pkz Z Z—
k

n=0

where the numberg;, are the negative reciprocal roots Gfz). It is notationally
simpler to work with the negative reciprocal roots rather than with the roots them-

selves. Denote the set of these negative reciprocal roots (with repetitions allowed)

asR. The setkR may be either infinite or finite, and we are interested in both cases.
SinceG(z) is a real entire function, ip € R, eitherp is real or the complex conju-
gatepis alsoinR. If 0 < |Im(px)| < Re(px) for all k, we will show in Theoren?.2

that the strict Turan inequalities hold fof(z), i.e

2
a, — Ap—10py1 >0

for1 <n <|R].
The Taylor coefficient,,, expressed in terms of the negative reciprocal roots, is

a, =nlsg(n)
wheresg(n) is thenth elementary symmetric function formed from the elements of

R. That s,
> b

11<<lpn
where the summation is over all possible strictly increasing lists of indices of length
The expression? — a,,_a, ., becomes

a2 — ap_1ap1 =nl(n —1)! [nsgp(n)® — (n+ 1)sp(n — 1)sp(n + 1)]
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which we wish to be positive. It will be convenient to define a symmetric function

sr(n, k) related to the elementary symmetric functiongn) that naturally arises
when forming products of elementary symmetric functions. Let

(21) 5R(”7 k) = Z Piy " Pi,

k repetitions
where the summation is taken over all lists of indices of the form
(2.2) 1 < <<y

such thatk of the values are repeated exactly twice. In other watad the relations
in (2.2) are equal signs, the remaining- 1 — & relations are strict inequalities, and
no two consecutive relations are equal signs. Note that

sr(n) = sg(n,0).

We follow the convention thatg(m, k) = 0 whenever its defining summatio#. ()
is empty.

Example2.1 If A = {p1, p2, p3}, then
sa(3,1) = pips + pips + p1p3 + paps + prps + papi
since the list of all possible ways to write ascending lists of the indite®, 3} with
exactly one repetition is
1=1<2, 1=1<3, 1<2=2 2=2<3, 1<3=3, 2<3=3.

The following theorem represents the Turan expressgfona,,_1a,.; as a linear
combination of the symmetric functions;(n, k) in which all the coefficients are
nonnegative. We refer to such a sum asibtraction-freeexpression.
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Theorem 2.1 (Subtraction-Free Expressions)The Turan expressioff —a,, 10,1
may be written in terms of the symmetric functiepém, k) as

= k 2n — 2k
(2.3) a2 — p_10p41 =n!(n —1)! Z ( ok )33(271, k).

—~n+ 1—k
As a consequence of Theoreiml, we are able to obtain a new proof of the

following previously known result without appealing to the Gauss-Lucas theorem

on the location of the roots of the derivative of a polynomial.

Theorem 2.2. Let G(z) be a real entire function with product and series represen-

tations
G(z) =[]+ p2) = Zan
k

and suppose thdt < |Im(px)| < Re(py) for all k. Then, the Turan inequalities
ai — Qp—10p+1 > 0

hold for alln > 1 if G(z) has infinitely many roots and fdr< n < d if G(z) is a
polynomial of degred.

Notice that the hypothesis of Theoren? requiresG to have a genug8 Weier-
strass product which is equivalent to saying that | p| converges. Since the coef-
ficientsa, are real, the non-real zeros Gfoccur in complex conjugate pairs. The
condition0 < |Im(px)| < Re(px) on the negative reciprocal roots 6f(z) is the
same as saying that all of the zerog’bbelong to the wedge shaped region

{z € C|z#0and3r/4 < arg(z) < br/4}.

Our main interest is to apply Theoreir’ to the entire functiogx (s) associated
with the Dedekind zeta functiogx (s), where K is a number field. It is known
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that the functior¢x (s) is entire, has all zeros in the critical stiip< Re(s) < 1,
and satisfies the functional equatiop(s) = k(1 — s). For the general theory
of the Dedekind/-functions ands-functions, see§, Ch.13] or L1, Ch.7]. As a
consequence of Theorei? we are able to deduce the following result ab§uts):

Corollary 2.3. Lets = 1/2 + iz and write

ZQk

Ek(s) =Er(1/2+i2) = ;H)kakm.

If £k (s) has no zeros in the closed triangular region determined by the three points

12, 1, 1—|—(1+2‘/§)i,

then the(strict) Turan inequalities
(2k + 1)a; — (2k — 1)ap_1ap41 >0
hold fork > 1.

The organization of the remainder of this paper is as follows: 3rwg recall
several relevant facts about the Turan inequalities. 4mv€ discuss how these in-
equalities are applicable to even real entire functions and to the study of Dedekind
zeta functions. Proofs of Theorerfisl and2.2 and Corollary2.3 are given in §.

For the interested reader, ih,8ve outline the original proof of Theoreth2 based
on the Gauss-Lucas theorem. Finally, in\8e state several questions for further
study.
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3. The Laguerre-Pdlya class and Turan inequalities

In this section we will review a few facts about the Laguerre-Polya class and the
Turan inequalities.

In the study of real entire functions having only real zeros, it is natural to begin
with the simplest case: real polynomials with only real zeros. The set of func-
tions obtained as uniform limits on compact sets of such polynomials is called the
Laguerre-Pdlya class, denoté®. It is known (see9, Ch.8,Thm.3]) that a real en-
tire function f(z) = > "7, ¢, 27 is in LP if and only if it has a Weierstrass product
representation of the form

f(z) = 20 H <1 - a%) e/
k

wherec, o, 3, € R,n € Z,n > 0, 3 > 0, anday, # 0. Note that, if3 = 0, the
genus off(z) is0 or 1. The subset of P such that all the Taylor coefficients satisfy
c, > 0is denoted byCP*. The derivative of the logarithmic derivative ¢fz) is

FEOY PO 1
(f<z>)‘ (G Dt ey

Consequently, for real,

f2=f2)f"(z) = 0.

Since the derivative of a function I8P is also inLP,
(3.1) FB (=) = fE D) fE(2) > 0

for all realz and allk = 1,2,3,.... The inequalities in{.1) are sometimes called
the Laguerre inequalities.
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As a consequence ob (1), if f(z) = >/, ak%k! Is a real entire function of genus
0 or 1, anecessaryondition for f(z) to belong toLP is that

(3.2) a; — ag_1aps1 >0 (k>1).

Definition 3.1. The inequalities in(3.2) are called the Turéan inequalities. We say
that f(z) satisfies the strict Turan inequalities if

2
ap — Qg—1Qky1 > 0

forall £ > 1 whenf(z) is a transcendental function or far< k < nif f(z)isa
polynomial of degree.
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4. Turan Inequalities for Even Real Entire Functions

Consider a real entire function of genusr 1 of the form

F(2) = D (-D'as s
k=0 ’

wherea;, > 0 for k£ > 0. The Turan inequalities3(2) are trivially true forF'(z). We
wish to find a nontrivial application of the Turan inequalities to the funcfign).
We define a companion functidi(w) by making the substitutionz? — w.

o0

Ela, wk
Glw) =2 2K)! k!
——

e (_Z2)k
(4.1) F(z) = kz:%ak oh)]

b,

The seriesF'(z) in powers ofz? has alternating coefficients while the associated
seriesG(w) in powers ofw has positive coefficients. Observe théatz) has only
real zeros if and only if7(w) has only negative real zeros. Thus we consider the
Turan inequalities for the companion functi6ffw):

by — by 1bpy1 >0 (B>1)
which hold if and only if
(4.2) (2k + Daj — (2k = Vag_1a541 >0 (k> 1).

This explains condition1(1) as a necessary condition for the Riemann hypothesis
since{(1/2 + iz) is an even entire function of genus 1 with alternating coefficients.

Definition 4.1. For an even entire functiod’(z) with alternating coefficients, as
in (4.1), we will refer to the inequalitie§?.?) as the Turan inequalities faf'(z).
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The following fundamental example helped us to discover our proof of Theo-

rem?2.2.

Exampled.1 Let F'(z) be the monic polynomial with rootsa 4 3: wherea, 5 > 0.

Then
4

F(z) = (o +52) 4o’ —52)

The coefficients alternate signs provided that- 3, which we assume to be the
case. What additional hypothesis ensures ﬂ’(at) satisfies the Turan inequalities?
The only interesting inequality would kek + 1)ai — (2k — 1)ax_1ax+1 > 0 with

k =1 (if this is possible). A short computation gives

302 — agas = 24 [<\/§+1) a? — <\/§—1)ﬁ2} [(ﬂ—l) a? — <\/§+1> 52] .
Sincea > 3, the quantity(v2 + 1) o —

<\/§—1)a2—<\/§+1>62>0 &

24
T

a2

(V2 — 1) 82 is strictly positive. Then
> <1 + \/5) B

Thus, the strict Turan inequalities hold i z) if and only if a« > (1 + v/2)2.
Sincetan(r/8) = —1 4 v/2 = (1 + v/2)~!, the strict Turan inequalities hold for
F(z) if and only if the four roots of'(z) lie in the region

{zeC|z#0and—7/8 < arg(z) < w/8or 7m/8 < arg(z) < 97 /8}

if and only if the two roots of the companion polynom@(w), defined in ¢.1), lie
in the region
{w e C|lw # 0and3r/4 < arg(w) < br/4}.
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5. Proofs of Theorems2.1and 2.2and Corollary 2.3

In this section we will prove Theorenis1and?.2and Corollary?.3. LetG(z) be a
real entire function of genusof the form

G(z):H + prz) = Zan ok

where the numberg, are the negative reciprocal roots Gfz). The set of these
negative reciprocal roots (with repetitions allowed) is denotedzasThe Taylor
coefficienta,,, expressed in terms of the negative reciprocal roots, is

a, = nlsg(n)

wheresg(n) is thenth elementary symmetric function formed from the elements of
R. Recall from equationZ 1) that we define the symmetric functien(n, k) as

115 <in
k repetitions

where the summation is taken over all lists of indices of the form
(5.1) 1 < <<y

such thatk of the values are repeated exactly twice. inl), k£ of the relations
are equal signs, the remainimg— 1 — k relations are strict inequalities, and no
two consecutive relations are equal signs. We consigém, k) = 0 whenever

its defining summationZ(1) is empty. Several of these trivial cases are listed in
Lemma5. 1.

Lemma 5.1. sg(m, k) = 0 in all of the following cases:
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(i) ifm<lork<0,

(i) if &£ > m/2 since there can be at most/2 repeated values in an ascending list
of lengthm,

(iii) if m — k > |R| since the length of an ascending list can be at mBst
Thus, necessary conditions feg(m, k) to be nonzero are
m>1 and 0<2k<m<|R|+k.

The next lemma shows how to express the product of two elementary symmetric
functions in terms of the functions; (m, k).

Lemma5.2.Let0 < m < n. Then

sr(m)sg(n) = i (m ;”_‘,f"") sr(m +n, k).

Proof. Each term in the product of the sumg(m) andsg(n) is a term in the sum
sr(m+n, k) for somek with 0 < & < m. Conversely, each term in the sum(m +
n, k) with 0 < k < m is obtainable as a product of terms from the sungn)
andsg(n). We need to count how often this happens. A given teym--py, . .,
containing exactlyt repeated indices can be obtained as the produgt, of - p; .
andpj, - - - p;, each of which sharek indices. The terms in the produgf, - - - p;,,
contain thek repeated terms as well as— £ terms chosen from among thet+n—2k
non-repeated terms @f, - - - p,,.. .. The choice op;, - - - p;,, determines the choice

of pj, -+ p;,. S0, there ar¢™ " **) ways to obtain the produgt, - - p,,,,. O

We will now prove Theoren?.1 by representing the Turan expressiah —
a,_1a,+1 @S a linear combination of the symmetric functieiagm, k) having non-
negative coefficients. In other wordsg, — a,,_;a,,+1 can be written as a subtraction-
free expression.
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Proof of Theoren2.1. Sincea,, = m!sg(m),

a2 — ap_1an41 = nl(n — 1) [nsg(n)® — (n+ 1)sg(n — 1)sg(n+1)] .

Applying Lemmab5.2 to the expression on the right gives

3 (n—l—l— ) sr(2n. )

+1) (nzii’“k)l sn(2n, k)

nsp(n)®> — (n+ 1)sg(n — 1)sp(n + 1)

2n — 2k
=n (Z—k) r(2n, k) — (n+1
k=0
n—1

= nsp(2n,n +Z{ (QH_%) —(n
:;m( Z:ik)sR(Qn,k‘).

OM

]

Lemmab.3, below, will provide conditions under whichi(n, k) is positive when

its defining sum is not empty as in Lemrad. Then the subtraction-free expression
in Theorem2.1is also positive.

Lemma 5.3. Let A be a nonempty set (finite or countable) of nonzero complex num-
bers (with repetitions allowed) such that

1. if p € A, thenp € A with the same multiplicity,
2.if p € A, then0 < |Im(p)| < Re(p), and

3. Yyealol < o0
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Then,sa(m, k) > 0 whenevern > 0 and0 < 2k <m < |A| + k.

Note that the condition on the negative reciprocal roots in Lerarfi@oincides
with the condition in the statement of Theoréri. The third conditiony _  , |p| <
oo, guarantees convergence of the prodict ,(1 + pz) and convergence of the
sumsS,(m, k) whenA is an infinite set.

Proof. If A is a finite set, we will prove the lemma by induction on the cardinality
of A. The case in whichl is an infinite set will follow immediately from the finite
case.
First, supposel = {p} consists of a single positive number. Singg = 1, the

set of possible choices fém, k) is {(1,0),(2,1)}. Then

8A<1,0> =p>0,

s4(2,1) = p® > 0.
The lemma holds in this case. Next, suppdse {p, p} and0 < |Im(p)| < Re(p).
Since|A| = 2, the set of all possible choices fon, k) is

{(1,0),(2,0),(2,1),(3,1), (4,2)}-
Then
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The lemma also holds in this case.

Let A be a finite set (with repetitions allowed) as in the statement of the lemma.

Assume, by way of induction, that the lemma holds for the4seEhus,s 4(n, ¢) > 0
whenevem > 1 and0 < 2¢ < n < |A| + {. Letp be a positive number and let
B = AU {p}. From the definition ofz(m, k), it follows that

(5.2) sp(m, k) = sa(m, k) + psa(m — 1,k) + p*sa(m — 2,k — 1).

Choose the paifm, k) so thatm > 1 and0 < 2k < m < |B| + k. By the induction
hypothesis, each term on the right hand side of equatidi) (s either positive or
zero. Potentially, some of the terms on the right hand sidé .@J €could be zero by
Lemmab. 1 It will suffice to show that at least one term is positive. Let

Li={(mk)|0<m and 0<2k<m <|A|+k},

and letL g be similarly defined. Sinced| < |B| = |A| + 1, Ly C Lg. If (m,k) €
L, thens(m, k) > 0 which implies thatsz(m, k) > 0. Now, assumém, k) € Lp
but (m,k) ¢ La. In this casen = |A| + 1+ k where0 < k& < |A] + 1. If
m = |A|+1+kand0 < k < |A|, the pair(im — 1, k) = (|A| +k,k) isin L4. Then
sa(m — 1,k) > 0 which implies, by §.2), thatsg(m,k) > 0. If m = |[A| + 1+ k
andk = |A| + 1, the pair(m — 2,k — 1) isin L4. Thenss(m — 2,k —1) > 0 so
thatsg(m, k) > 0. This proves that the lemma holds when the 4é$ enlarged by
adjoining a positive real number.

Next we will enlargeA by adjoining a paifp, p}. LetC = AU {p, p} where
0 < |Im(p)| < Re(p). From the definition ok (m, k) it follows that

(53) SC(m7 k) = SA(mu k) + (p + p) SA(m -1, k)
+ pﬁsA(m -2, k) + (,02 + :52) SA(m -2, k — 1)
+pplp+p)salm =3,k = 1)+ p°p” sa(m — 4,k — 2).
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Choose the paifm, k) so thatm > 1 and0 < 2k < m < |C| + k. By the induction
hypothesis, each term on the right hand side of equafici) i nonnegative. It will
suffice to show that at least one term is positivenif k) € Ly, thens,(m, k) > 0
so thatsq(m, k) > 0. If (m, k) € L¢, but(m, k) & L4, thenm = |A|+ 1+ k where
0<k<|Al+1orm = |A|+2+kwhered < k < |A|+2. Thecasen = |A|+1+k
is exactly the same as in the previous paragraph. # |A|+2+k and0 < k < |A],
then(m—2,k)isin L sothats4(m—2,k) > 0andsg(m, k) > 0. If m = |A|+2+k
andk = |A| + 1, then(m — 2,k — 1) isin L, so thats,(m — 2,k — 1) > 0 and
sc(m,k) > 0. If m = |A| + 2+ kandk = |A| + 2, then(m — 4,k —2)isin L,
so thats4(m — 4,k — 2) > 0 andsc(m, k) > 0. This proves that the lemma holds
when the setd is enlarged by adjoining a pafp, p}. Thus, the lemma holds # is
a finite set.

Suppose now that is an infinite set (with repetitions allowed) as in the statement
of the lemma and suppose< 2k < m. Let

31CB2CBSC"'

be a sequence of finite subsetsd$atisfying the hypotheses in the lemma such that
A=U2,B,. Then
lim sg, (m, k) = sa(m, k).

n—o0

The nonnegativity of each term on the right hand sides of equatiofsand 6.9
implies that

SB1(mv k) < SBQ(m7 k) < 833(7’)7,, k) <--- < SA(m> k)

Sincesg, (m, k) > 0 as soon a§B,| is sufficiently large, it follows that 4 (m, k) >
0. Therefore, the lemma also holds whéns an infinite set. O

Combining Theorenz.1and Lemmas.3immediately gives Theorem 2.
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For Corollary2.3, we recall from analytic number theory that the Dedekind
function for a finite extensio” of Q has a Taylor series representation of the form

N 2k

xk(1/241iz) = Z YRR

=0

wherea,, > 0 for all k. Thenéx(1/2 + iz) is a real entire function with alternating
coefficients to which Theorem.2 applies. By standard facts from analytic and al-
gebraic number theorg, (s) has no zeros outside the closed strigl Re(s) < 1,

and the prime number theorem, generalized to number fields, is equivalent to the
fact there are no zeros outside the open girip Re(s) < 1. Combining this with
Theorem?.2 shows that the strict Turan inequalities hold §ar(1/2 + iz) if there

are no roots of () in the closed triangular region determined by the three points

1/2,1, andl + (%) i, which completes the proof.
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6. Proof of Theorem 2.2 using the Gauss-Lucas Theorem

We will now briefly recall the proof of Theorem.2 that relies on the Gauss-Lucas

theorem. This argument would have been known to researchers such as Jensen,

Laguerre, Pdlya, and Turan. (See, for example, Theorem 2.4.2 and Lemma 5.4.4

in [12]).

Let f(z) be a real monic polynomial whose negative reciprocal roots lie in the

sector) < |Im(z)| < Re(z) as in Theoren2.2. If the real roots are, ..., r, and
the complex roots are; + i3, ..., o, £ i53,, then
m+2n

Zak—:Hz—r] H z— o)+ B7).
' Jj=1 k=1

Taking the derivative of the logarithmic derivative ffz) results in

1% = f(z )]f" & ~ (z—m)’ =05
6. .
©1) f(2)? Z (z —1rj)? (2 — ay)? + B

The hypothesis causes the right hand side5of) (to be positive for: = 0 giving

J=1

a% — apay > 0.

The Gauss-Lucas theorem (see Theorem 2.1.12}) pays that every convex set
containing the zeros of (z) also contains the zeros ¢gf(z). Since the negative
reciprocal roots off(z) belong to the sectod < |Im(z)| < Re(z), which is a
convex region, the negative reciprocal rootsftf:) also belong to that sector. By
the previous argument applied f{ =),

a5 — ayaz > 0.

II\',
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Proceeding in this manner for the remaining derivativeg(ef proves the theorem.

Note that the original proof of Theorefn?2 is not really shorter than our proof.
Including the details of the proof of the Gauss-Lucas theorem and its extension to
transcendental entire functions would make the argument as long and complicated
as our new proof.
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7. Questions for Further Study

We conclude the paper by stating several problems suggested by our studies.
In proving Theoren?.1, we actually proved thstrongerresult (Lemméb.3) that
if the negative reciprocal roojs, of the real entire function

G(z) = H 1+ prz) = Zanz—'
: !

satisfy0 < |Im(pr)| < Re(px), thensg(m,k) > 0 wheneverm > 0 and0 <

2k < m < |R| + k whereR is the set of negative reciprocal roots (with repetitions
allowed). In other words, we produced a stronger set of inequalities than the set
of Turan inequalities since the Turan expressions were formed as subtraction-free
expressions involving the symmetric functiongm, k).

Problem 1. Determine other interesting sets of inequalities related to the location of
the zeros of+(z) that naturally result from considering subtraction-free expressions.

To be more concrete, if(z) is a real entire function, set
T (0(2)) = (6 ()" = 9" D (2)s* 0 (z) k=1,
and forn > 2, set
T (0(2) = (" (6(2))" = TV (0) TV (0(2) k2 n>2
For¢(z) € LP* (defined in &) Craven and Csordas asked # ff it is true that
(7.1) 7" (6(2) > 0

forall z > 0 andk > n. They refer to the inequalities irY (1) asiterated Laguerre

inequalities Our own studies have suggested tﬁéT) (qS(z)) \220 can be expressed
in terms of subtraction-free expressions. Hence we have the problem:
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Problem 2. Represenﬂ' (¢( ) \Z in terms of subtraction-free expressions and
determine sectors i such that if the negative reciprocal roots belong to the sectors,

thenZ,™ (4(2)) |._, = 0 for certain values of. and  which depend on the sector.
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