

SCATTERING OF VORTICES IN THE ABELIAN HIGGS MODEL

ROMAN PALVELEV

Communicated by Theodore Voronov

Abstract. We study the scattering of vortices in the Abelian (2+1)-dimensional Higgs model. We show that in the case of the symmetric head-on collision of N vortices their trajectories are rotated by the angle π/N after the collision.

1. Introduction

In this paper we study the scattering of vortices in the Abelian (2+1)-dimensional Higgs model. The vortices, we are considering, are solutions of the vortex equations, arising in the superconductivity theory. They are given by smooth pairs (A, Φ) , consisting of the (electromagnetic) gauge potential A and the (scalar) Higgs field Φ on \mathbb{C} . Such solutions are parameterized (up to gauge equivalence) by the zeros of the Higgs field Φ , so the moduli space of N vortices can be identified with \mathbb{C}^N . The dynamics of vortices in \mathbb{C} is governed by the hyperbolic Ginzburg–Landau action functional. The dynamics of N vortices may be described approximately by geodesics of \mathbb{C}^N in the metric, determined by the kinetic energy of the model. Unfortunately, this metric cannot be computed explicitly. But in a special case of the symmetric scattering of N vortices we can show, without using the explicit form of the metric, that after their head-on collision the configuration of vortices looks the same, only rotated by the angle π/N . In particular, in the case of two vortices, their trajectories are rotated by the angle $\pi/2$ after the head-on collision, so we have the right-angle scattering. This result was already obtained earlier in a number of papers (see [1, 4-6]).

2. Vortex Solutions in the Abelian Higgs Model

The *two-dimensional Abelian Higgs model* is determined by the following *action functional*

$$V(\alpha, \Phi) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\mathbf{d}_{\alpha} \Phi|^2 + F_{12}^2 + \frac{\lambda}{4} (|\Phi|^2 - 1)^2 \right) \mathrm{d}x \mathrm{d}y \tag{1}$$

73