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ABSTRACT. We consider a plane wave diffraction problem by a union of several infinite strips.
The problem is formulated as a boundary-transmission one for the Helmholtz equation in a
Bessel potential space setting and where Neumann conditions are assumed on the strips. Us-
ing arguments of strong ellipticity and different kinds of operator relations between convolution
type operators, it is shown the well-posedness of the problem in a smoothness neighborhood of
the Bessel potential space with finite energy norm.
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1. FORMULATION OF THE PROBLEM

This paper deals with the problem of diffraction of an electromagnetic wave by a union of
infinite magnetic strips from an operator point of view.

We will present a formulation that results from the investigation of plane waves which prop-
agate in a direction orthogonal to the edge= y = 0, z € R. Thus, the problem will be
posed as a boundary-transmission one for the two-dimensional Helmholtz equation where the
dependence on one dimension is dropped already. Moreover, also due to perpendicular wave
incidence, the union af infinite strips will be represented by

Q :]717 VQ[U T U]ﬁy2n717 72n[7

with0 =~ < --- < v, andn € N.
We will use the Bessel potential spadé$(RR), with o € R, formed by the tempered distribu-
tions such that| || ;o) = [[F (1 + €2)7/%. Fll 12wy is finite (hereF denotes the Fourier

transformation). In addition, we denote B (£2) [17, §2.10.3] the closed subspaceff(R)
ISSN (electronic): 1443-5756

(© 2002 Victoria University. All rights reserved.
002-01


http://jipam.vu.edu.au/
mailto:lcastro@mat.ua.pt
http://www.ams.org/msc/

2 L.P. CASTRO

defined by the distributions with support containedirand H(2) will denote the space of
generalized functions oft which have extensions int& that belong toH?(R). The space

ﬁ"(Q) is endoxved with the subspace topology, and#t{(2) we put the norm of the quotient
spaceH’(R)/H° (R\Q). In particular, we shall denote bg*(R,) and L2 (R), the spaces

H°(R,) and H°(R, ), respectively. All those definitions can be extended to the multi-index
caser = (0y,09,...,0,) € R™ by taking the product topology.
The problem is inspired by the classical Sommerfeld type problems considered, for instance
in [7,19,[10,/12[ 18, 15, 16], for the half-line case instead of the pre3ein fact, we present
here a generalization of the problem treated in [4] where a corresponding problem was taken
into consideration for only one strip. Several changes take place here, in particular, we notice the
necessity of different constructions of operator relations that can be found in the next sections.
More concretely, we are interested in studying well-posedness of the problem to #nd
L*(R?), with upe € H(RY), e €]1/2,3/2], so that

(1.1) (A+k)u = 0 in R,
(1.2) uf = h on

+ —
(1.3) { wf—ur = 0 on R\Q,

whereR? represents the upper/lower half-plade= 9*/9z* + 9*/9y? stands for the Laplace
operator,k € C is the wave number, which, due to the assumption of a lossy medium, is
assumed to fulfill

Smk > 0,

Uy = U0, Ui = (Qu/dy),_., and the elemertt € H*~*?(Q) is arbitrarily given.

2. THE PROBLEM FROM AN OPERATOR POINT OF VIEW

In order to study the existence and uniqueness of the solution of the problem, as well as
continuous dependence on the data, we will construct several operators that are shown to be, in
a sense, connected with the problem.

In the first stage, the problem can be described by the use of a linear operator

P : D(P)— H %),

if we defineD(P) as the subspace &f“(R? ) x H*(R? ) whose functions fulfill the Helmholtz
equation [(1..l) and all the remaining homogeneous transmission conditions that appear from
(1.2) — [1.3) whereas the acti@ = & results from the non-homogeneous conditigns| (1.2).

In this sense, we will say that the operafiis associatedo the problem and our aim is to
prove thatP is bounded and invertible for suitable orders of smoothredhis goal will be
achieved by the construction of several operator relations that will allow us to understand better
the structure ofP.

To this end, we begin by introducing some notation. ket : H°(R) — H?(2) be the
restriction operator and let

He) = (=12 ¢eR,

denote the branch of the square root that tendsdo as¢ — +oo with branch cuts along
+k £+, n > 0.

Theorem 2.1. The operatorP is equivalent to the convolution type operator
(2.1) Wiq =rpoF 4 -F : HY2(Q) — H32(Q),
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I.e. there are bounded invertible linear operatdfsand F' so thatP = EW, o F'.

Proof. Analogously to what happens in the half-line cgse [10], a function L?(R?), with
ury € H(R}), satisfies the Helmholtz equati@l.l) if and onIy if it is representable by

for (z,y) € ]R2 Where}"%gu r,y) = Jpulz,ye Zfzalac andy., x_ denote the characteristic
functions of the positive and negative half- Ilne respectively.
Let

={ww) e [HTPR)] : p—p e HVAQ), Flt- Fo+9) =0}
Taking into account the representation formfilaj(2.2), we have that the trace operator,

T, : D(P) — Z

ug
u = U = - |

Ug

is continuously invertible by the Poisson operator u, — u defined by|[(2.2).
On the other hand, a direct computation leads us to

1
(2.3) P = 5 Wia Ry CTy,

whereR); is the restriction operator to the first component &nslthe convolution operator (on
the full line)

1 -1
-t —t
Thus, [2.8) exhibits an operator equivalence betwamd the convolution type operatidr, o,

defined m') becaud® CTj is continuously invertible by C—[1 0] (please note that, for
u € D(P), we haveu| = u; due to (1.2) and (1]3)). O

C:]-“‘l[ }-]—" . Z — HY2(Q) x {0}.

3. THE EXTENSION TO A HALF-LINE SETTING

In this section we will perform some operator extension methads [2) 3| 5, 6, 8], translated by
several operator matrix identities.

As a consequence, we will obtain certain operator relations that will help us to arrive at the
desired invertibility conditions.

Theorem 3.1. Let us consider the Wiener-Hopf operator

(3.1) Waor, =re—r, F W F : H(Ry)— H(Ry),
_ _ _
T—(ya=3)
- T—(v2n—72n-1) 7
T—(v3—72)
T—(Yan—1—Y2n—2)
L 2 tT’YS e tTvzn—1 Tya U Tyon—2 Tvon

where the empty entries (i.e., outside of the main diagonal and the last row) arerzgno—
e ¢ eRando = (e—1/2,...,e—1/2,e—3/2,...,6 —3/2).
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There are Banach spacé§,, Y; and linear homeomorphisnis, and F; so that

Wia 0 | Wer, 0
o W 0 ) [ 0 T,

1

l.e., W, o andWy r, are operators which are equivalent after extension.

Proof. An algebraic equivalence after extension betwdém, and Wy z, is known from [2].
This means that we already have an identity Ijke](3.2) but without the guarantee that the invert-
ible linear operatorg/; and F; are bounded.

Now, taking into account that bounded linear operators with closed ranges and acting between
Hilbert spaces are generalized invertible, the result is derived from [1, Theorem 2] that claims
that generalized invertible operators in Banach spaces are equivalent after extension if and only
if their defect spaces are homeomorphic. O

We shall use the functions
MNL(§) = diag [(E£ k)™, ..., (E£k)™], C€R,

aswellagl” = A\ A",
Theorem 3.2. The Wiener-Hopf operatdil/y . is equivalent to

(3.3) Waom, = ez, F 'y F = [L2(R)]" — LR,
where
o i}
CST—(%—%)
\IJO — Ca CST_(’YQR_’Yanl) ,

C_ST—(%—W)

—
—(12n—1—72n—2)
—s —s —s
L 1 Tys Tyon—1 C Tya C Tyan—2 C Tvon |

witha = (e —1,...,e—1)ands = 1/2.

Proof. Let us consider the operators
By =rpp, F A Fly : [L*R)]" — H(R,)
Fy = ZOTR—>R+:F_1)‘1 - F o ﬁJ(RJr) - [Li(R)]an
wherel, : [L2(R4)]*" — [L% (R)]*" is the zero extension operator.

These operators are bounded invertible (see [17, §2.10.3]). Moreover, attending to the struc-
ture of £, and F;, [17], we have

Wy r, = Ex Wy, r, F,
which demonstrates operator equivalence betw&er, andWy, . . O

Corollary 3.3. The convolution type operatdi,, and any of the Wiener-Hopf operators
Wy k., Wy, r, belong to the same regularity clafis]. More precisely, any of these three op-
erators is invertible, one-sided invertible, Fredholm, semi-Fredholm, one-sided regularizable,
generalized invertible or normally solvable, if and only if one of the others enjoys that property.
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Proof. From the above relations we derive that W, o, ker Wy g, andker Wy, r, are isomor-
phic and that the ranges of these operators are closed only at the same time. In addition, the
presented relations allow us to conclude that

H Q) imWyo, HO(Ry)/im Wy, | [LZ(RJr)]Qn/im W r,

are also isomorphic. Thus, the statement follows. O

4, STRONG ELLIPTICITY AND CORRESPONDING WELL -POSEDNESS OF THE
PROBLEM

Let us consider then x 2n matrix function
¢ = diag[¢ VAL A

(where the first: elements in the main diagonal are equal and therladements are also all
equal). We introduce the auxiliary operator

(4.1) Weswor, = TRHMJTAC[B‘I’O - F o [Li(R)]Qn - [Lz(R+)]Qn~

This new operator will help us to arrive at the desired invertibility conditions. For this purpose,

first, let us present some symmetries in the structuf&ofy ., -

Theorem 4.1. The Wiener-Hopf operatdiV,sy, , is equivalent to
Wa gy lo Wap, loWare, LR — [LA(Ry)]”
where, forj = 1, 2,

Wy, g, =rp_r, F '0; - F : [Li(R)]Qn — [LQ(RJr)]Qn

J

and
_ e -
T7'72n72
T_’Y2
\Ijl = T_'Y2n71 )
T_’YQn—ZS
T—’Ya
| n| 1 1 1 |
[ 1 C1/2/n 41/2/7{
1

Uy = i

. 1 -
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Proof. From the identity

_ ) -
1 —
CﬁlIIO = 1 U, Uy Uy X
1
- 1 -
[ 1/n|-1/n - —1/n |
1
1
1/n
1
- 1 -

it follows thatWsy, r, and
Wawatiz, = re-z.F 00U F o [LLR)] - LR

are equivalent operators.
Therefore, in order to obtain the present result, we only have to observe that the “minus” and
“plus” semi-almost periodic entries @f; andWV, respectively, lead us to
Wowwie, = (P W1 F) o (reon F 0o F) b (rem, F 01 - F)
= Wy g, lo We,r, lo Wik, -

O

We recall that an essentially boundedx m matrix-valued function) (&) = [;;(£)] is said
to bestrongly ellipticif there exist constants € C andC > 0 so that

Re Y i ©uimi > CY |wil*, Y= (ur,-.., pim) € C™
=1

ij=1
Theorem 4.2. The Wiener-Hopf operator introduced |n (4.1),
2n 2n
Weswor, & [LER)]T — [LX(R4)],
is an invertible operator.

Proof. The nonnegative mean motions [14] of the semi-almost periodic entri&s efisure us
(seel[14, Theorem 1]) the left invertibility 6t . .
Moreover, we observe that, is strongly elliptic. In fact, from

(1/2

_ 1 2 2 :
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it follows that, for W, (&) = [0,;()],

2n

Re Z@U(f)ujm > Z‘/’Lj’ 5 Z ‘:uJ’ +‘:u1 )

i,j:l ] =n+1

= —\u1| +Z|ug| +(1—i> Z l?

j=n+1
1 2
5 Z |ILL]‘ 5
j=1

v

forall (py, ..., po,) € C*".
Consequently, for € [L2(R.)]*", we have

Re((Wy, g, lo) Wa,r lo) W g, l0)¥, 1)

= Re(Wo,r, lo) Warr, lo)y, War g, lo)¥)
= Re((rp_p, F "Wy Fly) W g, )Y, Wagr g, lo)Y)
= Re(Vs - Flo(Wg; . o)), Flo(War r, lo)¥)

1

3 IIJTZO(W@RJOWH
1

= 3 Wz lov|”

1
> oyl

v

whereC; > 0 is provided by the left invertibility ofiV; .. This inequality allows us to

conclude thaty, g, oW, k. loWg R, [L2 (R)]*" — [L2(R,)]*" is a left invertible operator.
Applying the same reasoning to the conjugate operator

<ZOW\I/1,R+ ZOVV\I,Q’]RJr lOW\IT,R.,.) ’ = <ZOW\II71,R+> * (ZOW\IJ27R+ ) ’ (l()W\th+ ) ’
= oWy, r, lo W\ITQ,]IM lo W‘ITLRJr

we obtain that this is also a left invertible operator.
ThusWy, . oWy, r, loWy g, is an invertible operator and from Theorém|4.1 our goal is
achieved. O

Corollary 4.3. The Wiener-Hopf operatoWy, r, , defined in[(313), is a Fredholm operator
with zero Fredholm index.

Proof. From Theorem 4]2 we know th&.sy, r, is an invertible operator. Thus (see elg./[11,
Chapter 1, Theorem 3.11]), the result is a consequentBf, andW sy, r, being homo-

topic operators in the class of Fredholm operators acting fighiR)]*" to [L?(R., )]*". O

Theorem 4.4. The operatorP (associated to the problem) is bounded invertible and, therefore,
our problem is well-posed for all orders of smoothnesg1/2,3/2].

Proof. Due to the fact that, for negative parametergsand anys € R,

rpop, F - F : HY(R,) — H*(R,)
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are nothing more than left shift operators composed with the restriction opegater, we
have that these operators are surjective. Therefore, taking into account the strudtuiseef
(3-1)), we obtain thakl’y &, is a surjective operator whenever

Wt,R+ = TRHR+'¢712€ - F o ?[671/2(R+) - H673/2<R+>

IS a surjective operator, which is true for allAs a consequence, the codimension of the image
of Wy k. is zero.

Thus, from Corollar@B and Corolla.3, we have that, is invertible. Therefore, the
result is obtained if we take into consideration Theorem 2.1. O
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