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Abstract

J. Németh has extended several basic theorems of R. P. Boas Jr. pertaining
to Fourier series with positive coefficients from Lipschitz classes to generalized
Lipschitz classes. The goal of the present work is to find the common root of
known results of this type and to establish two theorems that are generalizations
of Németh’s results. Our results can be considered as sample examples show-
ing the utility of the notion of power-monotone sequences in a new research
field.
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1. Introduction
The notion of the power-monotone sequences, as far as we know, appeared
first in the paper of A. A. Konyushkov [7], where he proved that the following
classical inequality of Hardy and Littlewood [5]

(1.1)
∞∑

n=1

n−c
( n∑

k=1

ak

)p

≤ K(p, c)
∞∑

n=1

np−cap
n, an ≥ 0, p ≥ 1, c > 1,

can be reversed ifnτan ↓ (τ < 0), i.e. if the sequence{an} is τ -power-
monotone decreasing.

In [8], among others, we generalized (1.1) as follows

(1.2)
∞∑

n=1

λn

( n∑
k=1

ak

)p

≤ pp

∞∑
n=1

λ1−p
n

( ∞∑
k=n

λk

)p

ap
k, p ≥ 1, λn > 0.

The reader can discover a large number of very interesting classical and mod-
ern inequalities of Hardy-Littlewood type in the eminent papers of G. Bennett
[1, 2, 3].

The author ([10] see also [9]) also proved that the converse of inequality
(1.2) holds if and only if the sequence{λn} is nearly geometric in nature. That
is, if it is quasi geometrically monotone. This was achieved without requiring
additional conditions on the nonnegative sequence{an}.

Recently, it was found that the quasi power-monotone sequences and the
quasi geometrically monotone sequences are closely interlinked; furthermore,
these sequences have appeared in the generalizations of several classical results,
sometimes only implicitly.

http://jipam.vu.edu.au/
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au/


Power-monotone sequences
and Fourier series with positive

coefficients

L. Leindler

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 23

J. Ineq. Pure and Appl. Math. 1(1) Art. 1, 2000

http://jipam.vu.edu.au

Very recently, we have also observed that the quasi power-monotone se-
quences have implicitly emerged in the investigation of Fourier series with non-
negative coefficients. See for example the papers by R. P. Boas Jr. [4] and J.
Németh [13]. Both Boas and Németh proved several interesting results. Boas’
theorems treat the connection of the nonnegative Fourier coefficients to the clas-
sical Lipschitz classes (Lipα, 0 < α ≤ 1), and Németh extends the Boas results
to the so called generalized Lipschitz classes.

We can recall some of these theorems only after recollecting some defini-
tions, and this will clear up the notions used loosely above. But before doing
this we present the aim of our work.

The object of our paper is to uncover the common root of the results men-
tioned above and show that quasi power-monotone sequences play a crucial
role in the analysis. Furthermore, we shall formulate the generalizations of two
theorems of J. Németh as sample examples. We also claim that by using our
method some further generalizations can be proved.
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2. Notions and notations
Before formulating the known and new results we recall some definitions and
notations.

Let ω(δ) be a modulus of continuity, i.e. a nondecreasing function on the
interval[0, 2π] having the properties:ω(0) = 0, ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2).

Denoteω(f ; δ) the modulus of continuity of a functionf .
Let Ωα(0 ≤ α ≤ 1) denote the set of the moduli of continuityω(δ) = ωα(δ)

having the following properties:

1. for anyα′ > α there exists a natural numberµ = µ(α′) such that

(2.1) 2µα′
ωα(2−n−µ) > 2ωα(2−n) holds for all n(≥ 1),

2. for every natural numberν there exists a natural numberN := N(ν) such
that

(2.2) 2ναωα(2−n−ν) ≤ 2ωα(2−n), if n > N.

For anyωα ∈ Ωα the classHωα , i.e.

Hωα := {f : ω(f, δ) = O(ωα(δ))},

will be called ageneralized Lipschitz classdenoted by Lipωα.
We note that a class Lipωα can be larger, but also smaller than the class Lip

α, depending on the considered modulus of continuityωα(δ).
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We shall say that a sequenceγ := {γn} of positive terms isquasiβ-power-
monotone increasing (decreasing)if there exists a natural numberN := N(β, γ)
and constantK := K(β, γ) ≥ 1 such that

(2.3) Knβγn ≥ mβγm (nβγn ≤ Kmβγm)

holds for anyn ≥ m ≥ N.

Here and in the sequel,K and Ki denote positive constants that are not
necessarily the same at each occurrence.

If (2.3) holds withβ = 0 then we omit the attribute “β” in the equation.
Furthermore, we shall say that a sequenceγ := {γn} of positive terms is

quasi geometrically increasing (decreasing)if there exists natural numbersµ :=
µ(γ), N := N(γ) and a constantK := K(γ) ≥ 1 such that
(2.4)

γn+µ ≥ 2γn and γn ≤ Kγn+1

(
γn+µ ≤

1

2
γn and γn+1 ≤ Kγn

)
hold for alln ≥ N .

Finally a sequence{γn} will be calledbounded by blocksif the inequalities

α1Γ
(k)
m ≤ γn ≤ α2Γ

(k)
M , 0 < α1 ≤ α2 < ∞

hold for any2k ≤ n ≤ 2k+1, k = 1, 2, . . ., where

Γ(k)
m := min(γ2k , γ2k+1) and Γ

(k)
M := max(γ2k , γ2k+1).
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3. Theorems and comments
To begin, we recall two theorems of J. Németh [13].

Theorem 3.1. Letλn ≥ 0 be the Fourier sine or cosine coefficients ofϕ. Then
ϕ ∈ Lip ωγ, 0 < γ < 1, if and only if

(3.1)
∞∑

k=n

λk = O

(
ωγ

(
1

n

))
,

or equivalently

(3.2)
n∑

k=1

kλk = O

(
nωγ

(
1

n

))
.

Theorem 3.2. If λn ≥ 0 are the Fourier sine coefficients ofϕ, thenϕ ∈ Lip ω1

if and only if

(3.3)
n∑

k=1

kλk = O

(
nω1

(
1

n

))
.

In the special caseωγ(δ) ≡ δγ (0 < γ ≤ 1), these theorems reduce to the
classical results of Boas [4]. Again, observe that in general, the class Lipωγ

can be larger (or smaller) than the class Lipγ.
For completeness, we add that in a notable paper by M. and S. Izumi [6],

their Theorem 1 is very similar to Theorem3.1. The difference being the form
of the conditions and notation used. The notions used by Németh show an
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undoubted similarity to that of the classical Lipschitz classes, therefore we use
these notions and notations in the present paper. We also omit the discussion of
Izumi’s result.

As noted above, the quasi power-monotone sequences and the quasi geomet-
rically monotone sequences are closely interlinked. A result showing this strong
connection is the following (see [11], Corollary 1).

Proposition 3.3. A positive sequence{δn} bounded by blocks is quasiε-power-
monotone increasing (decreasing) with a certain negative (positive) exponentε
if and only if the sequence{δ2n} is quasi geometrically increasing (decreasing).

We note that if a sequence{γn} is either quasiε-power-monotone increasing
or decreasing, then it is also bounded by blocks. In the following sections we
shall use this remark and the cited Proposition several times. We now proceed
to formulate our new theorems.

Theorem 3.4. Assume that a given positive sequence{γn} has the following
properties. There exists a positiveε such that:
(P+) the sequence{nεγn} is quasi monotone decreasing and
(P−) the sequence{n1−εγn} is quasi monotone increasing.

If λn ≥ 0 are the Fourier sine or cosine coefficients of a functionϕ, then

(3.4) ω

(
ϕ,

1

n

)
= O(γn)

if and only if

(3.5)
∞∑

k=n

λk = O(γn),
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or equivalently

(3.6)
n∑

k=1

kλk = O(nγn).

Theorem 3.5. If λn ≥ 0 are the Fourier sine coefficients ofϕ and the sequence
{γn} has the property(P+), then (3.4) holds if and only if (3.6) is true.

A simple consideration shows that Theorem3.4includes Theorem3.1. Namely,
settingγn := ωγ(

1
n
), and keeping in mind that0 < γ < 1, then Proposition3.3

and the property (2.2) of ωγ(δ) imply that the sequence{nεωγ(
1
n
)} for some

small ε has the property(P+). A similar argument shows that the sequence
{n1−εωγ(

1
n
)} satisfies the property(P−). In this case we use the property (2.1)

of ωγ(δ) instead of (2.2).
In a similar manner we can verify that Theorem3.5 includes Theorem3.2.
We mention that if the sequence

Λn :=
∞∑

k=n

λk

satisfies the properties(P+) and(P−), then, by Theorem3.4, we have the esti-
mate

(3.7) ω

(
ϕ,

1

n

)
= O(Λn),

or equivalently that

(3.8)
n∑

k=1

kλk = O(nΛn)
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holds.
It is easy to see that if the coefficientsλn are monotone decreasing then (3.8)

implies
λn = O(n−1Λn).

Thus, the equivalence of (3.7) and (3.8) can be considered as a generalization
of the following classical theorem of G. G. Lorentz [12]

If λn ↓ 0 andλn are the Fourier sine or cosine coefficients ofϕ, thenϕ ∈
Lip α, 0 < α < 1, if and only ifλn = O(n−1−α).

Finally, we comment on the following theorem of J. Németh [13]
If λn ≥ 0 are the Fourier sine or cosine coefficients ofϕ then the conditions

(3.9)
∞∑

k=n

λk = O

(
ω

(
1

n

))
and

(3.10)
n∑

k=1

kλk = O

(
nω

(
1

n

))
imply

(3.11) ϕ ∈ Hω,

for arbitrary modulus of continuityω.
He also showed that neither (3.9) nor (3.10) are sufficient to satisfy (3.11).

Theorem3.4 shows that if the sequence{ω( 1
n
)} itself has the properties(P+)

http://jipam.vu.edu.au/
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and(P−) then (3.9) and (3.10) are equivalent, and both satisfy (3.11). Moreover,
given (3.11), both (3.9) and (3.10) can be shown to be true.

As we have verified, the moduli of continuityωγ, 0 < γ < 1, have the
properties(P+) and(P−).

http://jipam.vu.edu.au/
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4. Lemmas
To prove our theorems we recall one known lemma and generalize two lemmas
of [4].

Lemma 4.1. ([10]) For any positive sequenceγ := {γn} the inequalities

∞∑
n=m

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

or
m∑

n=1

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

hold if and only if the sequenceγ is quasi geometrically decreasing or increas-
ing, respectively.

Lemma 4.2. Letµn ≥ 0, βn > 0 andδ > 0. Assume that there exists a positive
ε such that the sequence

(4.1) {n−εβn} is quasi monotone increasing,

and the sequence

(4.2) {nε−δβn} is quasi monotone decreasing.

Then

(4.3)
n∑

k=1

kδµk = O(βn)

http://jipam.vu.edu.au/
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is equivalent to

(4.4)
∞∑

k=n

µk = O(βnn
−δ).

Proof. By Proposition3.3, taking into account (4.1) and (4.2), we have that the
sequences{β2n} and{2−nδβ2n} are quasi geometrically increasing and decreas-
ing, respectively. Thus, by Lemma4.1, we also have that

(4.5)
m∑

n=1

β2n = O(β2m)

and

(4.6)
∞∑

n=m

2−nδβ2n = O(2−mδβ2m)

hold.
To begin, we show that (4.3) implies (4.4). Assume that2ν < n ≤ 2ν+1.

Then, by (4.3), (4.6) and (4.2) we have

∞∑
k=n

µk ≤
∞∑

m=ν

2m+1∑
k=2m+1

µk ≤ K
∞∑

m=ν

2−mδβ2m+1 ≤ K12
−(ν+1)δβ2γ+1

≤ K22
−νδβ2ν ≤ Kn−δβn.

http://jipam.vu.edu.au/
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The proof of the implication (4.4) ⇒ (4.3) runs similarly. Namely, by (4.4),
(4.5), (4.1) and (4.2), we have

n∑
k=2

kδµk ≤
ν∑

m=0

2m+1∑
k=2m+1

kδµk ≤ K
ν∑

m=0

2mδ

2m+1∑
k=2m+1

µk ≤ K
ν∑

m=0

2mδβ2m2−mδ ≤ Kβn.

Lemma 4.3. Let µk ≥ 0,
∑

µk be convergent and0 ≤ α ≤ 1. Moreover,
assume that a given positive sequence{δn} has the following properties. There
exists a positiveε such that:
(iii) the sequence{nε−αδn} is quasi monotone decreasing
and
(iv) the sequence{n2−α−εδn} is quasi monotone increasing.

Finally let

δ(x) :=

{
δn if x =

1

n
, n ≥ 1,

linear on the interval[1/(n + 1), 1/n].

Then

(4.7)
∞∑

k=1

µk(1− cos kx) = O(xαδ(x)) (x → 0)

if and only if

(4.8)
∞∑

k=n

µk = O(n−αδn).
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Proof. Under the hypotheses of (iii) and (iv) it is obvious that the sequence

(4.9) βn := n2−αδn

satisfies the assumptions (4.1) and (4.2) of Lemma4.2 with δ = 2. Using this
we can begin to show the equivalence of (4.7) and (4.8). For (4.7) to imply (4.8)
first observe from (4.7) that

1/x∑
k=1

k2µk
1− cos kx

k2x2
≤

∞∑
k=1

k2µk
1− cos kx

k2x2
= O(xα−2δ(x)).

Hence, sincet−2(1− cos t) decreases on(0, 1), it follows that

(4.10)
1/x∑
k=1

k2µk = O(xα−2δ(x)),

and withx = 1/n

(4.11)
n∑

k=1

k2µk = O(n2−αδn).

Thus, by Lemma4.2with δ = 2 andβn = n2−αδn, it follows that (4.8) is true.
To complete the proof assume (4.8) is true, thus (4.10) and (4.11) also hold.
Using Lemma4.2with βn given in (4.9) andδ = 2 we obatin

∞∑
k=1

µk(1−cos kx) ≤
1/x∑
k=1

+
∑

k≥1/x

≤ Kx2

1/x∑
k=1

k2µk +K
∑

k≥1/x

µk = O(xαδ(x)).
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This verifies (4.7) (see the argument given at the proof of (4.10)).
Herewith the proof of Lemma4.3 is complete.
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5. Proof of the theorems
Proof. (of Theorem3.4). First we show that the statements (3.5) and (3.6) are
equivalent. This follows by Lemma4.2with δ = 1 andβn = nγn. We can ap-
ply Lemma4.2 in this case, namely the sequence{n1−εγn} is quasi monotone
increasing and simultaneously the sequence{nεγn} is quasi monotone decreas-
ing; see the properties(P+) and(P−).

Next, we prove that if
∑

λn cos nx is the Fourier series ofϕ and (3.4) holds
then (3.5) also holds. The assumption (3.4) clearly implies that

(5.1) |ϕ(x)− ϕ(0)| ≤ Kγ(x),

where

(5.2) γ(x) :=

{
γn if x =

1

n
, n ≥ 1,

linear on the interval[1/(n + 1), 1/n].

By (P+) and (5.2), Proposition3.3 implies that
∞∑

n=1

γ(2−n) < ∞,

whence
x−1γ(x) ∈ L(0, 1)

follows. Thus by (5.1) and Dini’s test, the Fourier series ofϕ converges at
x = 0, i.e.

∑
λk < ∞, whence, by (5.1),

(5.3)
∞∑

k=1

λk(1− cos kx) = O(γ(x))

http://jipam.vu.edu.au/
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follows.
Using Lemma4.3 with µk = λk, α = 0 andδn = γn, we have that (5.3) is

equivalent to (3.5).
Conversely, assuming that (3.5) holds, then

∑
λk converges; and ifλn are

the Fourier cosine coefficients ofϕ, we shall show that (3.4) also holds.
We have that

(5.4)

|ϕ(x + 2h)− ϕ(x)| =
∣∣∣ ∞∑
k=1

λk(cos k(x + 2h)− cos kx)
∣∣∣

= 2
∣∣∣ ∞∑
k=1

λk sin k(x + h) sin kh
∣∣∣

≤ 2

1/h∑
k=1

λk sin kh + 2
∑

k≥1/h

λk

≤ 2h

1/h∑
k=1

kλk + 2
∑

k≥1/h

λk.

Here the second sum isO(γ(h)) by the assumption (3.5). Utilizing the formerly
proved equivalence of (3.5) and (3.6), we clearly have that the first term is also
O(γ(h)). Thus, (3.4) is verified assuming (3.5).

In what follows, Theorem3.4 is proved for the Fourier cosine series. Let us
assume that the Fourier series ofϕ is

∑
λn sin nx and that (3.4) holds. Since

the Fourier series can be integrated term by term, we have

(5.5)
∫ x

0

ϕ(t)dt = −
∞∑

n=1

n−1λn(1− cos nx) = O(xγ(x)).
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A consideration similar to that given above shows that we can apply Lemma4.3
with α = 1, δn = γn andµk = k−1λk. Thus we have that (5.5) is equivalent to

∞∑
k=n

k−1λk = O(n−1γn).

Hence, it follows that

(5.6)
2n∑

k=n

λk ≤ Kγn.

Since the sequence{γ2n} is quasi geometrically decreasing, then (5.6) implies
(3.5).

Hence, the necessity of the conditions (3.5) and (3.6) for Fourier sine series
have been proved.

Finally, we verify the sufficiency of (3.5) for Fourier sine series. Consider

(5.7) ϕ(x + 2h)− ϕ(x) = 2
∞∑

n=1

λn cos n(x + h) sin nh.

It is easy to see that the same estimation as given in (5.4) can also be used in
this case. Therefore the proof that (3.5) implies (3.4) is similar to that in the
cosine case.

The proof of Theorem3.4 is thus complete.
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Proof. (of Theorem3.5). First, assume that the condition (3.6) holds. Using the
equality (5.7) and the closing estimate of (5.4) we have

(5.8) |ϕ(x + 2h)− ϕ(x)| ≤ 2h

1/h∑
k=1

kλk + 2
∑

k≥1/h

λk.

Here, the first term isO(γ(h)) by the assumption (3.6). To prove the same for
the second term we observe that (3.6) implies that

2m+1∑
k=2m

λk ≤ Kγ2m .

In addition, by(P+) Proposition3.3 yields that the sequence{γ2m} decreases
quasi geometrically, thus

∞∑
k=n

λk ≤ Kγn.

This and the previously obtained partial result, by (5.8), verifies that (3.4) holds.
Conversely, let us assume that (3.4) is true. Then, as before in (5.5), we have

(5.9)
∞∑

n=1

n−1λn(1− cos nx) = O(xγ(x)).
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Furthermore, by (5.9),

1/x∑
k=1

k−1λk(1− cos kx) ≡ x2

1/x∑
k=1

kλk
1− cos kx

k2x2

≤ x2

∞∑
k=1

kλk
1− cos kx

k2x2
≡

∞∑
k=1

k−1λk(1− cos kx) = O(xγ(x)),

whence byx = 1
n

we obtain

n∑
k=1

kλk
1− cos k/n

(k/n)2
= O

(
nγ

(
1

n

))
= O(nγn).

This shows (see the consideration at (4.10)) that the statement (3.6) holds
from (3.4).

The proof of the Theorem3.5 is thus complete.
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