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1. Presentation of the Book

Geometric Mechanics is currently an important subject of research, in pure and
applied mathematics as well as in engineering science. Most existing textbooks on
the subject [1–3, 6, 7] are suited for graduate students or professional researchers.
In writing the present book, Professor Darryl D. Holm successfully undertook the
difficult and important task of presenting the main ideas of Geometric Mechanics
so that they can be understood by undergraduate students.

The first volume, Dynamics and Symmetry, is based on a course taught by the au-
thor for undergraduates in their third year of mathematics at the Imperial College
London. In that volume, the ideas of reduction by symmetry and reconstruction are
presented and used for several very different problems: geometric optics, the mo-
tion of a rigid body, ideal fluid dynamics, resonance of coupled oscillators, elastic
spherical pendulum, laser light interaction with matter. The necessary mathemat-
ical tools (differential forms, Lie groups and Lie algebras, symplectic structures,
Poisson brackets) are introduced when needed. The symmetry group most often
used for reduction and reconstruction is the one-dimensional circle S1.

The second volume, Rotating, Translating and Rolling, is based on a course of
thirty three lectures taught by the author to fourth year undergraduate students in
their last term in applied mathematics at the London Imperial College. The symme-
try groups encountered in that volume are of higher dimensions: the rotation group
SO(3) or more generally SO(n), the group of Euclidean displacements SE(3), the
Galilean group, the unitary group U(n) are defined and used for several problems,
including the motions of a heavy top and of round rolling bodies. The mathemat-
ical tools presented in the first volume are, for a large part, discussed again from
scratch in the second. Results already obtained in the first volume are not used in
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the second for the treatment of problems, such as the free motion of a rigid body,
dealt with in both volumes. So each volume can be read independently of the other.

In both volumes, many exercises are proposed throughout the text, some of them
with hints, others with full answers. Appendix C of the second volume proposes
very interesting and pleasing generalizations of the mechanical systems previously
considered: motions in an alien worlds in which the time is two-dimensional, or
in which the space is modelled on C

3 instead of on R
3, or in which the space is

four-dimensional.

2. Contents of the First Volume

The first volume is organized into six chapters and one appendix. The following
sentence, taken from the author’s preface, perfectly describes its spirit:

“The text surveys a small section of the road to geometric mechanics, by treating
several examples in classical mechanics all in the same geometric framework.”

Chapter 1 deals with Geometric Optics. Fermat’s principle of stationarity of the
optical length is presented and used to derive the eikonal equation. It is the name
in Optics of the Euler-Lagrange equation, for the optical Lagrangian which cor-
responds to Fermat’s principle. Huygens wavelets, the Huygens-Fermat comple-
mentarity theorem, Snell’s law of refraction are discussed. The propagation of
light in axisymmetric optical instruments, as well as in a general three-dimensional
medium, is considered. Several important mathematical notions are presented in
this long chapter: Hamilton-Jacobi equation, Legendre transformation, symplectic
structures, Poisson brackets, Hamiltonian vector fields, Lie groups and Lie alge-
bras, momentum maps. Light rays in an axisymmetric medium satisfy Hamilton’s
equation, the abscissa along the symmetry axis playing the role of time. The in-
variance of optical properties of the medium under rotations around the axis gives
rise to a conserved quantity, the skewness, which was discovered by Lagrange and
its analogue for a mechanical system with a symmetry axis is the angular mo-
mentum’s component on that axis. When the optical properties of the medium
are invariant under translation in the direction of the axis, another quantity is con-
served, the Hamiltonian, exactly as the energy of a time-independent mechanical
system is conserved. An example of singular Lagrangian appears with the study of
the propagation of light in an anisotropic medium.

Undergraduate students will probably think that this first chapter is rather difficult,
because of its richness. However, all the new concepts which appear in it will be
seen again in the following chapters.
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Chapter 2, “Newton, Lagrange, Hamilton and the Rigid Body”, describes the fun-
damental laws of motion as they were stated by Newton. These laws are then used
for the derivation of the equations of motion of a system of material points. The
principle of Galilean relativity, the existence of inertial frames are stated and used
to prove that the centre of mass of a closed system moves with a constant velocity.
The free rigid rotation of a system around its centre of mass is defined, and its an-
gular momentum is expressed in terms of its moments of inertia and its angular ve-
locity. Several new mathematical concepts are then introduced: smooth manifolds,
their tangent and cotangent bundles, vector fields on a manifold and their integral
curves. With these concepts, following the method initially used by Lagrange [5],
the author expresses (without naming it) the Lagrange differential which gives, in
terms of local coordinates, the infinitesimal work rate of accelerations of a system
of material points for a given infinitesimal virtual displacement. That result proves
that the Lagrange equations are equivalent to equations obtained by application of
Newton’s laws of motion and directly leads to Hamilton’s principle of stationary
action. The motion of a free particle in a Riemannian space is then discussed, and
the motion of a rigid body is shown to be equivalent to the geodesic flow on the
Lie group SO(3) equipped with a left-invariant Riemannian metric. Euler’s equa-
tions of motion (written in matrix form on the Lie algebra so(3)) are derived. Then
the author defines the Legendre transformation and describes the transition from
Lagrangian to Hamiltonian dynamics. He proves a phase space action principle
involving the constrained action

S =

∫

tb

ta

(
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(
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− q̇

))
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∫
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(

p
dq
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− H(q, p)

)

dt

in which the equality q̇ =
dq

dt
appears as a constraint and the momentum p as a

Lagrange multiplier. This phase space action principle appears several times in the
second part of the book under the name of Hamilton-Pontryagin principle.

Next, the author defines canonical transformations and proves that the flow of a
Hamiltonian vector field is a family of such transformations, parametrized by the
time. The comparison of Lagrange’s and Hamilton’s approaches for deriving the
equations of motion of various mechanical systems (a bead sliding on a rotating
hoop, the spherical pendulum) is proposed as exercises. The motion of a free rigid
body is fully solved, using the method presented by the author and Jerry Marsden
in [4].

Chapter 3, “Lie, Poincaré, Cartan: Differential Forms”, introduces the general
concept of a symplectic manifold (already encountered, for special examples, in
Chapter 1). The fact that the flow of an Hamiltonian vector field on a cotangent
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bundle is a family of canonical transformations, already stated in Chapter 2, is
presented again for general symplectic manifolds under the name of Poincaré’s
theorem: Hamiltonian flows are symplectic. Then the author develops the gen-
eral formalism of differential forms, defines the Liouville one-form of a cotangent
bundle and the cotangent lift of a diffeomorphism of the base manifold. Hamilton-
Jacobi equation and generating functions, already encountered in Chapter 1 for the
special example of ray optics, are presented in a more general setting. Differential
calculus with differential forms (wedge product, exterior derivative, Lie derivative
with respect to a vector field, Stokes theorem) is sketched, with several examples
given as exercises.

A long section, devoted to Euler’s equations of motion of an ideal, incompressible
fluid in a rotating frame, offers an opportunity to use these mathematical tools.
Kelvin’s circulation theorem, steady flows and their stability, Lamb surfaces and
the helicity integral are discussed. The Hodge star operator, the codifferential and
the Laplace-Beltrami operator are then defined and at its end the Poincaré lemma
(local exactness of closed differential forms) is stated and illustrated by examples.

Chapter 4, “Resonances and S1 Reduction”, studies the resonance of two coupled
nonlinear oscillators. This Hamiltonian system has C

2 as phase space, on which
the Lie group U(2) acts by an Hamiltonian action. The author calls 1 : 1 resonant
dynamics the Hamiltonian vector field on C

2 associated to the diagonal action of
S1, and fully describes the U(2)-action on C

2. He explains how, after S1-reduction,
one has to reconstruct the phases of oscillating solutions, and how the phase can be
split into a geometric part and a dynamic part. The Poincaré sphere and the Hopf
map play an important part in the geometric analysis of the problem.

A long section reviews the work of M. Kummer on n : m-resonances of any type.
Various physical applications (quantum computing, MASER dynamics, travelling
wave pulses in optical fibres, polarization optics) are evocated. In the reviewer
opinion, this chapter is the richest and the most difficult of the book.

Chapter 5, “Elastic Spherical Pendulum”, is of easier access because it begins with
a clear description of the mechanical system under study. Newton, Lagrange and
Hamilton’s methods are successively used to derive the equations of motion. The
system invariance under rotation around the vertical axis through the fixed point is
discussed, along with the corresponding conserved quantity (the vertical compo-
nent of the angular momentum). Small motions around the stable equilibrium po-
sition are then considered. The author describes the Lagrangian averaging method:
he assumes that the variations of the coordinates of the moving mass can be de-
scribed as approximately periodic, with slowly varying amplitudes and a rapidly
varying phase factor. He considers the 1 : 1 : 2 resonant motions, in which the pe-
riod of oscillations of the z coordinate is half that of the x and y coordinates. The



Book Review 117

resulting equations of motion, called the three-wave interaction equations, appear
in several physical applications: waves in plasmas, laser-matter interaction. A de-
tailed geometric picture of the motions by three-wave surfaces is obtained by using
the reduction technique, followed by reconstruction. Equations which govern the
precession of the oscillation plane are discussed in the last section.

Chapter 6, “Maxwell-Bloch Laser-matter Equations”, begins with a short descrip-
tion of a physical phenomenon, self-induced transparency: a travelling electro-
magnetic wave excites the atoms of a resonant dielectric medium. After a delay,
the energy temporarily stored by the atoms is returned to the trailing edge of the
travelling electromagnetic wave. Maxwell-Schrödinger equations, which govern
the phenomenon, are written for a plane wave, and are shown to obey a varia-
tional principle. Approximations similar to those made in the previous chapter
lead to a Hamiltonian system, the Maxwell-Schrödinger envelope equations. The
S1-symmetry allows the reduction of that system (the Hopf map appears again in
the reduction procedure), and yields the complex Maxwell-Bloch equations. In the
remainder of the chapter, the author considers the subsystem obtained when the
variables involved are assumed to be real-valued. It is a first order differential sys-
tem on R

3 which is Hamiltonian with respect to a continuous family of Poisson
structures parametrized by the Lie group SL(2, R). The author then presents a
very nice geometric description of the level sets of the conserved functions, of the
phase portrait of the system and of the phase of periodic solutions, similar to that
he made with Jerry Marsden for the motion of a rigid body in [4].

Appendix A, “Enhanced Coursework”, offers as exercises, in a first section, several
examples of dynamical systems: among others, a particle in a potential well, a
bead sliding on a rotating hoop, the spherical pendulum, the heavy top. Hints, or
for the most difficult full solutions, are given. The following sections contain more
detailed discussions of questions dealt with in the previous chapters: canonical
transformations, complex phase spaces, resonant oscillators, . . .

3. Contents of the Second Volume

The second volume is organized into twelve chapters and three appendices. As
said by the author in its Preface, its aim is to explain the following statement so
that it may be understood by undergraduate students in mathematics, physics and
engineering:

“Lie symmetry reduction on the Lagrangian side produces the Euler-Poincaré
equation, whose formulation on the Hamiltonian side as a Lie-Poisson equation
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governs the dynamics of the momentum map associated with the cotangent lift of
the Lie-algebra action of that Lie symmetry on the configuration manifold.”

Chapter 1, “Galileo”, briefly introduces the concepts of time, space and motion in
the classical (non-Einsteinian) Mechanics. The principle of the Galilean relativity
is stated. The groups of the three-dimensional rotations SO(3), of Euclidean dis-
placements SE(3) and their actions on space are defined. The general notion of a
semi-direct product of groups is given. The Galilean group, denoted by G(3) (why
not G(3, 1), since it involves time as well as space?) and its action on space-time
is defined. Of course, a good part of these notions were already given in the first
volume. They are described again without reference to their first appearance.

The much longer Chapter 2, “Newton, Lagrange and Hamilton’s Treatments of the
Rigid Body”, introduces the mathematical tools used for dealing with rigid body
dynamics. The author calls hat map the correspondence which associates to each
vector in the three-dimensional oriented Euclidean vector space an element of the
Lie algebra of the infinitesimal rotations of that space (a 3×3 skew-symmetric ma-
trix, once an orthonormal basis of that space is chosen). Several important notions
already seen in Chapter 2 of the first volume are treated again with more details: the
equations of motion of a free rigid body, Lagrange’s equations, Hamilton’s princi-
ple of stationary action, the phase-space action principle (called in this second vol-
ume the Hamilton-Pontryagin principle), the Legendre transformation, Hamilton’s
equations, Poisson brackets. Lie symmetries are defined, Emmy Noether’s theorem
which associates conservation laws to such symmetries is stated and proven. Man-
akov’s formulation of the SO(n) rigid body motion is presented as a first example
of the Euler-Poincaré equations, a special form of the Euler-Lagrange equations
discovered by Poincaré [8] in 1901 for an action integral involving paths in a Lie
algebra.

Chapters 3 and 4, “Quaternions” and “Quaternionic Conjugacy and Adjoint Ac-
tions”, use Pauli matrices to describe the algebra of quaternions and to derive its
main properties. The author explains how pure quaternions can be used to repre-
sent vectors in R

3 and to write Newton’s equations of motion. The Kepler problem
(motion of a planet around the Sun) is treated as an example. The Cayley-Klein co-
ordinates of a quaternion, their use to describe the three-dimensional rotations and
rigid body dynamics, the links between quaternionic conjugacy and the Lie groups
SU(2) and SO(3) are explained. The Hopf map S3

→ S2 is discussed again in
this new context. Action of unit quaternions by conjugation is taken as a model
to introduce the adjoint action of a Lie group on its Lie algebra. Formulae for the
derivative of a smooth path in a Lie group and of its pull-back to its Lie algebra by
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right or left translations are discussed, and the coadjoint action of a Lie group on
the dual space of its Lie algebra is defined.

Adjoint and coadjoint actions of two Lie groups specially important in Geometric
Mechanics are fully discussed in the two following chapters: “The Special Orthog-
onal Group SO(3)” and “The Special Euclidean Group SE(3), Adjoint and Coad-
joint Actions”. Orbits of motion of a free rigid body are shown to be intersections
of energy surfaces of the Hamiltonian with SO(3)-coadjoint orbits. Formulae for
the adjoint and coadjoint actions of a semi-direct product of Lie groups are derived
and used for the group SE(3) of Euclidean displacements.

Chapter 7, “Euler-Poincaré and Lie-Poisson Equations on SE(3)”, and Chapter 8,
“Heavy Top Equations”, discuss systems whose configuration space is a Lie group.
The Lagrangian of such a system is defined on the tangent space to that Lie group
so that Euler-Lagrange equations can be written under a remarkable form, involv-
ing the Lie algebra of the group, discovered by Poincaré [8] and called by the
author Euler-Poincaré equations. After a Legendre transformation, these equa-
tions are written, in the Hamiltonian formalism, on the dual of the Lie algebra and
involve its canonical Lie-Poisson structure. The heavy top’s configuration space
is SO(3), and the symmetry group of its Lagrangian is the one-dimensional sub-
group S1 of rotations around the vertical axis. In Chapter 8 the author writes that
this symmetry breaking explains why the Lie-Poisson equations of the heavy top
are written on the dual space of the semi-direct product Lie algebra se(3). The re-
viewer prefers the explanation, which rests on the notion of completely orthogonal
Hamiltonian actions, given in his book with Paulette Libermann [6] (Chapter IV,
theorem 7.12 page 233 and section 10.3 page 254). The author describes the Cleb-
sch action principle for the heavy top which is similar to the Hamilton-Pontryagin
action principle of Chapter 2, written with different variables. The last section
“Kaluza-Klein Construction and the Heavy Top”, suspends the heavy top Hamil-
tonian system in a higher dimensional phase space.

Chapter 9, “The Euler-Poincaré Theorem”, presents Euler-Poincaré equations, al-
ready used in the preceding chapters, in a more general setting, and shows that the
Hamilton-Pontryagin principle can be used to derive these equations. The author
also discuss an implicit variational principle called the “Clebsch Euler-Poincaré
principle”, which yields additional informations about the momentum map.

Chapter 10, “Lie-Poisson Hamiltonian Form of a Continuum Spin Chain”, deals
with an infinite-dimensional Hamiltonian system: its configuration space is the set
of smooth maps defined on an interval with values in a Lie group G. The Euler-
Poincaré procedure can be extended and yields Hamiltonian partial-differential
equations. The Lie group G is finally taken to be SO(3) and several possible
Lagrangians are discussed.
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In Chapter 11, “Momentum Maps”, the notions of an Hamiltonian action of a Lie
group on a symplectic manifold and of its momentum map are defined, and some
of their properties are discussed. Of course, these notions appeared in almost all
the preceding chapters. This is a deliberate choice made by the author: mathemat-
ical concepts are used in examples before the statements of their definitions and
general properties. This choice, probably adequate for many readers, may be dis-
turbing for the most mathematically minded. Tangent and cotangent lifts of a Lie
group action on a configuration manifold are defined, and properties of the corre-
sponding momentum map are discussed. The Hopf map again appears when the
momentum map of the SU(2)-action on C

2 is determined, and the calculation of
several Hamiltonian Lie groups actions are proposed as exercises.

The last chapter deals with round rigid bodies rolling on a flat surface. Two
non-holonomic mechanical systems are considered: the Chaplygin’s top (a non-
homogeneous heavy sphere) and the Euler’s disk (a heavy disk), both rolling with-
out sliding on a horizontal plane. The equations of motion are deduced from a non-
holonomic Hamilton-Pontryagin variational principle. These equations are the
same as those deduced from the Euler-Lagrange equations with, in the right hand
side, Lagrange multipliers to account for the constraint forces. When the Chaply-
gin’s top mass distribution has a cylindrical symmetry, the system has an additional
constant of motion called Jellet’s integral. The last section of the chapter, Non-
holonomic Euler-Poincaré Reduction, develops a reduction procedure adapted to
non-holonomic mechanical systems.

Mathematical tools (smooth manifolds, tangent and cotangent bundles, vector fields
and their flows, Lie groups and Lie algebras, action of a Lie group on a smooth
manifold and its tangent and cotangent lifts) are presented, with many examples,
in Appendices A and B. As we already spoke, in the general presentation of the
book, of Appendix C which offers, as exercises, very interesting and pleasing gen-
eralizations of the mechanical systems considered in the book.

4. Conclusion

The two volumes of this book are in fact two separate books. Although the same
subjects are often dealt with in both volumes, each one can be read independently
of the other. Both are very rich in examples, concepts and physical applications.
They will certainly be very useful for many students, and will help to make better
known the problems and methods of Geometric Mechanics.
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