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ABSTRACT. We consider a plane wave diffraction problem by a union of several infinite strips.
The problem is formulated as a boundary-transmission one for the Helmholtz equation in a
Bessel potential space setting and where Neumann conditions are assumed on the strips. Us-
ing arguments of strong ellipticity and different kinds of operator relations between convolution
type operators, it is shown the well-posedness of the problem in a smoothness neighborhood of
the Bessel potential space with finite energy norm.

Key words and phrases:Diffraction problem, Strong ellipticity, Convolution type operator, Wiener-Hopf operator, Equiva-
lence after extension.
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1. FORMULATION OF THE PROBLEM

This paper deals with the problem of diffraction of an electromagnetic wave by a union ofn
infinite magnetic strips from an operator point of view.

We will present a formulation that results from the investigation of plane waves which prop-
agate in a direction orthogonal to the edgex = y = 0, z ∈ R. Thus, the problem will be
posed as a boundary-transmission one for the two-dimensional Helmholtz equation where the
dependence on one dimension is dropped already. Moreover, also due to perpendicular wave
incidence, the union ofn infinite strips will be represented by

Ω =]γ1, γ2[∪ · · · ∪]γ2n−1, γ2n[,

with 0 = γ1 < · · · < γ2n andn ∈ N.
We will use the Bessel potential spacesHσ(R), with σ ∈ R, formed by the tempered distribu-

tionsϕ such that‖ϕ‖Hσ(R) = ‖F−1(1 + ξ2)
σ/2 · Fϕ‖L2(R) is finite (hereF denotes the Fourier

transformation). In addition, we denote bỹHσ(Ω) [17, §2.10.3] the closed subspace ofHσ(R)
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2 L.P. CASTRO

defined by the distributions with support contained inΩ andHσ(Ω) will denote the space of
generalized functions onΩ which have extensions intoR that belong toHσ(R). The space
H̃σ(Ω) is endowed with the subspace topology, and onHσ(Ω) we put the norm of the quotient
spaceHσ(R)/H̃σ

(
R\Ω

)
. In particular, we shall denote byL2(R+) andL2

+(R), the spaces

H0(R+) andH̃0(R+), respectively. All those definitions can be extended to the multi-index
caseσ = (σ1, σ2, . . . , σm) ∈ Rm by taking the product topology.

The problem is inspired by the classical Sommerfeld type problems considered, for instance
in [7, 9, 10, 12, 13, 15, 16], for the half-line case instead of the presentΩ. In fact, we present
here a generalization of the problem treated in [4] where a corresponding problem was taken
into consideration for only one strip. Several changes take place here, in particular, we notice the
necessity of different constructions of operator relations that can be found in the next sections.

More concretely, we are interested in studying well-posedness of the problem to findu ∈
L2(R2), with u|R2

±
∈ Hε(R2

±), ε ∈]1/2, 3/2[, so that(
∆ + k2

)
u = 0 in R2

±,(1.1)

u±1 = h on Ω,(1.2) {
u+

0 − u−0 = 0
u+

1 − u−1 = 0
on R \ Ω,(1.3)

whereR2
± represents the upper/lower half-plane,∆ = ∂2/∂x2 + ∂2/∂y2 stands for the Laplace

operator,k ∈ C is the wave number, which, due to the assumption of a lossy medium, is
assumed to fulfill

=mk > 0,

u±0 = u|y=±0, u
±
1 = (∂u/∂y)|y=±0 and the elementh ∈ Hε−3/2(Ω) is arbitrarily given.

2. THE PROBLEM FROM AN OPERATOR POINT OF V IEW

In order to study the existence and uniqueness of the solution of the problem, as well as
continuous dependence on the data, we will construct several operators that are shown to be, in
a sense, connected with the problem.

In the first stage, the problem can be described by the use of a linear operator

P : D(P) → Hε−3/2(Ω),

if we defineD(P) as the subspace ofHε(R2
+)×Hε(R2

−) whose functions fulfill the Helmholtz
equation (1.1) and all the remaining homogeneous transmission conditions that appear from
(1.2) – (1.3) whereas the actionPu = h results from the non-homogeneous conditions (1.2).

In this sense, we will say that the operatorP is associatedto the problem and our aim is to
prove thatP is bounded and invertible for suitable orders of smoothnessε. This goal will be
achieved by the construction of several operator relations that will allow us to understand better
the structure ofP.

To this end, we begin by introducing some notation. LetrR→Ω : Hσ(R) → Hσ(Ω) be the
restriction operator and let

t(ξ) =
(
ξ2 − k2

)1/2
, ξ ∈ R,

denote the branch of the square root that tends to+∞ asξ → +∞ with branch cuts along
±k ± iη, η ≥ 0.

Theorem 2.1.The operatorP is equivalent to the convolution type operator

Wt,Ω = rR→ΩF−1t · F : H̃ε−1/2(Ω) → Hε−3/2(Ω),(2.1)
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STRONGLY ELLIPTIC OPERATORS FOR A PLANE WAVE DIFFRACTION PROBLEM 3

i.e. there are bounded invertible linear operatorsE andF so thatP = EWt,ΩF .

Proof. Analogously to what happens in the half-line case [10], a functionu ∈ L2(R2), with
u|R2

±
∈ Hε(R2

±), satisfies the Helmholtz equation (1.1) if and only if it is representable by

u(x, y) = F−1
ξ 7→xe

−t(ξ)yFx 7→ξu
+
0 (x)χ+(y) + F−1

ξ 7→xe
t(ξ)yFx 7→ξu

−
0 (x)χ−(y)(2.2)

for (x, y) ∈ R2, whereFx 7→ξu(x, y) =
∫

R u(x, y)e
iξxdx andχ+, χ− denote the characteristic

functions of the positive and negative half-line, respectively.
Let

Z =
{

(φ, ψ) ∈
[
Hε−1/2(R)

]2
: φ− ψ ∈ H̃ε−1/2(Ω), F−1t · F(φ+ ψ) = 0

}
.

Taking into account the representation formula (2.2), we have that the trace operator,

T0 : D(P) → Z

u 7→ u0 =

[
u+

0

u−0

]
,

is continuously invertible by the Poisson operatorK : u0 7→ u defined by (2.2).
On the other hand, a direct computation leads us to

P = −1

2
Wt,Ω R1 C T0,(2.3)

whereR1 is the restriction operator to the first component andC is the convolution operator (on
the full line)

C = F−1

[
1 −1
−t −t

]
· F : Z → H̃ε−1/2(Ω)× {0}.

Thus, (2.3) exhibits an operator equivalence betweenP and the convolution type operatorWt,Ω,
defined in (2.1), becauseR1CT0 is continuously invertible byKC−1[I 0]T (please note that, for
u ∈ D(P), we haveu+

1 = u−1 due to (1.2) and (1.3)). �

3. THE EXTENSION TO A HALF -LINE SETTING

In this section we will perform some operator extension methods [2, 3, 5, 6, 8], translated by
several operator matrix identities.

As a consequence, we will obtain certain operator relations that will help us to arrive at the
desired invertibility conditions.

Theorem 3.1.Let us consider the Wiener-Hopf operator

WΨ,R+ = rR→R+F−1Ψ · F : H̃σ(R+) → Hσ(R+),(3.1)

Ψ =



τ−γ2

τ−(γ4−γ3)

...
τ−(γ2n−γ2n−1)

τ−(γ3−γ2)

...
τ−(γ2n−1−γ2n−2)

t t τγ3 · · · t τγ2n−1 τγ2 · · · τγ2n−2 τγ2n


,

where the empty entries (i.e., outside of the main diagonal and the last row) are zero,τa(ξ) =
eiξa, ξ ∈ R andσ = (ε− 1/2, . . . , ε− 1/2, ε− 3/2, . . . , ε− 3/2).
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4 L.P. CASTRO

There are Banach spacesX1, Y1 and linear homeomorphismsE1 andF1 so that[
Wt,Ω 0

0 IX1

]
= E1

[
WΨ,R+ 0

0 IY1

]
F1.(3.2)

I.e.,Wt,Ω andWΨ,R+ are operators which are equivalent after extension.

Proof. An algebraic equivalence after extension betweenWt,Ω andWΨ,R+ is known from [2].
This means that we already have an identity like (3.2) but without the guarantee that the invert-
ible linear operatorsE1 andF1 are bounded.

Now, taking into account that bounded linear operators with closed ranges and acting between
Hilbert spaces are generalized invertible, the result is derived from [1, Theorem 2] that claims
that generalized invertible operators in Banach spaces are equivalent after extension if and only
if their defect spaces are homeomorphic. �

We shall use the functions

λν
±(ξ) = diag [(ξ ± k)ν1 , . . . , (ξ ± k)νm ], ξ ∈ R,

as well asζν = λν
− λ

−ν
+ .

Theorem 3.2.The Wiener-Hopf operatorWΨ,R+ is equivalent to

WΨ0,R+ = rR→R+F−1Ψ0 · F : [L2
+(R)]

2n → [L2(R+)]
2n
,(3.3)

where

Ψ0 = ζα



ζsτ−γ2

ζsτ−(γ4−γ3)

. ..
ζsτ−(γ2n−γ2n−1)

ζ−sτ−(γ3−γ2)

.. .
ζ−sτ−(γ2n−1−γ2n−2)

1 τγ3 · · · τγ2n−1 ζ−sτγ2 · · · ζ−sτγ2n−2 ζ−sτγ2n


,

with α = (ε− 1, . . . , ε− 1) ands = 1/2.

Proof. Let us consider the operators

E2 = rR→R+F−1λ−σ
− · F l0 : [L2(R+)]

2n → Hσ(R+)

F2 = l0rR→R+F−1λσ
+ · F : H̃σ(R+) → [L2

+(R)]
2n
,

wherel0 : [L2(R+)]
2n → [L2

+(R)]
2n is the zero extension operator.

These operators are bounded invertible (see [17, §2.10.3]). Moreover, attending to the struc-
ture ofE2 andF2 [17], we have

WΨ,R+ = E2 WΨ0,R+ F2,

which demonstrates operator equivalence betweenWΨ,R+ andWΨ0,R+ . �

Corollary 3.3. The convolution type operatorWt,Ω and any of the Wiener-Hopf operators
WΨ,R+ , WΨ0,R+ belong to the same regularity class[5]. More precisely, any of these three op-
erators is invertible, one-sided invertible, Fredholm, semi-Fredholm, one-sided regularizable,
generalized invertible or normally solvable, if and only if one of the others enjoys that property.
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Proof. From the above relations we derive thatkerWt,Ω, kerWΨ,R+ andkerWΨ0,R+ are isomor-
phic and that the ranges of these operators are closed only at the same time. In addition, the
presented relations allow us to conclude that

Hε−3/2(Ω)/ imWt,Ω, Hσ(R+)/ imWΨ,R+ , [L2(R+)]
2n
/ imWΨ0,R+

are also isomorphic. Thus, the statement follows. �

4. STRONG ELLIPTICITY AND CORRESPONDING WELL -POSEDNESS OF THE

PROBLEM

Let us consider the2n× 2n matrix function

ζβ = diag [ζ−ε+1/2, . . . , ζ−ε+1/2, ζ−ε+3/2, . . . , ζ−ε+3/2]

(where the firstn elements in the main diagonal are equal and the lastn elements are also all
equal). We introduce the auxiliary operator

WζβΨ0,R+
= rR→R+F−1ζβΨ0 · F : [L2

+(R)]
2n → [L2(R+)]

2n
.(4.1)

This new operator will help us to arrive at the desired invertibility conditions. For this purpose,
first, let us present some symmetries in the structure ofWζβΨ0,R+

.

Theorem 4.1.The Wiener-Hopf operatorWζβΨ0,R+
is equivalent to

WΨ1,R+ l0WΨ2,R+ l0WΨ1,R+
: [L2

+(R)]
2n → [L2(R+)]

2n

where, forj = 1, 2,

WΨj ,R+ = rR→R+F−1Ψj · F : [L2
+(R)]

2n → [L2(R+)]
2n

and

Ψ1 =



τ−γ2n

τ−γ2n−2

...
τ−γ2

τ−γ2n−1

τ−γ2n−3

...
τ−γ3

n 1 1 · · · 1


,

Ψ2 =



1 ζ1/2/n · · · ζ1/2/n
...

1
1

...
1


.
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6 L.P. CASTRO

Proof. From the identity

ζβΨ0 =



1

··
·

1
1

··
·

1
1


Ψ1 Ψ2 Ψ1 ×



1/n −1/n · · · −1/n
1

··
·

1
1/n

1

··
·

1


it follows thatWζβΨ0,R+

and

WΨ1Ψ2Ψ1,R+
= rR→R+F−1Ψ1Ψ2Ψ1 · F : [L2

+(R)]
2n → [L2(R+)]

2n

are equivalent operators.
Therefore, in order to obtain the present result, we only have to observe that the “minus" and

“plus" semi-almost periodic entries ofΨ1 andΨ1, respectively, lead us to

WΨ1Ψ2Ψ1,R+
=

(
rR→R+F−1Ψ1 · F

)
l0

(
rR→R+F−1Ψ2 · F

)
l0

(
rR→R+F−1Ψ1 · F

)
= WΨ1,R+ l0 WΨ2,R+ l0 WΨ1,R+

.

�

We recall that an essentially boundedm×m matrix-valued functionψ(ξ) = [ψij(ξ)] is said
to bestrongly ellipticif there exist constantsη ∈ C andC > 0 so that

<e η
m∑

i,j=1

ψij(ξ)µjµi ≥ C
m∑

i=1

|µi|2, ∀µ = (µ1, . . . , µm) ∈ Cm.

Theorem 4.2.The Wiener-Hopf operator introduced in (4.1),

WζβΨ0,R+
: [L2

+(R)]
2n → [L2(R+)]

2n
,

is an invertible operator.

Proof. The nonnegative mean motions [14] of the semi-almost periodic entries ofΨ1 ensure us
(see [14, Theorem 1]) the left invertibility ofWΨ1,R+

.
Moreover, we observe thatΨ2 is strongly elliptic. In fact, from∣∣∣∣ζ1/2

n
µjµ1

∣∣∣∣ ≤ 1

2n

(
|µj|2 + |µ1|2

)
, j = n+ 1, . . . , 2n,
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STRONGLY ELLIPTIC OPERATORS FOR A PLANE WAVE DIFFRACTION PROBLEM 7

it follows that, forΨ2(ξ) = [Θij(ξ)],

<e
2n∑

i,j=1

Θij(ξ)µjµi ≥
2n∑

j=1

|µj|2 −
1

2n

2n∑
j=n+1

(
|µj|2 + |µ1|2

)
=

1

2
|µ1|2 +

n∑
j=2

|µj|2 +

(
1− 1

2n

) 2n∑
j=n+1

|µj|2

≥ 1

2

2n∑
j=1

|µj|2,

for all (µ1, . . . , µ2n) ∈ C2n.
Consequently, forψ ∈ [L2(R+)]

2n, we have

<e〈(WΨ1,R+l0)(WΨ2,R+l0)(WΨ1,R+
l0)ψ, ψ〉

= <e〈(WΨ2,R+l0)(WΨ1,R+
l0)ψ, (WΨ1,R+

l0)ψ〉
= <e〈

(
rR→R+F−1Ψ2 · F l0

)
(WΨ1,R+

l0)ψ, (WΨ1,R+
l0)ψ〉

= <e〈Ψ2 · F l0(WΨ1,R+
l0)ψ,F l0(WΨ1,R+

l0)ψ〉

≥ 1

2
‖F l0(WΨ1,R+

l0)ψ‖2

=
1

2
‖WΨ1,R+

l0ψ‖2

≥ 1

2
C1‖ψ‖2,

whereC1 > 0 is provided by the left invertibility ofWΨ1,R+
. This inequality allows us to

conclude thatWΨ1,R+l0WΨ2,R+l0WΨ1,R+
: [L2

+(R)]
2n → [L2(R+)]

2n is a left invertible operator.
Applying the same reasoning to the conjugate operator(

l0WΨ1,R+l0WΨ2,R+l0WΨ1,R+

)∗
=

(
l0WΨ1,R+

)∗(
l0WΨ2,R+

)∗(
l0WΨ1,R+

)∗
= l0WΨ1,R+l0WΨ2,R+

l0WΨ1,R+

we obtain that this is also a left invertible operator.
ThusWΨ1,R+l0WΨ2,R+l0WΨ1,R+

is an invertible operator and from Theorem 4.1 our goal is
achieved. �

Corollary 4.3. The Wiener-Hopf operatorWΨ0,R+ , defined in (3.3), is a Fredholm operator
with zero Fredholm index.

Proof. From Theorem 4.2 we know thatWζβΨ0,R+
is an invertible operator. Thus (see e.g. [11,

Chapter 1, Theorem 3.11]), the result is a consequence ofWΨ0,R+ andWζβΨ0,R+
being homo-

topic operators in the class of Fredholm operators acting from[L2
+(R)]

2n to [L2(R+)]
2n. �

Theorem 4.4.The operatorP (associated to the problem) is bounded invertible and, therefore,
our problem is well-posed for all orders of smoothnessε ∈]1/2, 3/2[.

Proof. Due to the fact that, for negative parameters−γ and anys ∈ R,

rR→R+F−1τ−γ · F : H̃s(R+) → Hs(R+)
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8 L.P. CASTRO

are nothing more than left shift operators composed with the restriction operatorrR→R+ , we
have that these operators are surjective. Therefore, taking into account the structure ofΨ (see
(3.1)), we obtain thatWΨ,R+ is a surjective operator whenever

Wt,R+ = rR→R+F−1t · F : H̃ε−1/2(R+) → Hε−3/2(R+)

is a surjective operator, which is true for allε. As a consequence, the codimension of the image
of WΨ,R+ is zero.

Thus, from Corollary 3.3 and Corollary 4.3, we have thatWt,Ω is invertible. Therefore, the
result is obtained if we take into consideration Theorem 2.1. �
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