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Abstract. The median stabilization degree (msd, for short) of a median algebra measures the largest possible
number of steps needed to generate a subalgebra with an arbitrary set of generators. With computer assistance,
we found thatmsdof the lattice{−1, 0, 1}4 equals 2. This value is of critical importance to determinemsdof
{−1, 0, 1}n for all n ≥ 5 and to determinemsdof the free median algebraλ(r ) for almost allr ≥ 5.
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1. Introduction

In [2], H.-J Bandelt and the author introduced and studied the median stabilization degree
(msd) of a median algebra. One of the main open problems is to determine the precise
value ofmsdof the latticesLn = {−1, 0, 1}n, n ≥ 4. These examples are fundamental,
since they also yieldmsdof the real space ofn dimensions,Rn. All finite median algebras
can be embedded in a space of the latter type.

Let us briefly recall the main concepts. By amedian algebrais meant a setM with an
operatorm : M3→ M satisfying the following three axioms.

(M1) Idempotence:m(a,a, b) = b.
(M2) Symmetry:m(a, b, c) = m(d, e, f ) for each permutation(d, e, f ) of (a, b, c).
(M3) Associativity:m(a,m(b, c, d), c) = m(m(a, b, c), d, c).

A ternary function with these properties is called amedian operator.It is easy to see that
for eachc ∈ M , the binary operator∧c, defined bya∧c b = m(a, b, c), is a meet operator
andc is the least element of the corresponding semilattice.

If ρ is a metric on a setX, such that for each triplea, b, c ∈ X there is a unique point
m(a, b, c) ∈ X which is geodesically between each two ofa, b, c, then the resulting operator
m is a median operator. An important example of such amedian metricis the “sum metric”
on then-dimensional real space,Rn:

ρ(x, y) =
n∑

i=1

|xi − yi | (wherex = (x1, . . . , xn); y = (y1, . . . , yn)).

∗This paper is dedicated to the memory of my son Wouter, 1974–1993.
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A distributive lattice is a median algebra under the median operator

m(a, b, c) = (a ∧ b) ∨ (b∧ c) ∨ (c∧ a).

In case of a totally ordered set, this amounts to taking the middle one of three points. In
case of a product of totally ordered sets, this amounts to taking the coordinate-wise median.
OnRn, we are lead back to the median, induced by the sum metric.

A subsetX of a median algebraM is median stableprovidedm(X3) ⊆ X. Any median
algebra can be embedded as a median stable subset of a distributive lattice. IfSis a subset of
a median algebraM , then itsmedian stabilization, med(S), is the smallest median stable set
includingS. It can be obtained as

⋃∞
n=0 Sn, whereS0 = Sand (recursively)Sn+1 = m(S3

n).
The setSn represents thenth stage of the stabilization process. Themedian stabilization
degree of M, msd(M), is defined by the following inequalities.

msd(M) ≤ n iff med(S) = Sn for all subsetsS of M (n ∈ N).

Median stabilization is required in several results: cf., e.g., Chepoi [3] (optimal facility
location) and van de Vel and Verheul [5] or van de Vel [4, p. 130] (Steiner trees). The amount
of computations involved in stabilizing a set is quite sensitive tomsd.

There is an important class of so-calledfreemedian algebras,λ(r ) (r ∈ N). The algebra
λ(r ) is the median stabilization of anr -point setS, and is free in the sense that any function
of S into a median algebraM can be extended (uniquely) to a homomorphismλ(r )→ M .
See [4] for an explicit construction ofλ(r ). Almost by definition, if ther generators ofλ(r )
stabilize ink steps, thenany r-point set inanymedian algebra stabilizes in at mostk steps.
It appears thatmsdof λ(r ) is somewhat larger than thisk.

In [2], msdof Ln has been determined up to one or two units for alln. The first value
which is not known ismsd(L4); it is predicted to be 2 or 3. In this paper, we discuss an
algorithm, based in part on certain results of [2] and which has been implemented in C. The
program has been run on the computer system of the Vrije Universiteit Amsterdam with
a total runtime (under a time-sharing operating system) of over 31 hours. Our discussion
of the algorithm may clarify why it takes so long to produce information on a seemingly
simple lattice. The resulting fact thatmsd(L4) = 2 is a key result to computemsd(Ln) for
all n ≥ 5 and to computemsd(λ(r )) (with a few exceptions).

2. Preliminary results

A slight modification of an argument in [2] yields the following result on products.

Proposition 2.1 If X1, . . . , Xn+1 are totally ordered sets, and if msd of a product of any
n of them is at most k, then msd(

∏n+1
i=1 Xi ) ≤ k+ 1.

We next describe some concepts related to convexity and refer to the monograph [4]
for further information. A subsetC of a median algebraM is convex provided



DETERMINATION OFmsd(Ln) 163

m(C × C × M) ⊆ C. Note the difference with the definition of a median stable set.
Each subsetA of M is included in a smallest convex subsetco(A), theconvex hull of A.
For an alternative viewpoint on convexity, theinterval abjoining two pointsa, b of M is
defined as the set of all pointsm(a, b, x) for x ∈ M . Equivalently,

ab= {x | m(a, b, x) = x}.

If m is induced by a metric, thenab is also equal to the set of points which are geodesically
betweena andb. A set is convex iffab⊆ C for eacha, b ∈ C.

In Section 1 we already mentioned that each pointc of a median algebraM is the least
element of a semilattice(M,∧c). The corresponding partial order≤c can be described as
follows.

x ≤c y iff x ∈ yc.

This order is known as thebase-point orderbased atc.

Proposition 2.2 [2] Let X be a median algebra and let S⊆ X. Then a point c∈ X is
generated by S, that is, c ∈ med(S), iff it is generated by the set

{x | x ≥c s for some s ∈ S}.

In either situation, the same number of steps is required.

As a consequence of this result, each minimal set generatingc consists of incomparable
points in the base-point order ofc.

A median graphis a connected graph of which the geodesic metric is a median metric.
Each finite median algebra can be seen as a median graph, where two distinct pointsa, b
form an edge provided the intervalab equals{a, b}. In this situation, the median operator
induced by the geodesic metric equals the original median operator. Theconvex neighbor-
hoodof a vertex in a median graph is the convex hull of the set, consisting of the vertex and
all of its neighbors.

Proposition 2.3 [2] In a finite median graph G, the following assertions are equivalent
for n <∞.
(1) G has msd at most n.
(2) For each vertex the convex neighborhood has msd at most n.

The previous result has been used to prove thatmsd(Rn) and (more generally)msdof
a product ofn non-trivial totally ordered sets, is equal tomsd(Ln). A key result in [2]
is the determination ofmsdof the graphicn-cube for alln, leading to a slightly unsharp
determination ofmsd(Ln). Some values are presented in Table 1. Forn = 4, 5, the upper
bound is corrected for the result in Proposition 2.1.
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Table 1. Bounds ofmsd(Rn) = msd(Ln).

n Lower Upper

4 2 3

5 3 4

6 3 5

7, 8, 9 4 6

10–13 5 7

14 6 7

15–19 6 8

20, 21 7 8

22–28 7 9

Another consequence of Proposition 2.3 is, thatmsd(Ln) is the least numberk such that
if a subset ofLn generates the origin0, then it does so in at mostk steps. Indeed, the convex
neighborhood of0 equals the entireLn, and for eachc ∈ Ln there is a translation of the
convex neighborhood ofc, mappingc to 0.

A setH ⊆ M is ahalf-spaceprovidedH andM\H are convex. A median algebra satisfies
theKakutani separation property:two disjoint convex sets always extend to complementary
half-spaces.

Proposition 2.4 [4] Let p∈ M and S⊆ M. Then p∈ med(S) iff each two half-spaces
of M containing p have a non-empty intersection with S.

The half-spaces ofLn are product sets, of which one factor consists of an initial or final
segment of{−1, 0, 1}; all other factors are full. This provides an algorithm of complexity

2n(n− 1)(#S)

to determine whether a given point ofLn is in the median stabilization of a setS.
Usually, most points are found during the first stages of the stabilizing process and few

points persist till the last stage. Hence, the complexity of an algorithm computingmed(S)
directly should be estimated as(#med(S))4/6. Even worse, the number of points inmed(S)
(which can be quite large even for smallS) is usually not known in advance. The definition
of a free median algebra implies that #med(S) ≤ #λ(#S). A brief look at a table of values
#λ(r ) (cf. [4, p. 240]) or at Table 2 (dimension ofλ(r )) may complete these pessimistic
remarks. A geometric method for generating median graphs in Boolean algebras has been
proposed in [8], but we have no estimation of its complexity.

The last result may help to decrease the number of sets to be investigated. The argument
is a simple case analysis.

Proposition 2.5 Let S⊆ Ln be a set of incomparable points in the base-point order of
the origin. If two members of S are neighbors of the origin0, and if #S ≥ 3, then0 ∈
med(S) and0 is obtained at the first stage of the stabilization process.
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Table 2. Invariants ofλ(r ).

r n = dim(λ(r )) dn · r/(r − 1)e msd(λ(r )) r n = dim(λ(r )) msd(λ(r ))

3 1 2 1 4 3 2

5 4 5 3 6 10 5

7 15 18 6 8 35 8

9 56 63 9 10 126 11

11 210 231 12–13 12 462 14

13 792 858 15 14 1,716 18

15 3,003 3,218 19 16 6,435 21

17 11,440 12,155 22–23 18 24,310 24

19 43,758 46,189 26 20 92,378 28

21 167,960 176,358 29 22 352,716 31

23 646,646 676,039 32 24 1,352,078 34

25 2,496,144 2,600,150 36 26 5,200,300 37

27 9,657,700 10,029,150 39 28 20,058,300 41

29 37,442,160 38,779,380 42 30 77,558,760 44

31 145,422,675 150,270,097 46 32 300,540,195 47

33 565,722,720 583,401,555 49 34 1,166,803,110 51

35 2,203,961,430 2,268,783,825 52 36 4,537,567,650 54

37 8,597,496,600 8,836,315,950 56 38 17,672,631,900 58

39 33,578,000,610 34,461,632,205 59 40 68,923,264,410 61

3. The algorithm

According to [2], a 4-point set always stabilizes in at most two stages. So we are interested
in subsets ofL4 with at least five points. Theorem 2.9(1) of [2] yields that no sets of
cardinality>17 need to be considered. This still leaves us with an astronomical number of
sets, even when divided by the number of symmetries (384) ofL4. Propositions 2.2, 2.3,
and 2.5 reduce the number of critical sets considerably, but the size of this reduction is hard
to estimate.

Table 3 is used to represent all vectors ofL4 by a numberp, where 0≤ p ≤ 80. The
actual order is irrelevant, except that 0 corresponds with the origin(0, 0, 0, 0). We consider
a subsetS⊆ L4, such that

(i) No two members ofSare comparable.
(ii) At most one member ofS is a neighbor of 0.

(iii) No q ∈ S is in med(S\{q}).

We refer to such sets as “admissible”. The observations in Section 2 reduce the computation
of msd(L4) to finding out whether an admissible set generates 0 and (if this happens to be
the case) to find out whether 0 is introduced before the third stage.
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Table 3. Vector codes.

Point Coordinates Point Coordinates Point Coordinates

0 0, 0, 0, 0 27 0, 0, 0, 1 54 0, 0, 0,−1

1 1, 0, 0, 0 28 1, 0, 0, 1 55 1, 0, 0,−1

2 −1, 0, 0, 0 29 −1, 0, 0, 1 56 −1, 0, 0, −1

3 0, 1, 0, 0 30 0, 1, 0, 1 57 0, 1, 0,−1

4 1, 1, 0, 0 31 1, 1, 0, 1 58 1, 1, 0,−1

5 −1, 1, 0, 0 32 −1, 1, 0, 1 59 −1, 1, 0, −1

6 0, −1, 0, 0 33 0, −1, 0, 1 60 0, −1, 0, −1

7 1, −1, 0, 0 34 1, −1, 0, 1 61 1, −1, 0, −1

8 −1, −1, 0, 0 35 −1, −1, 0, 1 62 −1, −1, 0, −1

9 0, 0, 1, 0 36 0, 0, 1, 1 63 0, 0, 1,−1

10 1, 0, 1, 0 37 1, 0, 1, 1 64 1, 0, 1,−1

11 −1, 0, 1, 0 38 −1, 0, 1, 1 65 −1, 0, 1, −1

12 0, 1, 1, 0 39 0, 1, 1, 1 66 0, 1, 1,−1

13 1, 1, 1, 0 40 1, 1, 1, 1 67 1, 1, 1,−1

14 −1, 1, 1, 0 41 −1, 1, 1, 1 68 −1, 1, 1, −1

15 0, −1, 1, 0 42 0, −1, 1, 1 69 0, −1, 1, −1

16 1, −1, 1, 0 43 1, −1, 1, 1 70 1, −1, 1, −1

17 −1, −1, 1, 0 44 −1, −1, 1, 1 71 −1, −1, 1, −1

18 0, 0, −1, 0 45 0, 0, −1, 1 72 0, 0, −1, −1

19 1, 0, −1, 0 46 1, 0, −1, 1 73 1, 0, −1, −1

20 −1, 0, −1, 0 47 −1, 0, −1, 1 74 −1, 0, −1, −1

21 0, 1, −1, 0 48 0, 1, −1, 1 75 0, 1, −1, −1

22 1, 1, −1, 0 49 1, 1, −1, 1 76 1, 1, −1, −1

23 −1, 1, −1, 0 50 −1, 1, −1, 1 77 −1, 1, −1, −1

24 0, −1, −1, 0 51 0, −1, −1, 1 78 0, −1, −1, −1

25 1, −1, −1, 0 52 1, −1, −1, 1 79 1, −1, −1, −1

26 −1, −1, −1, 0 53 −1, −1, −1, 1 80 −1, −1, −1, −1

The algorithm described below aims at enlarging an admissible subset ofL4 by adding
one point at the time. When a set “fails” (that is, if it generates 0 in at most two steps), the last
introduced point is removed, and the next one is tried. The experimental observation, that
specific input sets finish within an hour—and most often within minutes or even seconds—
made us realize that a (sharply programmed) algorithm would make a chance.

3.1. The basic algorithm

For convenience, we usepush(p, stack) andpop(p, stack) to describe the operations of
pushing the value ofp on top of the stack, respectively, of popping the top value from the
stack and assigning it top.
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Input: a set S and an empty stack of additional points.
p= 0.
while p ≤ 81 do

begin
(*) p← p+ 1.

if p = 81,
begin

if the stack is not empty,
begin

pop(p, stack),
S← S\{p},
go to (*).

end
if the stack is empty, stop: msd equals 2.

end
if two points of S∪ {p} are neighbors of 0, go to (*).
if p ∈ med(S), or q ∈ med({p} ∪ S/{q}) for some q ∈ S,

(**) or some member of S is comparable with p in ≤0, go to
(*).
if 0 6∈ med(S∪ {p}),
begin

S← S∪ {p},
push(p, stack),
go to (*).

end
if 0 ∈ med(S∪ {p}),
begin

A0 ← S∪ {p}, A1 ← m
(
A3

0

)
, A2 ← m

(
A3

1

)
.

if 0 6∈ A2, stop: msd equals 3.
else
begin

pop(p, stack),
S← S\{p},
go to (*).

end
end

end

A word of explanation may be necessary concerning (**). It is clear that ifq ≤0 p for
someq ∈ S or if p ∈ med(S), then p can be skipped. But what ifp ≤0 q or if q ∈
med({p} ∪ S\{q}) for someq ∈ S? In this situation, one would rather expect the pointq to
be skipped. However, up to symmetry, the basic algorithm will be called upon for all input
sets of a certain size. Hence the set{p} ∪ S\{q}) (or a symmetric one) will be considered
sooner or later.
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The basic algorithm is applied in four steps.

1. Determine all types of 4-point subsets of the “positive” 4-cube ofL4. There are precisely
five of them; the following are representative.

{1, 12, 30, 36}, {4, 10, 12, 28}, {4, 10, 28, 39}, {4, 10, 30, 36}, {13, 31, 37, 39}.

(The first set is superfluous, as it generates the origin in two steps.) Then we determine
all extensions (up to symmetry) to admissible 5-point subsets. The algorithm is applied
to each of them. No superset stabilizes in more than two stages.

2. Assume that admissible 5-point sets contain at most three points in each single cube. To
find all possible sets up to symmetry, we first determine all possible types of 3-sets in
the “positive” 4-cube ofL4. There are seven types, represented by

{1, 12, 30}, {4, 10, 12}, {4, 10, 28}, {4, 10, 30}
{4, 10, 39}, {4, 37, 39}, {13, 31, 37}.

Next we determine all extensions (up to symmetry) to admissible 5-point subsetsS. We
apply the basic algorithm to each of them, including an additional test just before (**)
to eliminate thosep for which S∪ {p} has more than three points in some cube. No
superset stabilizes in more than two stages.

3. Assume that admissible 5-point sets contain at most two points in each single cube.
To find all possible sets up to symmetry, we first determine all possible types of 2-
point subsets of the “positive” 4-cube ofL4. There are six types of 2-sets to start
with.

{1, 12}, {1, 39}, {4, 10}, {4, 36}, {4, 37}, {13, 31}.

Then we determine all extensions (up to symmetry) to admissible 5-point subsets. To
each of these setsS, we apply the basic algorithm, including an additional test just before
(**), eliminating thosep for which S∪ {p} has more than two points in some cube.
Again, no superset stabilizes in more than two stages.

4. Assume that the admissible 5-point sets contain at most one point in each single cube.
To find all possible sets up to symmetry, we start with all possible types of singleton
subsets of the “positive” 4-cube ofL4, and we determine all extensionsS to admissible
5-point subsets. The singletons used were

{1}, {4}, {13}, {40}.

To each of the setsS, we apply the basic algorithm, including an additional test just
before (**), eliminating thosep for which S∪ {p} has more than one point in some
cube. Again, no superset stabilizes in more than two stages.
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All admissible starting setsShave of course been tested in advance on generating the origin
in three steps before letting them grow.

3.2. Comments on the implementation

(1) We originally wanted to run the basic algorithm with all types of 4-point sets as an
input list. Note, however, that input sets like{13, 31, 37, 39} are highly symmetric.
For such sets, the procedure tends to take unnecessarily long, since several choices of a
fifth point correspond under an intrinsic symmetry. For this reason, we have specified
all possible fifth points as well, eliminating those which correspond under symmetry.
(The basic algorithm doesn’t test for symmetry because this is rather expensive and
hardly effective if the number of points grows larger.)

(2) Another time-saving device is to determine a well-chosen “start value”v for each
input set before the basic algorithm is called upon. Initially,v = 0 for each set in
consideration. Ifc denotes the maximal number of points allowed in a single cube,
then we first determine all types ofc-point subsets of the “positive” 4-cube. Next, we
consider each pointp with v + 1 ≤ p ≤ 80 as a possible next point. If the resulting
set is admissible, and if no symmetric set has been introduced yet, then the set is added
to the current input list and the start valuev = p is assigned to it. Ifc+ 1 < 5 then
the process is repeated on each of the sets described in the current input list, leading to
a new list of enlarged sets, each with a new start value. This is, in fact, a preliminary
“breadth-first” search.

(3) In regard to the fact, that a computation ofmed(S) is rather expensive, our stack
keeps more information than just the additional points. In fact, the entire current set is
remembered, together with each median and an indication at which stage it was found.
When the set is enlarged with a pointp, we only have to compute the new medians
involving p and to correct for old medians which are now obtained at an earlier stage.

When the basic algorithm is called upon, it reads both a 5-point input set and a start
value, and interprets the latter as the initial value ofp. Considering that 4-point input sets
need up to 1 hour to finish if no precautions are taken, the time profit is spectacular (see
Table 4).

Table 4. Runtimes of cases 1–4.

Case No. of starting sets Time (s) No. of sets investigated Time (s)

1 34 0.1 171,864 2,554

2 362 4.8 3,503,719 53,977

3 721 20.9 3,178,123 52,448

4 742 5.6 406,876 5,113

Total 1,859 31.4 7,260,582 114,092
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Table 5. Growth ofmsd(Qn) in terms ofn.

msd n≤ msd n≤ msd n≤ msd n≤

0 2 15 711 30 311,073 45 136,216,567

1 3 16 1,066 31 466,609 46 204,324,850

2 4 17 1,599 32 699,913 47 306,487,275

3 6 18 2,398 33 1,049,869 48 459,730,912

4 9 19 3,597 34 1,574,803 49 689,596,368

5 13 20 5,395 35 2,362,204 50 1,034,394,552

6 19 21 8,092 36 3,543,306 51 1,551,591,828

7 28 22 12,138 37 5,314,959 52 2,327,387,742

8 42 23 18,207 38 7,972,438 53 3,491,081,613

9 63 24 27,310 39 11,958,657 54 5,236,622,419

10 94 25 40,965 40 17,937,985 55 7,854,933,628

11 141 26 61,447 41 26,906,977 56 11,782,400,442

12 211 27 92,170 42 40,360,465 57 17,673,600,663

13 316 28 138,255 43 60,540,697 58 26,510,400,994

14 474 29 207,382 44 90,811,045 59 39,765,601,491

In Table 4 the first ‘time column’ presents the time needed to compute all 5-point input
sets. The second ‘time column’ is the actual runtime of our algorithm. The number of
starting sets and the number of sets visited have been communicated by a program counter.

The output of our program leads to the conclusion thatmsd(L4) = 2. This fact has several
consequences.

Corollary 3.1 For all n 6= 2, 3,msd of Ln equals msd of Qn.

Proof: The value ofmsd(Qn) can be described as follows [2]. Letq0 = 2 and (recursively)
qk+1 = b3qk/2c. Thenmsd(Qn) ≤ k iff n ≤ qk; see Table 5. We remind the reader that
msd(L2) = 1 andmsd(L3) = 2. So, the result is correct forn ≤ 4. Assume the result to be
valid up to but not includingn > 4. If n = qk for somek, then (asn− 1 6= 2, 3)

msd(Ln−1) = msd(Qn−1) = msd(Qn)− 1,

and the result follows from Proposition 2.1. Letm = qk < n < qk+1. By the definition
of qk+1, there exist threem-point setsCj for j = 1, 2, 3, each two of which cover the set
{1, 2, . . . ,n}. Let S be any subset ofLn generating the origin0. Consider the projection
π j : Ln → Lm that drops all factors numbered by an indexi 6∈ Cj . Thenπ j (S) generates
the origin ofLm and, asm = qk ≥ 4, we need at mostk stages for this. By imitating this
process on the original setS, some pointpj ∈ Ln can be generated in at mostk stages, such
that for eachi ∈ Cj the i th coordinate ofpj is 0. We obtain0 = m(p1, p2, p3) from S in
at mostk+ 1 stages. 2



DETERMINATION OFmsd(Ln) 171

Note the critical role of the result in dimension 4. It is not difficult to deduce from
the previous corollary that a product ofn non-degenerate trees hasmsdequal tomsd(Qn)

providedn 6= 1, 2, 3.
The second corollary involves the “cubical dimension”dim(M) of a finite median algebra

M , which is defined as the largest numbern such that the graphicn-cube can be embedded
in M .

Corollary 3.2 If n = dim(λ(r )) then msd ofλ(r ) equals msd of Qn for even r and for
“most” odd r. In exceptional cases, msd may be one unit larger.

Proof: According to [4], p. 237, the cubical dimensionn of λ(r ) is given by

n =
(

r − 1

dr/2e
)
.

On the other hand,λ(r ) can be embedded intoRm iff(
r

dr/2e
)
≤ 2m;

cf. [4, Chapter II, Sections 1.22.5, 2.17]. Hence,λ(r ) can be embedded into the real space
of n dimensions ifr is even, and it can be embedded into the real space ofdn · r/(r − 1)e
dimensions ifr is odd. Assuming that there is no regular connection between the relevant
sequences, the probability that the interval [n, n · r/(r − 1)] hits someqk is (roughly) equal
to 4/(3 · r ). 2

For r ≤ 40, the ambiguity aboutmsd(λ(r )) occurs only ifr = 11, 17; cf. Table 2.
The phenomenon can perhaps be avoided to some extent by noticing thatmsdof λ(r ) is
determined bymsdof its convex neighborhoods. It is possible that all neighborhoods can
be embedded in a real space of dimension less thann · r/(r −1). Forr = 5 this is provably
not the case. For largerr , no information is available yet.

With the exception of the above discussed ambiguity, the original problems onmsd,
raised in [2], have now largely been solved.
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