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1. Introduction

The algebra of noncommutative symmetric functionsSym, introduced in [4], is the free
associative algebra (over some field of characteristic zero) generated by an infinite sequence
(Sn)n≥1 of noncommuting indeterminates (corresponding to the complete symmetric func-
tions), endowed with some extra structure imitated from the usual algebra of commutative
symmetric functions.

Noncommutative symmetric functions have already been used in different contexts. They
provide a simple and unified approach to several topics such as noncommutative continued
fractions, Pad´e approximants and various generalizations of the characteristic polynomial
of noncommutative matrices arising in the study of enveloping algebras and their quantum
analogues (cf. [4] and [11]). Moreover they gave a new point of view towards the classical
connections between the free Lie algebra and Solomon’s descent algebra (see [3], [6] and
[12] for more details). Note also that noncommutative analogues of some aspects of the
representation theory of the symmetric group (also related with free Lie algebras) have been
obtained (cf. [8]).

More recently, quantum interpretations of noncommutative symmetric functions and
quasi-symmetric functions have been obtained. Indeed it appears that the algebra of non-
commutative symmetric functions (resp. of quasi-symmetric functions) is isomorphic to the
Grothendieck ring of finitely generated projective (resp. finitely generated) modules over
0-Hecke algebras. Working with the quantum dual point of view, noncommutative ribbon
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algébrique”, FCAR (Qu´ebec) and NSERC (Canada).
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Schur functions and quasi-ribbon functions can be in particular considered as cocharacters of
irreducible and projective comodules over the crystal limit of Dipper and Donkin’s version
[1] of the quantum linear group (cf. [7] for more details).

In this paper, we present a new aspect of noncommutative symmetric functions. We
show how to endowSymwith a natural structure of cochain complex which strongly relies
on the combinatorics of ribbons. It is interesting to observe that our construction is purely
noncommutative: it is not possible to define differentials on ordinary commutative sym-
metric functions by taking the commutative images of the differentials constructed in this
paper. We must stress the fact that we do not have at this moment any intrinsic interpretation
of our complex. According to all the contexts where noncommutative symmetric functions
play a role, this complex should certainly have some natural interpretation in the context of
Lie algebras or of quantum linear groups.

The paper is organized as follows. In Section 2, we briefly present noncommutative
symmetric functions (the reader is referred to [2, 4, 6] or [7] for more details on this
subject). Section 3 is devoted to the construction of the cochain and chain complexes that
are studied in the paper. In Section 4, we give explicit expressions for the images of the
corresponding differentials using different classical bases ofSym. Finally Section 5 is
devoted to the proof of our main result, i.e., the acyclicity of the complexes considered.

2. Noncommutative symmetric functions

The algebra ofnoncommutative symmetric functionsis the free associative algebraSym=
Q〈S1, S2, . . .〉 generated by an infinite sequence of noncommutative indeterminatesSk,
calledcompletefunctions. For convenience, we setS0= 1. Let t be another variable com-
muting with all theSk. Introducing the generating series

σ(t) :=
+∞∑
k=0

Sk tk,

one defines other noncommutative symmetric functions by the following relations:

λ(t) = σ(−t)−1,

d

dt
σ(t) = σ(t) ψ(t), σ (t) = exp(φ(t)),

whereλ(t), ψ(t) andφ(t) are the generating series given by

λ(t) :=
+∞∑
k=0

3k tk

ψ(t) :=
+∞∑
k=1

9k tk−1, φ(t):=
+∞∑
k=1

8k

k
tk.

The noncommutative symmetric functions3k are calledelementary functions. On the other
hand,9k and8k are respectively calledpower sumsof thefirst andsecond kind.

The algebraSym is graded by the weight functionw defined byw(Sk) = k. Its homoge-
neous component of weightn is denotedSymn. If (Fn) is a sequence of noncommutative
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symmetric functions withFn ∈ Symn for everyn ≥ 1, then we set

F I = Fi1 Fi2 . . . Fir

for every compositionI = (i1, i2, . . . , i r ). The families(SI ), (3I ), (9 I ) and(8I ) all form
homogeneous bases ofSym.

The set of all compositions of a given integern is equipped with thereverse refinement
order, denoted≺. For instance, the compositionsJ of 4 such thatJ ≺ (1, 2, 1) are exactly
(1, 2, 1), (3, 1), (1, 3) and(4). The noncommutativeribbon Schur functions(RI ) can then
be defined by one of the two equivalent relations

SI =
∑
J≺I

RI , RI =
∑
J≺I

(−1)`(I )−`(J) SJ,

where`(I ) denotes thelengthof the compositionI , i.e., the number of its parts. One can
easily show that the family(RI ) is a homogeneous basis ofSym.

The commutative image of a noncommutative symmetric functionF is the (commutative)
symmetric functionf obtained by applying toF the algebra morphism which mapsSn

ontohn, using here the notation of Macdonald [9]. The commutative image of3n is then
en. On the other hand,9n and8n are both mapped topn. Finally RI is sent to an ordinary
ribbon Schur function, which is usually denoted byr I .

There is also a strong connection between noncommutative symmetric functions and the
descent algebra of the symmetric group. This is the subalgebra ofQ[Sn], the group algebra
of Sn, defined as follows. Let us first recall that an integeri ∈ [1, n − 1] is said to be a
descentof a permutationσ ∈ Sn iff σ(i ) > σ(i + 1). Thedescent setof a permutation
σ ∈ Sn is the subset of [1, n− 1] that consists of all descents ofσ . If I = (i1, . . . , i r ) is a
composition ofn, we associate with it the subsetA(I ) = {d1, . . . ,dr−1 } of [1, n] defined
by dk = i1+· · ·+ i k for everyk. We setDI to be the sum inQ[Sn] of all permutations with
descent setA(I ). Solomon [13] has shown that theDI form a linear basis of a subalgebra
of Q[Sn] which is called thedescent algebraof Sn and denoted by6n. An isomorphism
of graded vector spaces

α :6 =
+∞⊕
n=0

6n → Sym=
+∞⊕
n=0

Symn

is obtained by setting

α(DI ) = RI

for every compositionI . The direct sum6 can be endowed with an algebra structure by
settingxy = 0 for everyx ∈ 6p and y ∈ 6q wheneverp 6= q. The internal product,
denoted∗, onSym is defined by requiring thatα be ananti-isomorphism, i.e., by setting

F ∗ G = α(α−1(G) α−1(F)),

for every noncommutative symmetric functionsF andG.
The graded dual ofSym can also be identified to the algebraQSym of quasi-symmetric

functions introduced by Gessel [5]. LetX be an infinite totally ordered commutative
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alphabet. Let us then recall that a formal seriesf ∈ Q[[ X]] is said to bequasi-symmetric
iff one has(

f | yi1
1 yi2

2 . . . yik
k

) = ( f | zi1
1 zi2

2 . . . zik
k

)
for every sequencesy1 < y2 < · · · < yk andz1 < z2 < · · · < zk of elements ofX and for
every exponentsi1, i2, . . . , i k ∈ N. Here,( f | y) stands for the coefficient ofy in f . The
algebraQSym inherits a grading fromQ[[ X]]. A natural homogeneous basis ofQSym is
then provided by thequasi-monomial functions(MI ) defined by

MI =
∑

y1<y2<···<yr

yi1
1 yi2

2 · · · yir
r

for every compositionI = (i1, i2, . . . , i r ). Another convenient basis is formed by thequasi-
ribbon functions(FI ) (also called “fundamental” quasi-symmetric functions by Gessel)
defined by

FI =
∑
JÂI

MJ .

A pairing〈·, ·〉 betweenQSymandSymcan equivalently be defined by one of the following
relations

〈MI , SJ〉 = 〈FI , RJ〉 = δI ,J

whereI , J are arbitrary compositions.

3. Constructions of differentials

3.1. A coboundary operator onSym

We devote this section to the construction of a coboundary operator onSym. To this purpose,
we first need to introduce some notation concerning ribbons and compositions. LetI be a
composition ofn and letr (I ) be the ribbon diagram associated withI . For every integer
i ∈ [1, n], suppressing thei th box in r (I ) (the boxes ofr (I ) are numbered from left to
right and top to bottom by all integers between 1 andn) breaks it into two ribbon diagrams
r (I , i )− andr (I , i )+, in this order. We denoteI −(i ) and I +(i ) the compositions ofi −1
andn−i whose ribbon diagrams are respectivelyr (I , i )− andr (I , i )+.

Example 3.1 For the compositionI = (2, 1, 3, 1), the corresponding ribbon diagram is
(we indicated here the numbering of every box ofr (I ))

1 2

3

4 5 6

7 .

Then, e.g.,I −(3) = (2), I +(3) = (3, 1) and I −(4) = (2, 1), I +(4) = (2, 1).
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Let us also recall two natural operations on compositions. IfI = (i1, . . . , i r ) and J =
( j1, . . . , js) are respectively compositions ofn andm, one defines two new compositions
I · J and I G J by setting

I · J = (i1, . . . , i r , j1, . . . , js) and I G J = (i1, . . . , i r−1, i r + j1, j2, . . . , js).

In other words,I · J and I G J are the compositions corresponding to the two different
ways of concatenating the ribbon diagram ofJ at the end of the ribbon diagram ofI . The
product of two noncommutative ribbon Schur functions can easily be described using these
two operations. Indeed, one has

RI RJ = RI ·J + RI GJ

for any compositionsI andJ (cf. [4]).
We can now define an operatorδn : Symn→ Symn−1 by setting

δn(RI ) = 2 RI +(1) +
n−1∑
i=2

(−1)i−1 RI −(i ) RI +(i ) + (−1)n−1 2 RI −(n).

This leads to a linear operatorδ onSym defined by

δ =
+∞⊕
n=0

δn.

The following proposition shows thatδ endowsSym with a structure of cochain complex.

Proposition 3.2 The familyR = (Symn, δn)n≥0 is a cochain complex.

Proof: We have to check thatδ2 = 0. To provide a simple proof of this result, we shall
now introduce a graphic notation. We use the notation to denote a generic
ribbon diagram encoding a noncommutative ribbon Schur function. We also denote by

•

the sum of thetwo ways of gluing the second ribbon diagram at the end of the first one.
Thus this notation encodes the product of two nontrivial ribbon Schur functions. Observe
that when one of the ribbon diagrams is empty, both ways of gluing one diagram at the end
of the other give the same result. Hence we have

∅ • = • ∅ = 2 .

The reader will easily see that the operation• (extended to formal linear combinations of
ribbon diagrams) is associative. Before going back to our proof, let us introduce the last
piece of notation. Ifr (I ) = is a ribbon diagram, then

i•
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will stand forr (I , i )− • r (I , i )+. We can now rewrite the definition ofδ as

δ( ) =
n∑

i=1

(−1)i−1 i• . (1)

Therefore

δ(
i• ) =

i−1∑
j=1

(−1) j−1 j• i•

+
n∑

j=i+1

(−1) j i• j•

for any function of the form
i• . Using the two last relations, we obtain

δ2( ) =
n∑

i=1

(−1)i−1

(
i−1∑
j=1

(−1) j−1 j• i•

+
n∑

j=i+1

(−1) j i• j•
)

=
∑

1≤ j<i≤n

(−1)i+ j j• i•

−
∑

1≤i< j≤n

(−1)i+ j i• j• = 0,

as desired. 2

3.2. First properties

The following proposition gives a compatibility ofδ with the multiplication of noncommu-
tative ribbon Schur functions.

Proposition 3.3 For all compositions I and J, one has

δ(RI RJ) = δ(RI ) RJ + (−1)`(I ) RI δ(RJ). (2)

Proof: The formula can easily be proved using the graphical formalism introduced in the
proof of Proposition 3.2. Using (1), we obtain for every compositionsI andJ:

δ
( I • J )
=

l (I )∑
i=1

(−1)i−1 i• • J

+
l (I )+l (J)∑
i=l (I )+1

(−1)i−1 I • i•
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=
(

l (I )∑
i=1

(−1)i−1 i•
)
• J

+ (−1)l (I )
I •

(
l (J)∑
i=1

(−1)i−1 i•
)

= δ
( I ) • J + (−1)l (I )

I • δ( I )
,

as announced. 2

We shall now give some basic symmetry properties ofδ. Let us first introduce some
notation concerning compositions. IfI = (i1, . . . , i r ) is a composition,̄I denotes themirror
imageof I , i.e., the composition(i r , . . . , i1). We also denote byI ∼ the composition
whose ribbon diagram is the conjugate diagram of the diagram ofI . The composition
I = (2, 1, 3, 1) of Example 3.1 is for instance self conjugate, i.e., one has

I ∼ = I = (2, 1, 3, 1),

whereasI ∼ = (2, 1, 2) when I = (1, 3, 1). The following result is easy to check.

Proposition 3.4 For every composition I, one has

δ(RI ∼) = δ(RI )
∼ and δ(RĪ ) = (−1)l (I )−1 δ(RI ). (3)

3.3. A decomposition ofδ

Let us now introduce two new operatorsδ+n andδ−n from Symn into Symn−1 by setting

δ+n (RI ) =
n∑

i=1

(−1)i−1 RI −(i )·I +(i ) and δ−n (RI ) =
n∑

i=1

(−1)i−1 RI −(i ) FI +(i ),

for every compositionI of n. These two operators are associated in an obvious way with
the two ways of gluing a ribbon diagram at the end of another. Definingδ+ andδ− as the
direct sum of the operatorsδ+n andδ−n , we clearly have

δ = δ+ + δ−. (4)

Moreover it is easy to see (cf. proof of Proposition 3.2) thatδ+ andδ− are also differentials.
We can now summarize our results in the following proposition.

Proposition 3.5 δ+ andδ− are two differentials whose sum isδ.

This shows that the cochain complexR can be decomposed into two cochain complexes,
denotedR+ andR−, naturally associated with the two differentialsδ+ andδ−.

Note 3.6 Using relation (4) and the fact thatδ, δ+ and δ− are differentials, one can
immediately deduce thatδ+ ◦ δ− + δ− ◦ δ+ = 0. In fact, a stronger relationship holds
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betweenδ+ andδ−. The reader can indeed easily check that one has

δ+ ◦ δ− = δ− ◦ δ+ = 0.

3.4. Dual boundary operators

One can transfer by duality every cochain complex defined onSym into a chain complex on
QSym. We can thus associate to every operatorδn a dual operator∂n such that the following
diagram is commutative (here the∗ arrows correspond to the natural duality betweenSym
andQSym (cf. Section 2)):

Symn−1
δn← Symn

QSymn−1 →
∗
↓ ↓

∗

∂n
QSymn

This defines a differential∂ (the direct sum of all operators∂n) on the commutative algebra
of quasi-symmetric functions. This differential is characterized by

〈∂(FI ) | RJ〉 = 〈FI | δ(RJ)〉 (5)

for every compositionsI and J. We can of course use the same technique to define two
others differentials∂+ and∂− (the dual operators ofδ+ andδ−) whose sum gives∂.

4. Differentials in classical bases

In this section we give explicit expressions for the matrices of the differentialδwith respect to
classical bases ofSym. Let us introduce some more notation. IfF = (FI ) (resp.G = (GI ))
is a basis ofSymn (resp.Symn−1), we denote byDn(F,G) the 2n−1× 2n−2 matrix defined
by

δ(FI ) =
∑

J`n−1

(Dn(F,G))I J GJ .

We also associate with everyn×m matrix M , then×m matrix M̃ defined by

M̃i j = Mn−i+1,m− j+1.

It is easy to see that̃M is obtained fromM by a symmetry with respect to its center. Finally,
whenM is an×m matrix with an even numbern = 2k of rows, we denote byM (1) (resp.
by M (2)) thek×m submatrix ofM formed by the first (resp. last)k rows of M .
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4.1. Differentials of ribbon Schur functions

The matricesDn(R, R) give explicit expressions for the functionsδ(RI ) in the ribbon basis
of Sym. They can be recursively constructed as follows.

Proposition 4.1 For every n≥ 3, one has

Dn(R, R) =


An

−I2n−3

I2n−3

I2n−3

−I2n−3

Ãn


where I2n−3 denotes the identity matrix of order2n−3, and An is a2n−2×2n−3 matrix defined
by the following recursive rules

A3 =
(

3
1

)
, A4 =


0 1
−1 2

0 −1
1 −2

 and An =



An−2

−I2n−5

I2n−5

02n−5

−I2n−5

−Bn−1

I2n−4

2 I2n−4

02n−4

I2n−4

Bn


for every n≥ 5, where Bn denotes the2n−3× 2n−4 matrix defined by

B4 =
(−1
−2

)
and Bn =


−B̃n−1

−I2n−5

02n−5

−I2n−5

−I2n−5

−B(1)n−1

A(2)n−2


for every n≥ 5 (the null matrix of order2k is always denoted above by02k).

Proof: A thorough analysis of the definition ofδ easily gives this result. 2

Note 4.2 As an immediate corollary of the last result, the reader may check that all the
entries of the matrixDn(R, R) belong to

• {−2,−1, 0, 1, 2} whenn = 2k is even;
• {−2,−1, 0, 1, 2, 3} whenn = 2k+ 1 is odd.



                
P1: ICA/TKL P2: ICA/SRK P3: ICA/SRK QC: MVG

Journal of Algebraic Combinatorics KL401-01-Bergeron January 30, 1997 19:22

112 BERGERON AND KROB

Moreover, the value 3 is only involved in the expansions

δ(R2k+1) = 3R2k +
2k−1∑
i=1

(−1)i 2Ri,2k−i−1,

δ(R12k+1) = 3R12k +
2k−2∑
i=0

(−1)i−1 R1i ,2,12k−2−i .

Example 4.3 Forn = 2, 3, 4, 5, the matricesDn(R, R) are:

1

2
11

(
0
0

)
,

2 11

3
21
12
111


3 −1
1 1
1 1
−1 3

 ,

3 21 12 111

4
31
22
211
13
121
112
1111



0 1 −1 0

−1 2 0 −1

0 −1 1 0

1 −2 0 1

1 0 −2 1

0 1 −1 0

−1 0 2 −1

0 −1 1 0


,

4 31 22 211 13 121 112 1111

5

41

32

311

23

221

212

2111

14

131

122

1211

113

1121

1112

11111



3 −1 1 0 −1 0 0 0

1 1 0 1 0 −1 0 0

0 1 2 0 0 0 −1 0

−1 2 0 2 0 0 0 −1

0 0 2 −1 1 0 0 0

0 0 1 0 0 1 0 0

1 0 −1 1 0 0 1 0

0 1 −1 1 0 0 0 1

1 0 0 0 1 −1 1 0

0 1 0 0 1 −1 0 1

0 0 1 0 0 1 0 0

0 0 0 1 −1 2 0 0

−1 0 0 0 2 0 2 −1

0 −1 0 0 0 2 1 0

0 0 −1 0 1 0 1 1

0 0 0 −1 0 1 −1 3



.
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Let us now denote byD+n (R, R) (resp.D−n (R, R)) the matrix of the differentialδ+ (resp.
δ−), restricted toSymn, in the ribbon basis. Observe first that

Dn(R, R) = D+n (R, R)+ D−n (R, R)

for n ≥ 1. The matricesD−n (R, R) andD+n (R, R) can be computed fromDn(R, R) using
the following result.

Proposition 4.4 For every n≥ 1, one has

D+n (R, R) = D−n (R̃, R).

Proof: A simple analysis of the nature of the central symmetry involved in our formula
shows that our proposition follows from the fact that(I · J)∼ = J ∼ G I ∼ for every
compositionsI andJ. 2

4.2. Differentials of complete functions

The δ-images of complete functions are given by the matricesDn(S, S). These can be
recursively constructed using the following proposition in conjunction with the first several
matricesDn(S, S) given in Example 4.7.

Proposition 4.5 For every n≥ 5, the matrix Dn(S, S) is equal to

Dn−2(S, S)(1)

02n−4×2n−5 −Dn−3(S, S)

I2n−4

4 I2n−4

02n−3×2n−4 Dn−2(S, S)

− I2n−3

02n−3

4I2n−3

02n−3

−Dn−1(S, S)(1)

02n−3×2n−4 Dn−2(S, S)



.

Proof: Using Proposition 4.1, one can easily show that

δ(S2n) =
2n−2∑
i=1

(−1)i+1 S2n−1−i,i ,

δ(S2n+1) = 4S2n +
2n−1∑
i=1

(−1)i S2n−i,i ,
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for everyn. An adapted version of Proposition 3.3, together with a thorough analysis, gives
the required result. 2

Corollary 4.6 Every entry of Dn(S, S) belongs to{−4,−1, 0, 1, 4}.

Example 4.7 Forn = 2, 3, 4, 5, the matricesDn(S, S) are:

1

2
11

(
0
0

)
,

2 11

3
21
12
111


4 −1
4 0
4 0
0 4

 ,

3 21 12 111

4
31
22
211
13
121
112
1111



0 1 −1 0
−4 4 0 −1

0 0 0 0
0 0 0 0
4 0 −4 1
0 4 −4 0
0 0 0 0
0 0 0 0


,

4 31 22 211 13 121 112 1111

5
41
32
311
23
221
212
2111
14
131
122
1211
113
1121
1112
11111



4 −1 1 0 −1 0 0 0
4 0 0 1 0 −1 0 0
0 0 4 0 0 0 −1 0
0 0 0 4 0 0 0 −1
0 0 4 −1 0 0 0 0
0 0 4 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 4 0 0 0 0
4 0 0 0 0 −1 1 0
0 4 0 0 4 −4 0 1
0 0 4 0 0 0 4 −1
0 0 0 4 0 0 4 0
0 0 0 0 0 0 4 −1
0 0 0 0 0 0 4 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 4



.

5. Cocycles and coboundaries

This section is devoted to the proof of the acyclicity of the different complexes constructed
above. We also give explicit bases for the cochain (or coboundary) modules of these
complexes. For everyn ≥ 1, let us define recursively the subsetI (n) of the set of all
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compositions ofn as follows

I (n) =


{ (1) } if n = 1,

∅ if n = 2,

{(i1, . . . , i r ) | (i1 = 2 and(i2, . . . , i r ) ∈ I (n− 2)) or (i1 ≥ 3)} if n ≥ 3.

It can be easily checked thatI (n) consists of all compositions ofn that are greater than or
equal to (in the sense of the lexicographic order) 2k 1, whenn = 2k+ 1, and to 2(k−2) 3 1,
when n = 2k. Let us also denote byi (n) the number of compositions inI (n). By
construction,i (n) satisfies to the recurrence relations

i (1) = 1, i (2) = 0 and i (n) = 2n−3+ i (n− 2) for n ≥ 3. (6)

It follows that

i (n) = 2n−1+ 2(−1)n−1

3
(7)

for everyn ≥ 1. One can also give the generating series of the sequencei (n):

∞∑
n=1

i (n) tn = t (1− t)

(1+ t) (1− 2t)
. (8)

We are now in a position to prove our main result.

Proposition 5.1 The cochain complexR = (Symn, δn)n≥0 is acyclic.

Proof: We first prove by induction onn that the family(δ(RI ))I∈I (n) is linearly indepen-
dent. This is clear forn = 1 andn = 2. Let us suppose now thatn ≥ 3. Observe that one has

R2 RJ = R2,J + R2+ j1,J ′

for every compositionJ = ( j1) · J ′ of n − 2. Since 2+ j1 ≥ 3, it follows from this
identity and from the definition ofI (n) that the independence of the family(δ(RI ))I∈I (n) is
equivalent to the independence of the family consisting of allδ(RJ), with J = ( j1, . . . , jr )
and j1 ≥ 3, and allδ(R2 RJ), with J ∈ I (n− 2). Proposition 4.1 implies that

δ(RJ) = −R1, j1−2, j2,..., jr +
∑

H≺(1, j1−2, j2,..., jr )

cH RH

for every compositionJ = ( j1, . . . , jr )with j1 ≥ 3. On the other hand, using Propositions
3.3 and 4.1, one can write

δ(R2 RJ) = R2 δ(RJ) = ± R2,H +
∑

L≺(2,H)
cL RL ,
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for every compositionJ ∈ I (n− 2). It now suffices to use the independence of the family
(δ(RJ))J∈I (n−2) and a simple triangularity argument to deduce the independence of the
family (δ(RI ))I∈I (n) from the two last above relations. It follows that

dim Imδn ≥ |I (n)| = i (n),

for everyn ≥ 0. On the other hand,

dim Kerδn = dim Symn − dim Imδn ≤ 2n−1− i (n) = i (n+ 1),

for everyn ≥ 1. But, sinceδ2 = 0, one always has Imδn ⊂ Kerδn−1. Hence

dim Imδn ≤ dim Kerδn−1 ≤ i (n).

Thus dim Imδn = i (n), and

dim Kerδn−1 = dim Symn−1− dim Imδn−1 = 2n−2− i (n− 1) = i (n).

This shows that Kerδn−1 and Imδn have the same dimensions, implying

Im δn = Kerδn−1,

for everyn ≥ 1 as desired. 2

The results obtained in the proof of Proposition 5.1 have the following immediate con-
sequence.

Corollary 5.2 For every n≥ 1, the family(δ(RI ))I∈I (n) is a basis of the cochain(or
coboundary) moduleIm δn = Kerδn−1, which has dimension i(n).

Corollary 5.3 For every n≥ 1, the family(δ(SI ))I∈I (n) is a basis of the cochain(or
coboundary) moduleIm δn = Kerδn−1.

Proof: According to Corollary 5.2, it is sufficient to check linear independence of the
family (δ(SI ))I∈I (n). This follows from Proposition 4.5. 2

Corollary 5.4 The dual chain complexR∗ = (QSymn, ∂n)n≥0 is acyclic.

Note 5.5 One can also dualize Corollaries 5.2 and 5.3 to obtain explicit bases for the chain
(or boundary) modules associated withR∗.

Using techniques similar to those of the proof of Proposition 5.1 together with Proposi-
tion 4.4, it is possible to obtain the following result.

Proposition 5.6 The cochain complexesR+ = (Symn, δ
+
n )n≥0 andR− = (Symn, δ

−
n )n≥0

are acyclic.
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Corresponding versions of Corollaries 5.2 and 5.3 are also valid for the complexesR+

andR−.
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