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Abstract We give an extension of the famous Schensted correspondence to the case
of ribbon tableaux, where ribbons are allowed to be of different sizes. This is done by
extending Fomin’s growth diagram approach of the classical correspondence, in par-
ticular by allowing signs in the enumeration. As an application, we give in particular
a combinatorial proof, based on the Murnaghan–Nakayama rule, for the evaluation
of the column sums of the character table of the symmetric group.
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1 Introduction

The Schensted correspondence [22] is a bijection between permutations and pairs
of standard Young tableaux of the same shape. It has been extended in numer-
ous ways, the most famous being certainly the Robinson–Schensted–Knuth corre-
spondence between matrices of integers and pairs of semi-standard tableaux of the
same shape. Other extensions exist, for instance, oscillating tableaux [2–4, 29], skew
tableaux [21], shifted Young tableaux [19], and k-ribbon tableaux [23, 28].

Sergey Fomin developed a general theory of such correspondences, cf. [5–9]. It
unifies the correspondences listed above by interpreting these tableaux as paths in
so-called graded graphs. For instance, a Young tableau in this context is viewed as
a particular kind of a path in the graph whose vertices are integer partitions, and
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where (λ,μ) is an edge if μ is a partition obtained after adding 1 to a part of λ. This
graph is usually called the Young graph (or Young lattice). Other combinatorial ob-
jects can then be represented by considering other paths, for instance, by modifying
the extreme points of the path, or the edges that one can use. This is a way of inter-
preting oscillating or skew tableaux inside the Young graph, for instance. Then the
local properties of the graph will give rise to various bijective correspondences, all
consequences of one elementary bijection.

Furthermore, Fomin gives in parallel a linear algebraic approach to his results,
which is directly inspired by the work of Stanley [25]. As a matter of fact, most of
Fomin’s results have both a bijective and an algebraic proof.

In [31], Dennis White describes another extension of the Schensted correspon-
dence for ribbon tableaux where ribbons are allowed to have different sizes; his goal
was, in fact, to give a combinatorial proof of the second orthogonality relation for
characters of the symmetric group. The algorithm describing his correspondence is
a complicated insertion mechanism, along the lines of the original Schensted corre-
spondence; this forces him moreover to put some restrictions on the ribbon tableaux
he considers.

In this work, we will show how both the bijective and algebraic approaches of
Fomin [6, 7] can be adapted to apply to the correspondence of White; the main results
are gathered in Sect. 7. There will be two advantages to this: First, this will clarify
the original insertion algorithm of White and extend it at the same time. Then, we
will in the process have to extend Fomin’s setting of dual graded graphs to graphs
which are more general. Although we will be mainly considering the case of ribbon
tableaux, we will define in the last section the type of graphs to which our work can be
generalized. Note also that we will deal here with signed objects, i.e., with weights
plus or minus one: it will appear that, for the bijective approach, we make use the
famous involution principle of Garsia and Milne [12].

The correspondence we establish here is between pairs of ribbon tableaux of the
same shape, on the one side, and so-called hook permutations. It should be noted
that the most famous property of the usual Schensted correspondence, namely that
exchanging the two standard tableaux results in inverting the permutation, does not
hold in our extension. A special case of this property subsists however, that is, the fact
that standard tableaux are in bijection with involutions can be generalized to ribbon
tableaux and hook involutions, see Theorem 7.2.

The paper is organized as follows: In Sect. 2, we give the main definitions about
ribbons and ribbon tableaux, as well as some elementary operations on these objects.
In Sect. 3, we define different notions about signed enumeration, and we recall the
involution principle of Garsia and Milne. Section 4 introduces hook permutations
which are the objects in correspondence with pairs of ribbon tableaux in our main
result.

The description of the bijections is given in the two following sections: Sect. 5
describes local rules based on the operations from Sect. 2, and Sect. 6 shows how
to define a global correspondence from these local rules. This is directly inspired
by [7]. Section 7 states the main results, which are Theorems 7.1 and its corollary, and
Theorem 7.2: there exists a signed bijection between hook permutations and pairs of
ribbon tableaux of the same shape, and a signed bijection between hook involutions
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and ribbon tableaux. The proofs of Theorems 7.1 and 7.2 are given in Sect. 8. In
Sect. 9, a linear algebraic version of Theorem 7.1 is given.

Section 10 contains an application of Theorem 7.2 to the column sums of the
character table of the symmetric group. Finally, Sect. 11 explains how the methods
developed can be used for other enumerations, and details in what ways this bijective
and algebraic setting is a generalization of Sergey’s Fomin graded graphs in duality.

2 Ribbons

2.1 Definitions

A partition λ = (λ1, . . . , λm) is a nonincreasing finite sequence of positive integers;
these integers are the parts of the partition, the size of the partitions being their sum
|λ| := ∑

i λi . A composition c is a finite sequence of positive integers; we can asso-
ciate to c a partition c̃ by rearranging the integers in nonincreasing order. A partition
λ can be described using an exponential notation λ = [1j1,2j2, . . . ], where ji is the
number of parts of size i. If ji = 0, then iji is not written and if ji = 1, ji is not
written.

We will identify a partition (λ1, . . . , λm) with its Ferrers diagram, which is the
left justified set of cells (i.e., unit squares of Z

2) such that the ith row from the
top contains λi cells; the diagram on the left of Fig. 1 represents the partition
(8,6,5,2,2,1,1) = [12 22 5 6 8].

Let Y be the set of integer partitions, and Yn the subset of partitions of size n.
Two partitions λ ⊆ μ (in the sense of inclusion of Ferrers diagrams) define a
skew shape μ/λ. We will identify here a skew shape with the set of cells μ\λ,
whenever μ or λ is clear from the context; though, in general, two distinct skew
shapes may define the same set, this will not create any ambiguity here. The size
of μ/λ is its number of cells |μ| − |λ| and will be noted |μ/λ|. The skew shape
(9,8,7,4,4,1,1)/(8,6,5,2,2,1,1) represented on the right of Fig. 1 has size 9.

Let us say that a subset S of cells of Z
2 is connected if, for every two cells c, c′ in

S, there exists a sequence of cells c = c0, c1, . . . , ct = c′ in S such that ci, ci+1 have
a common side for all i. We can then define the notion of ribbons:

Definition 2.1 A ribbon is a nonempty connected skew shape that does not contain
a 2 by 2 square of cells.

Fig. 1 Partition and skew shape
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Fig. 2 Examples of ribbons

Fig. 3 First levels of the ribbon
graph GR

Let r = μ/λ be a ribbon. Such a ribbon is said to be μ-addable and λ-removable.
Its height h(r) is defined as the number of lines it occupies minus one, and its sign
is then ε(r) := (−1)h(r). The bottom left cell of r is its tail, and the top right one
is its head. Given a partition λ, the ribbons that can be removed or added to λ are
entirely determined by the coordinates of their heads and tails. There are two ribbons
in Fig. 2: the left one has size 4, height 2 and sign +1, and the right one has size 6,
height 1 and thus sign −1.

A hook is a ribbon of shape λ/∅, which is equivalently a partition of the kind
(k,1, . . . ,1) where k ≥ 1. Note that a hook is characterized by the data of its size s

and height h ∈ �0, s − 1�.
For i a positive integer, we denote by Ribi the set of ribbons of size i, and

Rib := ⋃
i>0 Ribi . The set Y is made into an infinite graph GR, with an edge for

each element of Rib; each edge carries in addition a sign which is simply the sign
of the corresponding ribbon. We associate to each vertex of GR a certain level given
by the size of the corresponding partition. Figure 3 shows the first five such levels of
GR, where the dotted edges represent negative ribbons. The addition (resp., removal)
of a ribbon is then equivalent to a step up (resp., down) in GR.
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Fig. 4 Two equivalent representations of a ribbon tableau

Definition 2.2 A ribbon tableau of shape λ ∈ Y and length � is a sequence of par-
titions λ0 = ∅ ⊂ λ1 ⊂ · · · ⊂ λ�−1 ⊂ λ� = λ such that ri := λi+1/λi is a ribbon for
every i < �.

We will often represent a ribbon tableau by a labeling of the cells of λ, in which
the cells labeled i coincide with the ribbon ri . Note that a ribbon tableau is equiva-
lently a path of length � in the graph GR, going monotonically up from ∅ to λ; this
interpretation is the key to the extensions described in Sect. 11.

We need some more definitions. The sign ε(P ) of a tableau P is the product of the
signs of the ribbons r(i). The content c(P ) is the composition of |λ| in � parts formed
by the sequence of sizes |r(1)|, . . . , |r(�)|. We will denote by RTλ,c the tableaux of
shape λ and content c, where c is a given composition of |λ| and RTλ(�) the set of all
ribbon tableaux of shape λ and length �.

Figure 4 shows a tableau of shape (8,6,6,2,1), content (1,6,6,3,7) and sign
(−1)0(−1)2(−1)2(−1)1(−1)2 = −1.

2.2 Operations on ribbons

We will now introduce some classical operations on ribbons which are necessary for
the definition of the local rules of Sect. 5.

•bumpin, bumpout: Let λ be a partition, and r, r ′ be two ribbons that are
λ-addable, such that r and r ′ have different heads and different tails. Then
bumpout(λ, r, r ′) is the partition λ ∪ r ∪ r ′ ∪ (r ′ ∩ r)↘, where A↘ is the set A trans-
lated by one unit east and south. The partition bumpin(ξ, r, r ′) is similarly defined for
two ξ -removable ribbons, by translating the common cells between r and r ′ by the
vector (−1,1). Figure 5 shows the way this operation acts, according to the relative
positions of r and r ′: they can be disjoint, or partially overlap, or one can be included
in the other.

•prev,next,first: Let λ be a partition, k a positive integer, and h a nonnegative
integer. Let (ri)i=0,...,t (resp., (r ′

i )i=1,...,t ′ ) be the list of ribbons of size k and height
h that are λ-addable (resp., λ-removable). Then we have the following result from
Shimozono and White [23, Lemma 14]:
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Fig. 5 Operations bumpin and bumpout

Fig. 6 Addable and removable
ribbons of height 1 and size 3

Proposition 2.1 With λ,h, k, (ri)i=0,...,t , (r
′
i )i=1,...,t ′ as above, we have then (i) t = t ′

and (ii) the enumeration order of the ribbons can be chosen so that r0 < r ′
1 < r1 <

· · · < r ′
t < rt where rib1 < rib2 means that the head of rib1 is north east of the head

of rib2.

Figure 6 illustrates Proposition 2.1. This allows defining certain operations
first,next, and prev on ribbons:

– If Eq is a hook of size k and height h, we define first(λ,Eq) as the ribbon r0 above.
– If r ′ is a λ-removable ribbon, i.e., r ′ = r ′

i for a certain i ∈ �1, t �, then next(λ, r ′) :=
λ ∪ ri .
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Fig. 7 Operations switchout and slideout

– Reciprocally, if r = ri for any i ∈ �1, t � is a λ-addable ribbon, we define
prev(λ, ri) := λ r ′

i , while prev(λ, r0) is not defined.

•slideout, switchout, slidein, switchin: Let λ be a partition, and r, r ′ two λ-addable
ribbons with identical tails but different heads; we assume, without loss of generality,
that |r| > |r ′|. The external band of λ consists of all cells between the infinite south
east boundary of λ and its translation by (1,−1), i.e., the cells enclosed by the dotted
line on Fig. 7. Let τ be the subset of the external band formed by the |r ′| connected
cells, north west of r and adjacent to it. Then two cases can occur:

– If τ ∪ r forms a λ-addable ribbon, we define the partition slideout(λ, r, r ′) = λ ∪
r ∪ τ .

– Otherwise, we define switchout(λ, r, r ′) = (λ ∪ r ′)\τ↖, where τ↖ is the translated
of τ by the vector (−1,1).

If r and r ′ have the same head but different tails, one performs the same operations
on the transposed partitions. The operations switchin and slidein are defined similarly
on λ-removable ribbons; see White [31] for supplementary explanations.

3 Signed sets and signed bijections

In this work, we have to deal with signed enumerations, so we need some definitions
and notations to explain what we mean by a bijection in this context. All sets are
assumed to be finite.

Definition 3.1 (Signed sets) A signed set is a set A together with a decomposition
A = A+ ∪A− where A+ ∩A− = ∅. The members of A+ are positive elements, those
of A− are negative.
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Such a decomposition is equivalent to a function δ : A → {1,−1}, with the obvious
correspondence A+ = δ−1({1}) and A− = δ−1({−1}). Our objects of study here are
the sets RTλ,μ, the sign being given by the function ε. Note also that usual sets are
considered as positive sets. The signed cardinal (or signed sum) of a signed set A

is |A|± = |A+| − |A−|; if the sign is given by a function δ, then we have |A|± =∑
a∈A δ(a).
A function f between two signed sets is sign preserving (resp., sign reversing)

if a and f (a) have the same sign (resp., opposite signs) for all a. Fixed points of a
function i form the set Fix(i).

Definition 3.2 (Signed bijections) A signed bijection between two signed sets A and
B is a triplet of functions (iA, iB,φ) such that iA (resp., iB ) is an involution on A

(resp., on B) which is sign reversing outside of its fixed point set, and φ is a sign
preserving bijection between Fix(iA) and Fix(iB).

A signed bijection between A and B proves that |A|± = |B|±; indeed, we have

|A|± = ∣
∣Fix(iA)

∣
∣± = ∣

∣Fix(iB)
∣
∣± = |B|±.

The central equality comes from the sign preserving bijection φ, the other ones
from the fact that iA and iB are sign reversing, so the pairs {a, iA(a)} such that a =
iA(a) have a zero contribution to the signed cardinal of A, the same being true for B

and iB .

Remark 3.1 |A|± = |B|± is obviously equivalent to |A+| + |B−| = |B+| + |A−|.
Suppose ψ is a bijection between the ordinary sets A+ � B− and B+ � A−; we will
show why such a ψ is equivalent to a signed bijection between A and B .

Let MA be the set of elements a ∈ A+ such that ψ(a) ∈ A−, and MB be the set of
elements b ∈ B− such that ψ(b) ∈ B+. Then ψ,ψ−1 induce sign reversing involu-
tions on MA∪ψ(MA) and MB ∪ψ(MB), as well as a sign-preserving correspondence
between A+−MA (resp., B−−MB ) and B+−ψ(MB) (resp., A−−ψ(MA)). Putting
things together, we obtain a signed bijection between A and B; the whole process is
clearly reversible.

The involution principle of Garsia and Milne Garsia and Milne gave the first fully
bijective proof of a combinatorial version of a famous Rogers–Ramanujan iden-
tity [11, 12] which states that the number of partitions (λ1, . . . , λk) of n verifying
λi − λi+1 ≥ 2 for all i < k is the same as those verifying λi ≡ 1 or 4 modulo 5 for all
i ≤ k. To achieve this, they defined and used a general principle that we now recall.

Let A,B be two finite signed sets. Let also iA, iB be two involutions on A and B ,
respectively, and φ a bijection between A and B . We suppose that φ preserves signs,
whereas iA and iB reverse signs outside their fixed point sets.

Under these assumptions, one clearly has |Fix(iA)|± = |Fix(iB)|±, but one does
not have an obvious signed bijection proving this equality. The principle of Garsia
and Milne is the construction of such a signed bijection (ψ, jA, jB) between Fix(iA)

and Fix(iB) in the following manner. Let a ∈ Fix(iA). By applying to a the functions
φ : A → B , and then, alternatively, the functions φ−1 ◦ iB : B → A and φ ◦ iA : A →
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B , we obtain a sequence x0 = a, x1, x2, . . . of elements where x2p ∈ A and x2p−1 ∈ B

for p > 0. Then let q > 0 be minimal such that either q is odd and xq ∈ Fix(iB), or
q is even and xq ∈ Fix(iA). In the first case, we set ψ(a) := xq and jA(a) := a,
otherwise we set jA(a) := xq .

To define jB (and ψ−1), one uses the symmetric procedure starting from b ∈ B .
These procedures terminate and give the desired signed bijection.

The name “involution principle of Garsia and Milne” is usually reserved to the
special case where both Fix(iA) and Fix(iB) consist of positive elements, so that one
constructs in the end an ordinary bijection. The proof of this special case can be
found, for instance, in [14, p. 76]; the general case follows the same lines.

4 Hook permutations

We now introduce the notions of hook permutations: these play the role of the ordi-
nary permutations in the Schensted correspondence in the main correspondence of
Theorem 7.1.

If H = (H1, . . . ,H�) is a sequence of � hooks, its content c(H) is the composition
(|H1|, . . . , |H�|). The length of H is �, and its size is

∑
i |Hi |.

Definition 4.1 A hook permutation (H,σ ) is a sequence H = (H1, . . . ,H�)

of � hooks together with a permutation σ of ���. We also define σ(H) as
(Hσ−1(1), . . . ,Hσ−1(�)).

We will write H P for the set of hook permutations, its elements of content μ

forming H P (μ) (where μ is any composition). Hook permutations can be graphically
represented by the list H where the cells of hook Hi are labeled by σ(i), or by square
arrays of size � such that entry (i, j) is empty unless j = σ(i) in which case it is
occupied by the ith hook Hi . Illustrations are given in Fig. 8.

We then have the following proposition:

Proposition 4.1 The number of hook sequences of length � and total size n is equal
to

(
n+�−1
2�−1

)
. The number of hook permutations of length � and total size n is equal to

�! · (n+�−1
2�−1

)
.

Proof The first assertion obviously implies the second one. Given such a hook se-
quence, we can associate to it 2�−1 integers in �n+ �−1�, as illustrated graphically
in Fig. 9, in which n = 23, � = 5, so n + � − 1 = 27 and 2� − 1 = 9, and the subset
of integers is {4,7,9,12,13,19,21,22,26}.

Conversely, if we have 2�−1 integers 1 ≤ i1 < · · · < i2�−1 ≤ n+�−1, and we set
by convention i0 = 0 and i2� = n + �, then the list of hooks (H1, . . . ,H�) in bijection
is characterized by the fact that Hi is the hook of size i2i − i2i−2 − 1 and height
i2i−1 − i2i−2 − 1. This is clearly bijective, and the proof is complete. �

In Sect. 6.2, we introduce “hook involutions”, which contrary to hook permuta-
tions will be given a sign.
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Fig. 8 Two representations of
the same hook permutation
(H,σ ). It has length 5, size 23,
and content (6,4,6,2,5).
Furthermore, σ = (2,5,1,4,3),
and σ(H) has content
(6,6,5,2,4)

Fig. 9 The bijection in Proposition 4.1

5 Local rules

We wish to extend the local rules used by Shimozono and White [23] to deal with rib-
bons of all possible sizes; this will be done simply by reformulating White’s insertion
rules of [31] as local rules.

Throughout this section μ,ν are two partitions of respective sizes m and n.
For i a nonnegative integer, we define Ui (μ, ν) as the set of partitions of size

max(m,n)+i such that ξ/μ and ξ/ν are ribbons, or empty (this last case only appears
for i = 0). Ui (μ, ν) is a signed set through sgn(ξ) := ε(ξ/μ) · ε(ξ/ν). Similarly, we
define Di (μ, ν) the set of partitions of size min(m,n) − i such that λ/μ and λ/ν are
ribbons; Di (μ, ν) is a signed set through sgn(λ) := ε(μ/λ) · ε(ν/λ). In particular,
Ui (μ,μ) and Di (μ,μ) contain only positive elements.
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We draw a square where two corners are labeled by μ

and ν as shown on the right. The bottom left corner will
be labeled by partitions λ from a set Di (μ, ν), the top
right one by partitions ξ from a set Ui (μ, ν). In the case
λ = μ = ν, the interior C may be marked by a nonempty
hook, or be left empty; in all other cases, it is left empty.

To define local rules, it is necessary to use the operations on ribbons and partitions
defined in Sect. 2.

Let ((λ,C),μ, ν) be given in a square, as above. What we mean by applying a
local rule is the following: first finding out which case applies in the list below, then
erasing λ and C from the square. Finally, rules D1 to D6 determine a partition ξ

that one writes in the top right corner, whereas rule S determines a partition λ̂ to be
written in the bottom left corner.

Direct rules In the following rules, λ is an element of a certain Di(μ, ν), C is empty
unless possibly when λ = μ = ν in which case it may be filled with a hook.

• If λ = μ = ν and C is empty, then ξ := λ. (D1)
• If λ = μ = ν and C is a nonempty hook Eq, then ξ := first(λ,Eq). (D2)
• If λ = μ = ν, then ξ := next(μ,μ/λ). (D3)
• If λ = μ = ν (resp., λ = ν = μ), then ξ := ν (resp., ξ := μ). (D4)
• If λ,μ, ν are pairwise distinct partitions, let r , r ′ be the ribbons μ/λ and ν/λ, and

then:
– If r and r ′ have neither the same tail nor the same head, then ξ :=

bumpout(λ, r, r ′). (D5)
– If r and r ′ have the same head but different tails, or the same tail but different

heads, then:
� If slideout(λ, r, r ′) is well defined, then ξ := slideout(λ, r, r ′). (D6)
� Otherwise, we set λ̂ := switchout(λ, r, r ′) ∈ Di(μ, ν). (S)

Inverse rules Here ξ belongs to a certain set Ui(μ, ν). C is left empty except in
rule (I2).

• If ξ = μ = ν , then λ := ξ . (I1)
• If ξ = μ = ν, then

– If prev(ξ, r) is not defined, we define λ := μ, and C is filled with the unique
hook of size |r| and height h(r); (I2)

– Otherwise λ := prev(ξ, r). (I3)
• If ξ = μ = ν (resp., ξ = ν = μ), then λ := ν (resp.,λ := μ). (I4)
• If ξ,μ, ν are pairwise distinct partitions, let r , r ′ be the ribbons ξ/μ and ξ/ν, and

then:
– If r and r ′ have neither the same tail nor the same head, then λ :=

bumpin(ξ, r, r ′). (I5)
– If r and r ′ have the same head but different tails, or the same tail but different

heads, then:
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� If slidein(ξ, r, r ′) is defined, then λ := slidein(ξ, r, r ′). (I6)
� Otherwise we set ξ̂ := switchin(ξ, r, r ′) ∈ Ui(μ, ν). (T)

Proposition 5.1 The rules D1 to D6 are the respective inverses of I1 to I6; S and T
are involutions. Furthermore, D1–D6 and I1–I6 preserve signs between Di (μ, ν) and
Ui (μ, ν), whereas S and T are sign reversing on Di (μ, ν) and Ui (μ, ν), respectively.

Proof All these properties are already proved elsewhere, albeit sometimes in a dif-
ferent form. For D2, D3 and I2, I3, this was proved by Shimozono and White [23].
For the rules D5, D6, I5, I6, S, and T, the result can be found in White [31]. We will
nevertheless give the proof for the rule S in Appendix, using an encoding of partitions
by infinite sequences; we wish to show how this encoding is particularly suited to the
study of ribbons. �

Let us sum up the local rules in terms of signed bijections, since this will be useful
in particular in the algebraic approach of Sect. 9:

Proposition 5.2 Let μ,ν be two partitions and i a positive integer.

(a) There exists a bijection φ1 between Ui (μ,μ) and Di (μ,μ) � �0, i − 1�.
(b) For μ = ν, there exists a signed bijection (iD, iU ,φ2) between Di (μ, ν) and

Ui (μ, ν).

Proof (a) Such a bijection is given by rules D2 and D3; for (b), the involutions iD
and iU are given by rules S and T, respectively, and the bijection φ2 consists of rules
D4, D5, and D6. �

This proposition has to be interpreted as a local property of the graph GR: given
μ and ν of size m and n, it gives a combinatorial link between vertices adjacent to
both μ and ν at the level min(m,n) − i, and at the level max(m,n) − i. Sections 6
and 9 will use this local structure to deduce global results on ribbon tableaux.

6 Bijective approach

We want to use growth diagram techniques (see [7]) to carry out a signed correspon-
dence proving Theorems 7.1 and 7.2. This will be done in this section, but it requires
more work than a simple application of Fomin’s setting. In order to prove Theo-
rem 7.1, we will in particular need to make some back and forth moves in a growth
diagram; the correctness of the correspondence will rely on the involution principle.

6.1 Hook permutations and pairs of ribbon tableaux

Fix a positive integer �, and let G� be the grid of size � × �, made of �2 squares
(and (� + 1)2 vertices). Square (i, j) is at the intersection of the ith row from the
bottom and the j th column from the left. We wish now to label some of the vertices
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by partitions and then apply the local rules of Sect. 5 in the squares; for this, we order
the squares (partially) by (i, j) � (i′, j ′) if and only if i ≤ i′ and j ≤ j ′.

We fix from now on a total order O extending this partial order. Every square sq =
(1,1) has then a predecessor pred(sq), and every square sq = (�, �) has a successor
succ(sq). For dir = ±1, we also define Next(sq,dir) to be succ(sq) if dir = 1 and
pred(sq) if dir = −1, and to return “undefined” when pred or succ is not defined.

Given dir ∈ {+1,−1} and a square sq of G�:

– If dir = 1 and μ,ν,λ,C label sq as in the definition of direct rules, we apply the
corresponding rule;

– If dir = −1 and μ,ν, ξ label sq as in the definition of inverse rules, we apply the
corresponding rule.

Let us call this procedure Apply_local_rule; if loc is the local rule that applies, we
write loc := Apply_local_rule(dir, sq).

Now we want to go from local rules to a correspondence on the entire grid. Let us
be given a hook permutation drawn on G�, in which we also label by ∅ (the empty
partition) all vertices of G� on the bottom and left sides (see configuration A on
Fig. 10). We may now describe the bijection φ of Theorem 7.1, which we do in an
algorithmic fashion (a precise definition of φ will be given in Sect. 8).

Algorithm φ:
Input: a hook permutation (H,σ ).
Output: A pair (P,Q) of ribbon tableaux of the same shape.
Begin
sq := (1,1); dir := 1;
repeat
loc := Apply_local_rule(dir, sq);
If (loc ∈ {S,T}) then dir := −dir; end if;
sq := Next(sq,dir);
until (sq = “undefined”);
End

We will show in Sect. 8 that this algorithm is well defined and does not loop
indefinitely; it ends when succ(�, �) is not defined, in which case the vertices on the
top and right side of G� are labeled by partitions forming two ribbon tableaux of the
same shape.

We can also consider the opposite procedure, starting this time with the input of a
pair of ribbon tableaux of the same shape, and initializing the procedure in the square
(�, �) with dir equal to −1. In this case, it turns out that the procedure ends either with
pred(1,1) or succ(�, �) undefined; in the former case, it is an inverse to the procedure
φ, while in the latter it defines an involution i on pairs of ribbon tableaux of the same
shape.

Example We illustrate the algorithm on the example of Fig. 10. For the total order O,
we choose the column order (i, j) < (i′, j ′) if j < j ′, or j = j ′ and i < i′. A square
c′ is thus larger than a square c if it is above in the same column, or if c′ is in a column
to the right of c.
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Fig. 10 The Algorithm φ with column order

We start with the hook permutation given on G3 (configuration A). We apply direct
local rules to reach configuration B, the rules being successively D2, D4, D4, D4, D1,
D2, D4, and D2. Now rule S applies, and the direction changes (configuration C).
Note that we deleted all contents of visited squares as well as the label of their bottom
left corner; we did not show this for direct rules in order to keep the number of
pictures reasonable. From this configuration C, we apply inverse rules I5, I2, and I5
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Fig. 11 The Algorithm φ with row order. We only represent the upper part of the growth diagram, and
start after the case B of Fig. 10 which is also obtained with the row order

successively to reach configuration D. There rule T applies, and the direction changes.
We finally reach configuration F with the rules D3, D2, D3, and D6. We can finally
read off the ribbon tableaux P and Q, respectively, on the right and top sides of the
grid.

Remark 6.1 The choice of the order O matters; that is, changing the order can result
in a different correspondence. For instance, if the row order is chosen in the example
of Fig. 10, then the given hook permutation will be sent to another pair of tableaux,
as illustrated in Fig. 11.

A special case of this is that if, for a given order O, (P,Q) is associated to a
hook permutation (H,σ ), then (Q,P ) is not necessarily equal to the inverse hook
permutation. Indeed, by transposition, the example of Fig. 11 can be interpreted as
computing the pair of ribbon tableaux associated to the inverse of the hook permuta-
tion of Fig. 10.

6.2 Hook involutions and ribbon tableaux

6.2.1 Hook involutions

Definition 6.1 A hook involution is a hook permutation (H,σ ) such that σ = σ−1

and Hi = Hσ(i) for all i.

In the array representation, hook involutions are the hook permutations such that
a cell and its symmetric with respect to the diagonal i = j have the same content. For
a hook involution I = (H,σ ), we define its sign as ε(I ) = ∏

i/σ (i)=i ε(Hi). It is the
product of the signs of the hooks associated to fixed points. We denote by H I the
signed set of hook involutions, by H I(μ) the signed subset of those hook involutions
with content μ.



82 J Algebr Comb (2012) 36:67–102

Finally, for use in Sect. 10 only, we define H Ispec(μ) the subset of H I(μ) consist-
ing of those hook involutions (H,σ ) which verify that for any fixed point i = σ(i),
the hook Hi has height 0 and odd size. Note that all elements of H Ispec(μ) are posi-
tive.

Lemma 6.1 For any composition μ there holds |H I(μ)\H Ispec(μ)|± = 0.

Proof Let I = (H,σ ) be an element of H I(μ)\H Ispec(μ). We define i = σ(i) to be
the smallest fixed point whose hook Hi has even size or nonzero height, and we let
h, s be respectively the height and size of Hi . If s is even, then we let H ′

i be the hook
of size s and of height h + 1 (resp., h − 1) if h is even (resp., odd); if s is odd, then
h = 0 necessarily, and we let H ′

i be the hook of size s and height h + 1 (resp., h − 1)
if h is odd (resp., even).

Now let H ′ be the hook list equal to H except in position i where H ′
i replaces Hi .

If we define f (I) := (H ′, σ ), then it is readily verified that f is a sign reversing
involution on H I(μ) \ H Ispec(μ), and the lemma is proved. �

Corollary 6.1 For any composition μ, |H I(μ)|± = |H Ispec(μ)|.

We will give some consequences of this result in Sect. 10.

6.2.2 Signed correspondence with ribbon tableaux

The Schensted correspondence is known to induce a bijection between involutions
and standard tableaux. We wish to generalize this bijection to hook involutions and
ribbon tableaux. But whereas, in the Schensted correspondence, one simply needs a
restriction, some extra work has to be done here: first, the bijection defined by the
algorithmic procedure depends on the fixed total order specified on the squares of
the grid, so the procedure cannot be done symmetrically in general. The modification
is simple: one works only with the squares (i, j) of the grid verifying i ≥ j , which
are those weakly to the north west of the diagonal. The algorithmic procedure works
then the same way, by performing local rules according to a given fixed order on the
cells; ribbon tableaux are read off on the upper boundary of the grid. Here however,
when starting with a hook involution, one may finish with another hook involution of
a different sign; this is the second point which differs from the case of hook permuta-
tions which were defined as positive. We will show how to deal with these two extra
difficulties, in order to obtain Theorem 7.2.

To finish, we formulate in terms of signed sets the properties which turn out to be
essential in the proof of Theorem 7.2. Define Ui (μ) as the set Ui (μ,μ) but with sign
ε(λ/μ) for λ ∈ Ui (μ); similarly, Di (μ) is Di (μ,μ) with sign ε(μ/λ).

Proposition 6.1 Consider �0, i −1� as a signed set with sgn(h) = (−1)h. Then there
is a sign preserving bijection between Ui (μ) and Di (μ) � �0, i − 1�.

This is an immediate consequence of Proposition 2.1.
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7 Main results

The first result is a generalization of the Schensted correspondence. We denote by Id
the identity function on hook permutations.

Theorem 7.1 (White [31, Theorem 6]) Let n, � be two positive integers. The data
(Id, i, φ) is a signed bijection between (i) hook permutations of size n and length �

and (ii) pairs of ribbon tableaux of size n and length � with the same shape.
This bijection preserves contents in the sense that if i(P,Q) = (P1,Q1), then

c(P ) = c(P1) and c(Q) = c(Q1); and if φ(H,σ) = (P,Q), then c(H) = c(Q) and
c(σ (H)) = c(P ).

The bijections were defined in Sect. 6; the proof of the correctness of the bijection
is deferred to Sect. 8.

The correspondence of the theorem is described by [31] with an involved insertion
algorithm which generalizes the one in the Schensted correspondence. Also, White
also assumes that the contents of P and Q verify a certain compatibility relation, but
remarks at the end of his paper that this condition may be dropped.

As shown in Sect. 6, our idea here was to use Fomin’s techniques [6, 7] in the proof
of this result. This sheds a new light on White’s result, and incidentally lends itself to
generalization in a more straightforward fashion, as we will point out in Sect. 11.

The theorem has the following consequences concerning the signed enumeration
of ribbon tableaux:

Corollary 7.1 Let μ,ν be two compositions of n with � parts, and write μ̃ =
[1j1,2j2, . . . ]. Then

∑

λ∈Yn
P∈RTλ,μ,Q∈RTλ,ν

ε(P )ε(Q) = δμ̃̃ν · 1j1(j1!)2j2(j2!) · · · ; (1)

∑

λ∈Yn
P,Q∈RTλ(�)

ε(P )ε(Q) =
(

n + � − 1

2� − 1

)

· �!. (2)

We will prove the correctness of Theorem 7.1 in Sect. 8, but we can already give
the proof of its corollary:

Proof of Corollary 7.1 For the first formula, the signed bijection of Theorem 7.1
implies that the left-hand side is equal to the number of hook permutations of type
(c, c′); this number is zero unless c can be obtained from c′ by permuting some of
its parts. When c̃ = c̃′, we have to compute, for a part i appearing ji times, how
many hook permutations of length ji exist so that all hooks have size i; this number
is clearly iji ji !. We obtain finally the right-hand side by multiplying such terms for
all sizes i. The second equality of Corollary 7.1 is an immediate consequence of
Theorem 7.1 and of Proposition 4.1.
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We will deduce easily this corollary from the theorem in Sect. 6, and give alterna-
tive proofs using linear algebra in Sect. 9. Note that the first part of this corollary was
the focus of [31].

Finally, the Schensted correspondence has the property that it restricts to a bijec-
tion between involutions of Sn and standard tableaux of size n. We have a counter-
part of this result for general ribbon tableaux, thanks to the procedure described in
Sect. 6.2:

Theorem 7.2 There exists a content-preserving signed bijection between hook invo-
lutions and ribbon tableaux.

As explained in Sect. 6, this cannot be deduced from White’s correspondence for
pairs of tableaux. We will prove this Theorem in Sect. 8. We also give an enumerative
consequence of this theorem in Sect. 10—this is Theorem 10.2, of which we also give
both a bijective proof and an algebraic one.

Relation with previous work As already mentioned, Theorem 7.1 was essentially
demonstrated by White [31] (in this article, White evokes the possibility of extending
his ideas to obtain the form in which we gave it).

In [28], the authors notice that if one only considers hook permutations with all
hooks of size k, and ribbon tableaux with all ribbons of size k, then rules S and T can
never be applied: so in this case we have a (sign-preserving) bijection between ribbon
tableaux and k-colored permutations.

As a matter of fact, rules D2 and D3 are not used in these two articles, but alter-
native rules that do not preserve signs in the sense of Proposition 6.1. Theorem 7.2
cannot thus be a consequence of White’s original work, but is based on the work of
Shimozono and White [23] (for ribbons and hooks of fixed size), in which the au-
thors introduce the operations prev,next,first that are used to define rules D2, D3 and
I2, I3.

8 Proof of Theorems 7.1 and 7.2

In this section, we will give the proofs of Theorems 7.1 and 7.2, the signed bijections
having been defined in Sect. 6. The proof is directly inspired by Fomin’s construc-
tions [7], but some extra technicalities are needed in both proofs.

8.1 Proof of Theorem 7.1

We show that the construction φ defined algorithmically in Sect. 6.1 verifies indeed
all properties stated in the theorem. We will demonstrate that this algorithm is, in
fact, a consequence of Garsia and Milne’s involution principle. Therefore, we have
to construct signed sets A, B and adequate functions as explained in Sect. 3. These
signed sets will be called configurations, and defining them rigorously requires the
introduction a certain number of concepts.
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We call a cutting path of the grid G� a path from the top left vertex to the bottom
right one, with south and east steps. We call inside of the cutting path F the squares
of G� to the south west of F , and outside the rest of the squares.

A good labeling of a cutting path F is a labeling of each of its vertices by a
partition such that:

– The vertices at the top left and bottom right are labeled by the empty partition ∅.
– For every horizontal edge of F , the labels λ and μ at the left and right end respec-

tively form a ribbon μ/λ.
– For every vertical edge of F , the labels λ and μ at the bottom and top end respec-

tively form a ribbon μ/λ .

We allow λ = μ in this definition, corresponding to the empty ribbon. Now we
fixed a total order O on the squares of G� in Sect. 6; an O-cutting path is a cutting
path F such that the squares inside F are smaller than the squares outside. Such a
cutting path defines in particular two squares in general: sq<(F) which is the largest
square inside F , and sq>(F) the smallest one outside. Clearly, sq<(F) is not defined
when F consists of the left and bottom side of the grid, and sq>(F) is not defined
when F consists of the top and right side of the grid.

Let F be a cutting path with a good labeling label, which induces a labeling of the
edges of F by ribbons. We define a coloring as a partial filling by nonempty hooks
of the squares of G�, and such a coloring col is compatible with (F, label) if:

– The squares inside F are not filled.
– For every horizontal edge h of F labeled by r , there is exactly one square filled by

a hook in the column above h when r is empty, and none if r is nonempty.
– For every vertical edge v of F labeled by r , there is exactly one square filled by a

hook in the row right of v when r is empty, and none if r is nonempty.

These labeled cutting paths, together with a coloring, model what the intermediate
objects are in the application of Algorithm φ in Sect. 6.

Configurations We can now introduce configurations which are the main objects
we will consider for the rest of the proof.

Definition 8.1 A configuration is a 3-tuple (F, label, col) where F is an O-cutting
pathwhich is well labeled by label, and col is a coloring of G� compatible with
(F, label).

Let (F, label, col) be a configuration on G�. For each i ∈ �1, ��, we denote by
ci > 0 the size of the hook in column i, or the size of the ribbon labeling the edge of
F appearing in column i; by compatibility of label and col, exactly one of these two
cases occur. Likewise, we denote by c′

i the size of the hook in row i, or the size of the
ribbon labeling the edge of F appearing row i. The content of a configuration is then
defined as the two compositions (c, c′), where c = (c1, . . . , c�) and c′ = (c′

1, . . . , c
′
�).

Let us define the sign of a configuration (F, label, col) as the product of all 2� rib-
bons labeling the edges of F (recall that the empty ribbon has sign +1). For instance,
the steps C and E of Fig. 10 show two configurations: C and E have both content
((2,1,2), (2,2,1)), and C has negative sign, whereas E has positive sign.
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So configurations are signed objects to which a certain content is attached, and we
can view the objects involved in Theorem 7.1 as special subclasses of permutations,
as we now show.

A hook permutation (H,σ ) is naturally a positive configuration: the border is
the left and bottom side of G�, all vertices are labeled by ∅, and the coloring is
just the representation of (H,σ ) in the grid. The content of such a configuration is
(c(H), c(σ (H))). A pair (P,Q) of ribbon tableaux of length � with the same shape
is also a configuration: the border is the top and right side, the right side being labeled
by P and the top side by Q; and all squares of the grid are empty. The sign of the
configuration is ε(P )ε(Q), and the content is (c(Q), c(P )); note the swap of the
tableaux here. We will from now on identify hook permutations and pairs of ribbon
tableaux to such configurations.

We now notice, in the algorithm describing our correspondence, the transforma-
tion Apply_local_rule on pairs consisting of a configuration together with a direction.
An inspection of each local rule shows that the compatibility conditions in Defini-
tion 8.1 are indeed respected by this transformation. Furthermore, the content of a
configuration is invariant by this transformation.

Application of the involution principle of Garsia and Milne We now fix two compo-
sitions c1 and c2 of length � and size n, and consider from now on only configurations
with content (c1, c2).

A configuration (F, label, col) is said to be of type A if rule T is the rule to be
applied in sq<(F), or if it is a permutation (which is when sq<(F) is not defined). It
is of type B if rule S has to be applied in sq>(F), or if it is a pair of ribbon tableaux
(which is when sq>(F) is not defined). Let A (resp., B ) be the set of configurations
of type A (resp., B). For instance, the configurations C and E of Fig. 10 are of type A
and B, respectively, for the content ((2,1,2), (2,2,1)). Note that configurations can
happen to be of both types.

Now we define the bijection and the two involutions that are involved in the ap-
plication of the involution principle. First, define an involution on A by applying the
rule T in sq<(F) when it is defined, and keeping the hook permutations unchanged.
Likewise, we have an involution on B by applying the rule S in sq>(F) when it is
defined, and letting the pairs of tableaux unchanged. Notice that these two involutions
are sign reversing by Proposition 5.1. We define also a bijection A → B by applying
direct rules in sq>(F) on a type A configuration, until we reach a type B configu-
ration. Since in this case we only apply rules of the form Di, the sign is preserved,
thanks to Proposition 5.1 again. The inverse bijection from B to A goes simply by
applying repeatedly inverse rules in sq<(F) on a type B configuration, until we reach
a type A configuration.

We now have all the necessary functions, and the application of the involution
principle gives us a signed bijection between hook permutations and pairs of ribbon
tableaux that verifies exactly the properties of Theorem 7.1. This is precisely the
correspondence defined in Sect. 6, and completes the proof.

8.2 Proof of Theorem 7.2

We will use here the definitions used in the proof of Theorem 7.1, and adapt them
to the case of involutions. We consider a total order H O on HG�, the half grid
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Fig. 12 A half configuration

made of the squares (i, j) of G� with i ≥ j , and suppose that this order extends
the order �, defined by (i, j) � (i′, j ′) if i ≤ i′ and j ≤ j ′. This induces a partial
order on the squares of G�, given by: (i, j) is smaller than (i′, j ′) if and only if
(min(i, j),max(i, j)) is smaller than (min(i′, j ′),max(i′, j ′)) for H O; in this way a
square and its symmetric are not comparable. We will still denote this partial order
by H O.

We consider configurations as in Definition 8.1, with the exception that the or-
der H O is now used. A configuration (F, label, col) on G� is called symmetric if
F, label, and col are all symmetric with respect to the diagonal i = j ; we define a
half-configuration as the restriction to HG� of a symmetric configuration. Note that
the border f of a half-configuration consists of a path form the top left corner of
HG� to any vertex of the diagonal i = j . Figure 12 shows an example of a half
configuration.

For a half configuration, applying a local rule in the square (i, j) ∈ HG� means
applying it in both (i, j) and (j, i) in the associated symmetric configuration, and
restricting the result to HG�. Note that local rules in (i, j) and (j, i) will give the
same outputs since all our local rules are symmetric in μ and ν, so that we will only
deal with symmetric configurations.

We represent naturally ribbon tableaux by a chain of partitions on the top side of
HG�, and hook involutions by the restriction of their matrix representation to HG�

with ∅ labeling the vertices on the left. The content c of a symmetric configuration
is of the form (c, c), so we define the content of the associated half configuration
as c. The sign of a half configuration (f, label, col) is the product of all the signs
labeling f , multiplied by the product of the signs of hooks appearing in the square
(i, i). Note that this gives the desired sign on H I and on ribbon tableaux, so that we
are indeed in the setting of Theorem 7.2.

Let us denote by H A and H B the sets of half configurations with associated sym-
metric configurations in A and B, respectively, with the partial order H O. We define
the involutions on H A and H B in the same fashion as for A and B, as well as the
bijection between H A and H B.
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Now we wish to apply the involution principle with these two involutions and this
bijection: we have to check the sign modifications here since the definition of the sign
of a configuration has been modified. For the non-diagonal squares (i, j) with i > j ,
everything works as before: the application of a rule S or T changes the sign, whereas
the other rules preserve it. Therefore, the two involutions are indeed sign-reversing,
and the bijection is sign-preserving.

There remains the application of a rule on a diagonal square sq. First, we notice
that rules D1–D3 and I1–I3 are the only ones that can be applied there since they are
the only rules with μ = ν. So what we finally have to prove is that the sign of the
ribbon on the left side of sq, times the sign of the hook in sq in the case of D2, is
equal to the sign of the ribbon on the top side of sq.

This is trivial for the rule D1. For the rules D2 and D3, one has to look at the
definition of prev and first (Sect. 2.2): first(λ, eq) is of the same height as eq by
definition, and thus of the same sign: this implies that rule D2 will indeed have the
sign preserving property. For the rule D3, next(μ,μ/λ) is a ribbon of the same height
as μ/λ, and thus of the same sign, which implies here also that the rule preserves
the sign. The involution principle can thus be applied, and this achieves the proof of
Theorem 7.2. �

The end of the proof shows why this cannot be deduced from White’s work [31]:
the rules he used in the case μ = ν do not preserve the signs we use here, which are
the ones discovered only much later in [23].

9 Algebraic approach

The previous section generalized the Robinson–Schensted bijection. Now we will
give an algebraic proof of the enumerative consequence of these results, that is, Corol-
lary 7.1, in the spirit of Stanley [25] and Fomin [6].

Let K be a field of characteristic zero. We consider KY = ⊕
n KYn, the vector

space of all (finite) linear combinations of partitions with coefficients in K. For i a
positive integer, we define two linear operators Ui and Di via their action on the basis
of partitions.

Definition 9.1 For λ ∈ Y,

Uiλ =
∑

r=μ/λ∈Ribi

ε(r)μ; Diλ =
∑

r=λ/μ∈Ribi

ε(r)μ.

Ui and Di are endomorphisms of KY that send KYn into KYn+i and KYn−i ,
respectively. We note that these two operators were already defined by Stanley [25]
but with a different perspective.

For λ,μ two partitions, we set 〈λ,μ〉 = 1 if λ = μ and 0 otherwise. We may then
extend 〈· , ·〉 to KY × KY by bilinearity. Notice that Ui and Di are dual endomor-
phisms for this bilinear form. Indeed 〈Uiλ,μ〉 = 〈λ,Diμ〉 for any λ,μ, since each
side is equal to ε(r) if λ ⊆ μ and r = μ/λ is a ribbon, and to 0 otherwise.

The fundamental relations between these endomorphisms provides the following
(we denote by AB = A ◦ B the composition):
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Proposition 9.1 For nonnegative integers i, j , we have

DiUi = UiDi + i · Id, (3)

DiUj = UjDi if i = j. (4)

Proof The first equality can be rewritten

〈DiUiμ, ν〉 = 〈UiDi + i · Idμ,ν〉,
or equivalently, 〈DiUiμ, ν〉 = 〈UiDiμ, ν〉 + i · δμ,ν,

or equivalently, 〈Uiμ,Uiν〉 = 〈Diμ,Diν〉 + i · δμ,ν

for μ and ν any two partitions, while the second equality is equivalent to

〈DiUjμ,ν〉 = 〈UjDiμ, ν〉.
Those two equalities can be rephrased as |Ui (μ,μ)| = |Di (μ,μ)|+ i for all μ, and

|Ui (μ, ν)|± = |Di (μ, ν)|± for μ = ν. But this is exactly the enumerative signification
of Proposition 5.2, which ends the proof. �

The first of these two relations is characteristic of i-differential posets, defined by
Stanley [25, 26], and which are the basis of [6].

Now we consider infinite matrices with coefficients in K := Q�q�, where rows
and columns are indexed by Y; in particular, Di and Ui are now considered as such
matrices. We will write vectors as infinite linear combinations of partitions with co-
efficients in K. Let us now define our main matrices U and D:

Definition 9.2

U =
∑

i

qiUi; D =
∑

j

qjDj .

Uλ,μ (resp., Dλ,μ) is thus equal to εqk if μ/λ (resp., λ/μ) is a ribbon of size k

and sign ε, and 0 otherwise. This interpretation gives us immediately the following
formula:

∑

λ∈Yn
P,Q∈RTλ,�

ε(P )ε(Q) = [
q2n

](
D�U�

)
∅,∅. (5)

We want to calculate the right-hand side of this equality; note first that Proposi-
tion 9.1 can be summarized in a single relation involving U and D:

DU = UD + q2

(1 − q2)2
Id . (6)

Proof One just has to take the definition of U and D, develop, and then use the rela-
tions of Proposition 9.1. The coefficient of Id appearing is then

∑
i≥1 iq2i , which is

equal to the given rational fraction. �
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In order to compute the coefficient of q in (5), we need the following result of
Stanley:

Theorem 9.1 (Stanley [25]) Let two matrices D,U verify DU = UD + rI for a
certain element r . Then for all positive integers � we have

D�U� = (UD + rI )(UD + 2rI ) · · · (UD + �rI ).

Thus if Ô is a vector such that DÔ = 0, we have (D�U�)ÔÔ = r��!

By (6), U and D verify the condition of the theorem with Ô = ∅ and r = q2/

(1 − q2)2. Therefore, the second formula of Corollary 7.1 follows from (5), Theo-
rem 9.1, and the following computation:

r��! = �! · q2� · 1

(1 − q2)2�
=

∑

n≥�

[(
n + � − 1

2� − 1

)

· �!
]

q2n.

Let us now turn to the first formula of Corollary 7.1. First, we notice that
Uμ�

· · ·Uμ1∅ is the linear combination of all ribbon tableaux of content μ, with the
sign of the tableau as coefficient. So the left-hand side of the first formula in Corol-
lary 7.1 is given by

〈Uν�
· · ·Uν1∅,Uμ�

· · ·Uμ1∅〉,
which by duality is equal to 〈∅,Dν1 · · ·Dν�

Uμ�
· · ·Uμ1∅〉.

Lemma 9.1 Let μ,ν be two compositions with � parts. Then

〈∅,Dν1 · · ·Dν�
Uμ�

· · ·Uμ1∅〉 = ν� ×
∑

ρ

〈∅,Dν1 · · ·Dν�−1Uρ∅〉,

where ρ runs through the multiset of all compositions of length � − 1 obtained by
deleting a part of μ of size ν�.

Proof of the lemma We use the relations of Proposition 9.1, with Dν�
and Uμi

,
for i equal to �, . . . ,1 successively. For a given i, two cases can occur: If μi =
ν�, then Dν�

and Uμi
simply commute; otherwise, we have in addition a term

ν�〈∅,Dν1 · · ·Dν�−1Uρ∅〉 which has to be added, where ρ is the composition with
the part μi deleted in μ. �

The proof of the first part of Corollary 7.1 is now a simple induction on � based
on the preceding lemma.

10 Columns of the character table of the symmetric group

Ribbon tableaux have a strong connection with the representation theory of the sym-
metric group, which we will now recall briefly. Let n be a positive integer, λ a par-
tition of size n; we denote by χλ the irreducible character of the symmetric group
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Sn indexed by λ (for more information on these topics, see, for instance, [10, 20]
that have a combinatorial approach). Let also χλ

μ be the value of this character on a
permutation of cycle type μ: this means that the permutation has mi cycles of length
i for each i if μ = (1m12m2 · · · ). The Murnaghan–Nakayama rule [16, 17] is given
by:

Theorem 10.1 Let λ,μ be two partitions of the same size n. Then

χλ
μ = |RTλ,μ|±.

In fact, the rule says a bit more: one, in fact, has χλ
μ = |RTλ,c|± for any composi-

tion c whose corresponding nonincreasing rearrangement c̃ is given by μ.
This rule gives a combinatorial interpretation of χλ

μ, and shows in particular that
it is an integer. We will now show that Theorem 7.2 is adapted to study the column
sums of the character table.

10.1 A formula for
∑

λ χλ
μ

Define C(μ) = ∑
λ χλ

μ, the sum of all entries of column μ in the character table
of Sn. By the Murnaghan–Nakayama rule, C(μ) is equal to the signed sum of all
ribbon tableaux of content μ. By Theorem 7.2, this last quantity is itself equal to
the signed sum of hook involutions of content μ. The preceding result can thus be
summed up by C(μ) = |RTμ|± = |H I|±. Using Corollary 6.1, we finally obtain

C(μ) = ∣
∣H Ispec(μ)

∣
∣. (7)

This shows in particular that C(μ) is a nonnegative integer; the following theorem
gives a formula for the exact value of this integer.

Theorem 10.2 Let μ = (1m12m2 · · · ) be a partition.Then we have the formula
C(μ) = ∏

i>0 ci,mi
where

ci,mi
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if i is even and mi is odd;

(mi − 1)!! · imi/2 if i is even and mi is even;
∑� mi

2 �
k=0

(
mi

mi−2k

) · (2k − 1)!! · ik if i is odd.

We will exhibit two proofs: first a bijective one, and then algebraic, using the tools
of Sect. 9.

First Proof of Theorem 10.2 The computation of |H Ispec(μ)| for general μ clearly
reduces to the case μ = [imi ] where μ has only one part size.

In this case, an element of H Ispec(μ) is an involution on �1, ak � with a choice of a
hook of size ak for each cycle of length 2. Remembering that elements of H Ispec(μ)

have no fixed points corresponding to even parts, we obtain easily the above expres-
sion for the coefficient ci,mi

, and the proof is complete.
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Second proof of Theorem 10.2 We now give a proof that does not use Theorem 7.2
(and thus also not equality (7)). For this, we need the following algebraic consequence
of Proposition 6.1 in terms of the operators Di and Ui (considered as endomorphisms
of K

Y ); we denote by Y the vector
∑

λ∈Y λ ∈ K
Y, and oi is 1 when i is odd and 0

otherwise.

Proposition 10.1 For all i ≥ 1, we have DiY = UiY + oi · Y.

Proof Take the scalar product of each member of the equality with a partition λ, and
remembering that Ui and Di are dual operators, the result is equivalent to

∑

μ∈Ui (λ)

ε(μ/λ) =
∑

μ∈Di (λ)

ε(λ/μ) + oi.

This is an immediate corollary to Proposition 6.1. �

By the Murnaghan–Nakayama rule, we have C(μ) = 〈DμY, ∅̂〉. We will use the
relations of Propositions 9.1 and 10.1 to compute this scalar product.

Lemma 10.1 We have the following formulas:

1. For m ≥ 2 and i ≥ 1, Dm
i Y = oi · Dm−1

i Y + (m − 1)i · Dm−2
i Y + UiD

m−1
i Y.

2. For m ≥ 1 and i ≥ 1, Dm
i Y = ci,mY + UiAi,mY, where ci,m is defined in Theo-

rem 10.2, and Ai,m is a polynomial in Di and Ui .
3. For m ≥ 1 and i ≥ 1, 〈DμDm

i Y,∅〉 = ci,m〈DμY,∅〉 if all parts of μ are greater
than i.

Proof of the lemma We have Dm
i Y = oi · Dm−1

i Y + Dm−1
i UiY, thanks to Proposi-

tion 10.1. Using m − 1 times the relation DiUi = UiDi + i · I , part 1 of the lemma is
proved.

By an immediate induction on part 1, we can write for all m ≥ 2 that Dm
i Y =

bi,mY + UiBY for a certain endomorphism B and an integer bi,m necessarily equal
to 〈Dm

i Y,∅〉. Substituting into part 1, and taking the coefficient of ∅ in each member,
we obtain bi,m = oibi,m−1 + (m−1)ibi,m−2. The numbers ci,m verify the same recur-
rence relation, as can be easily seen, directly or by the combinatorial interpretation
given in the first proof. Since we have in addition bi,0 = ci,0 = 1 and bi,1 = ci,1 = oi ,
it follows that bi,m = ci,m for all i,m and part 2 is proved.

Finally, thanks to part 2, the left-hand side of the equality of part 3 is equal to

ci,m〈DμY,∅〉 + 〈DμUiAi,mY,∅〉.

Since Dμ commutes with Ui by (4), the second term is then 0 because the image of
Ui has null intersection with K∅, and the lemma is proved. �

The proof of Theorem 10.2 is now immediate by induction on the number of dif-
ferent part sizes of μ, using part 3 in the previous lemma. �
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10.2 Other evaluations of C(μ)

The formula of Theorem 10.2 is not new, but the proof above is (to the best of our
knowledge) the first fully bijective proof of it based on the Murnaghan–Nakayama
rule. Let us mention two other places in the literature where this result is shown, and
show the equivalence to our formulation.

The computation of C(μ) is an exercise in Macdonald’s book [15, p. 122, Ex. 11],
and relies on symmetric function techniques. It is proved that C(μ) is equal to the
product

∏
i≥1 a

(mi)
i , where a

(m)
i is the coefficient of tm/(m!) in exp(t + 1

2 it2) (resp.,

exp( 1
2 it2)) if i is odd (resp., even). Through an expansion of the series, one checks

easily that a
(m)
i is indeed equal to the coefficient ci,m of Theorem 10.2.

Another proof can be found in Exercise 7.69 of Stanley’s book [27]; the proof is
based on a general result in character theory, whose specialization to the symmetric
group is the following theorem:

Theorem 10.3 [13, 27] Let σ be a permutation of �1, n� with cycle type μ. Then
C(μ) is equal to the number of square roots of σ in Sn, i.e., to the number of permu-
tations τ ∈ Sn such that τ 2 = σ .

We will give a new proof of this theorem. First, let us fix some notation: given a
permutation σ of cycle-type μ = (1m12m2 · · · ), consider the decomposition of σ into
disjoint cycles

σ = [
c
(1)
1 · · · c(m1)

1

][
c
(1)
2 · · · c(m2)

2

] · · · ,

where c
(k)
i , k = 1, . . . ,mk , are the cycles of length i written in increasing order of

their minimal elements. For instance, the permutation 574389216 has cycle type μ =
(3,23) and will be written [(27)(34)(69)][(158)].

Proof of Theorem 10.3 Thanks to formula (7), it suffices to exhibit a bijection Γ be-
tween H Ispec(μ) and {τ | τ 2 = σ }. The following lemma is the key to this bijection.

Lemma 10.2 Let c1, c2 be two disjoint cycles of length m ≥ 2 in Sn.
• There exist exactly m cycles c of length 2m in Sn such that c2 = c1c2.
• If m is odd, there exist a unique cycle c of length m in Sn such that c2 = c1.

The m cycles of the first part of the lemma will be denoted rootk(c1, c2), k =
0, . . . ,m − 1, and the unique cycle of length m determined by the second part is
root(c1). We extend these notations to the case m = 1 where c1, c2 are fixed points
a, b by setting root0(a, b) to be the cycle (ab) and root(a) to be the length 1 cycle (a).

We now consider an element I ∈ H Ispec(μ); it is readily seen that I can be con-
sidered as a sequence of hook involutions (Ij )j≥1 where Ij belongs to H Ispec(j

mj ).
We wish to define a permutation τ = Γ (I) such that τ 2 = σ .

Consider a hook involution Ij as above and denote by ij the underlying involution.
If (x, y) is a transposition in ij , and h ∈ �0, j − 1� is the height of the corresponding
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hook, then by the preceding lemma we can define a cycle C = rooth(c
(x)
j , c

(y)
j ). If z

is a fixed point of ij , then j must be odd by definition of H Ispec(j
mj ), and thanks

to the lemma we can in this case define a cycle C′ = root(c(z)
j ). Now all these cycles

C,C′, over all indices j , are pairwise disjoint; their product is the desired root Γ (I)

of σ . �

We can also use the formula to answer the question: For a given integer k, what
are the partitions μ such that the column sum C(μ) is equal to k? Let O D be the set
of partitions with odd distinct parts. The answers for the first integers are:

– C(μ) = 0 if and only if μ has at least an even part with odd multiplicity;
– C(μ) = 1 if and only if μ ∈ O D;
– C(μ) = 2 if and only if 1 has multiplicity 2 and μ−12 ∈ O D, or 2 has multiplicity

2 and μ − 22 ∈ O D;
– C(μ) = 3 has no solution;
– C(μ) = 4 if and only if 3 has multiplicity 2 and μ−32 ∈ O D, or 4 has multiplicity

1 and μ − 41 ∈ O D, or 2 and 1 have multiplicity 2 and μ − 1222 ∈ O D.

The number of solutions to C(μ) = 0 is sequence A085642 in Sloane’s Online En-
cyclopedia [24]. The article [1] proves that another family of partitions is in bijection
with O D, namely the partitions with at least one part congruent to 2 modulo 4.

11 Extensions

In this last section, we give three different extensions where the ideas of this work
can be applied.

11.1 A result of Stanton and White

Stanton and White [28] show combinatorially that, if c and c′ are 2 compositions
verifying c̃ = c̃′, then

|RTλ,c|± = |RTλ,c′ |±. (8)

This is a consequence of the Murnaghan–Nakayama rule, see Theorem 10.1 and
the remark following it: both sides of (8) express the value of the character χλ on
a permutation σ of cycle type c̃ = c̃′. In this section, we give local rules that give
a simple proof of Stanton and White’s result, building on Fomin’s version of jeu de
taquin explained in his appendix to Stanley’s book [27].

Proof of (8) We have the following proposition whose proof can be easily done by
using the encoding of partitions by infinite sequences of elements of {0,1} as ex-
plained in Appendix:

Proposition 11.1 Let λ,μ, ξ be three partitions such that μ/λ and ξ/μ are ribbons.
Then we separate two cases:
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1. ξ/λ is not a ribbon: in this case there exists a unique ν = μ such that ν/λ and ξ/ν

are ribbons of respective sizes |ν/λ| = |ξ/μ| and |ξ/ν| = |μ/λ|.
2. ξ/λ is a ribbon:

(a) If there exists ν such that ν/λ and ξ/ν are ribbons of respective sizes |ν/λ| =
|ξ/μ| and |ξ/ν| = |μ/λ|, then such a ν is uniquely defined;

(b) Otherwise, there exists a unique μ̂ = μ such that μ̂/λ and ξ/μ̂ are ribbons of
respective sizes |μ̂/λ| = |μ/λ| and |ξ/μ̂| = |ξ/μ|.

Furthermore, we have the sign relations ε(ν/λ)ε(ξ/ν) = ε(μ/λ)ε(ξ/μ) and
ε(μ̂/λ)ε(ξ/μ̂) = −ε(μ/λ)ε(ξ/μ).

This is a generalization of Proposition A1.2.1 in [27], which is the case where μ/λ

and ξ/μ have size 1.
We can now define the local rules: given λ,μ, ξ as in the proposition, we draw

them on a lozenge as on the left of Fig. 13. If a corresponding “ν” can be defined
according to Proposition 11.1, then we erase μ, and write ν on the right vertex of
the lozenge; otherwise we replace μ by μ̂. This last rule corresponds to a “change of
direction” in the global correspondence that we define below, as did rules S and T in
the Algorithm φ from Sect. 6. We also define inverse local rules by a simple vertical
symmetry, and the trivial rule which consists of simply moving the partition μ from
one side of the lozenge to the other.

We gather now these lozenges in a grid P� made of rows of 1,2, . . . , �−1 lozenges
from top to bottom. We index the lozenges with the coordinates (i, j), 1 ≤ i ≤ j ≤
� − 1, such that the lozenges in the mth row from the top receive the indices (1,

� − m), (2, � − m + 1), . . . , (m, � − 1) from left to right; see Fig. 13, right, for the
case � = 4. We also fix a linear order on lozenges such that each lozenge (i, j) has to
be bigger than the two lozenges on its top left and bottom left, namely (i − 1, j) and
(i, j − 1) when they are defined. For the examples, we will use the following linear
order: (i, j) is greater than (i′, j ′) if i > i′, or i = i′ and j > j ′.

Given two compositions c, c′ of length � such that c̃ = c̃′, we represent elements of
RTλ,c on the left side of P� as chains of partitions labeling the vertices from bottom
to top, and elements of RTλ,c′ on the right side in the same fashion. Now we want
to select a subset of the lozenges so that when local rules are applied in the grid
we indeed obtain a correspondence between RTλ,c and RTλ,c′ . Fix σ , a permutation
such that σ(c) = c′, and mark lozenges of P� in the following way: for each j such
1 < j ≤ l, mark the lozenges (i, j) such that i ≤ |{k < j : σk > σj }|.

Fig. 13 Lozenge for local rules
and associated grid for the
global correspondence



96 J Algebr Comb (2012) 36:67–102

Fig. 14 Marking of the lozenges for the permutation 3142, and resulting effect on the size of ribbons
through the correspondence

Fig. 15 Example of the
correspondence in the proof
of (8)

For instance, consider c = (1,3,2,1) and c′ = (3,1,1,2), and fix the permutation
w = 3142 which indeed verifies w(c) = c′; the corresponding marking is represented
on the left-hand side of Fig. 14.

Now we are in position to give a global correspondence based on the local rules
defined above: start from a ribbon tableau represented on the left-hand side, and go
on performing local rules as in the beginning of Sect. 6, following the fixed linear
order. Here we perform nontrivial local rules in the marked lozenges, while in the
other (unmarked) ones we will use only the trivial local rule. An example is given
on Fig. 15. The definition of the marked lozenges in the previous paragraph is made
so that the size of ribbons “match” between c and c′, thanks to Proposition 11.1; this
can be visualized on the right-hand side of Fig. 14.

This global correspondence is then a signed bijection which proves (8). �

Remark 11.1 In the case when all lozenges are marked with a cross, and all ribbons
are of size 1, we obtain precisely Schützenberger’s involution as described in Fomin’s
appendix to [27].

11.2 Other correspondences based on the graph GR

In the correspondence of Theorem 7.1, we considered pairs of ribbon tableaux of the
same shape. As already noticed, these are very special paths in the ribbon graph GR:
they start and end at ∅, going up � steps and then down � steps. The same ideas work
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when building correspondences for other kinds of paths, as is the case in the work
of Fomin [7]. Here we show this in the case of oscillating tableaux which are well
known in the standard case.

We consider the paths in GR of length 2�, that start and end at ∅, and which possess
� steps up and � steps down (but in no imposed order). These are called oscillating
tableaux (of shape ∅) in the case where all ribbons are of size 1, and we will thus call
these paths oscillating ribbon tableaux.

The size n of such a path is the half sum of the sizes of the 2� edges (i.e., ribbons),
and the sign is the product of the signs of those ribbons. The oscillating tableau above
has size 5, sign +1, and length 6. Let us denote by Oscn,� the signed set of such paths
of size n and length 2�; we have then the following formula:

|Oscn,�|± = (2� − 1)!!
(

n + � − 1

� − 1

)

. (9)

This can be proved in two ways, algebraic and bijective, following the steps of
what was done in the case of pairs of ribbon tableaux of the same shape.

The algebraic way to prove the identity is to notice that the quantity |Oscn,�|± can
be expressed as the coefficient of q2n in the series 〈∅, (D + U)2�∅〉. Now this series is
(2�−1)!!(∑i iq

2i )� (this a consequence of Corollary 2.6 (a) of [25]), and (9) follows
as in the proof of the second equality of Corollary 7.1.

The bijective way consists in constructing a signed bijection between Oscn,� and
hook matchings of �1,2�� with size n: these are perfect matchings on �1,2�� such
that to each pair {i, j} of the matching is associated to a hook H{i,j} such that the sum
of the sizes of the � hooks is n. Since there are (2�− 1)!! perfect matchings, Proposi-
tion 4.1 shows that there are indeed (2� − 1)!!(n+�−1

�−1

)
such hook perfect matchings.

The bijective correspondence between Oscn,� and hook matchings is done as in
Roby [18]. We illustrate this on an example in Fig. 16. Instead of the grid G�, we
perform the bijection on a grid T� illustrated on the figure by dashed lines for � = 3.

Hook matchings can be represented by labeling with ∅ the bottom and left side,
and for each pair {i, j} of the matching, the corresponding hook is drawn in the square
of column i from the left and row j from the top. In the example, the matching is then
{{1,3}, {2,6}, {4,5}}. Oscillating ribbon tableaux (λ0 = ∅, λ1, . . . , λ2�−1, λ2� = ∅ are
represented on the outside corners of the north east border, from top left to bottom
right (moreover, in each of the corresponding inside corners, one draws the smallest
shape between λi and λi+1).

Now a signed correspondence goes along the exact same lines as what we did in
Sect. 6 for pairs of ribbon tableaux of the same shape: We fix a total order on the
squares of T�, and apply local rules in these squares, changing directions when we
encounter a rule S or T; this gives us in the end a bijective proof of (9). The example
of Fig. 16 does not present any occurrence of rules S, T for the sake of simplicity.
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Fig. 16 Correspondence for
oscillating ribbon tableaux

11.3 Layered graphs in duality

The techniques used in this article generalize the kind of graphs studied in Fomin’s
framework developed in [6, 7]; we now present the theoretical setting in this subsec-
tion.

Consider a graph G = (V ,E) with a sign function on the edges ε : E → {+1,−1}.
Suppose that V is the disjoint union of finite sets Vi , i ∈ N where V0 is a singleton
{O}. We will say that G is a layered graph (with zero). Let now Ui,Dj be the endo-
morphisms of KV defined for v ∈ Vk by Ui(v) = ∑

e ε(e)v′ where e runs through all
edges from v to v′ ∈ Vk+i , and Dj is defined dually from KVk to KVk−i .

We say that the layered graph G is self dual if there exist nonnegative integers
αi, i ≥ 1 such that

DiUi = UiDi + αi · Id,

DiUj = UjDi if i = j.

Fomin’s framework of self dual graded graphs is the case where

– Edges exist only between consecutive levels Vi and Vi+1;
– The sign function is constant equal to 1.

It is then possible to use the algebraic techniques of this work to study the enu-
meration of paths in such graphs. The relations above correspond to certain equalities
of signed cardinals, as in the graph GR. If signed bijections proving these equalities
are fixed, then we can determine global correspondences in the same way. But it ob-
viously remains to see if there exists interesting examples to which this theory can be
applied.
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An important remark is that this generalizes only Theorem 7.1 and its Corollary;
to obtain the counterpart of Theorem 7.2, one needs additional local properties on the
self dual layered graph, analogous to Proposition 10.1 in the case of GR.
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Appendix: Partitions as sequences of zeros and ones

In this Appendix, we will show how the encoding of partitions by words is well suited
to the study of the operations on ribbons of Sect. 2.2. We follow van Leeuwen [30]
for notations. Let λ be a partition, and δ(λ) ∈ {0,1}Z the sequence defined by the fol-
lowing procedure: we extend the top and left borders of a Ferrers diagram to infinity,
and read the lower right boundary from bottom to top, recording 1 for every vertical
edge encountered, and 0 for the horizontal edges.

For instance, the partition (4,2,2,1) has for coding word (· · ·1110101|
1001000 · · · ), cf. Fig. 17; the sign “|” separates the parts of the border below and
above the diagonal of the diagram, and we consider that nonnegative indices of δ(λ)

are those on the right of |. Notice that the encoding sequences have the following
characteristic properties (see [30]):

1. They differ from (· · ·1111|0000 · · · ) (corresponding to the empty partition) in a
finite number of positions;

2. The number of 0s to the left of | is equal to the number of 1s to its right.

Now, ribbons addable to λ (resp., removable from λ) are in bijection with pairs of
indices (i, j) in Z where i < j such that δi(λ) = 1 and δj (λ) = 0 (resp., δi(λ) = 0
and δj (λ) = 1): i indicates the position of the head, and j the position of the tail. If
μ is the partition obtained after addition or removal of the ribbon, then δ(μ) is the
result of the exchange of 0 and 1 at positions i and j in δ(λ).

Fig. 17 Infinite word encoding
a partition
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Fig. 18 Addition of a ribbon on δ(λ)

One may think of δ(λ) as a configuration of particles on the infinite discrete line:
the 1s represent particles, and 0s represent empty positions. So moving a particle in
an empty position to its left (resp., right) corresponds to removing (resp., adding) a
ribbon. Figure 18 shows a ribbon λ/μ by an arrow between its tail and head, and the
codes of λ and μ are given on the right. One has then the following result:

Lemma A.1 Let λ be a partition with associated sequence δ(λ), and i < j be the
indices of δ(λ) corresponding to a ribbon r addable to (or removable from) λ, that
is, we have {δi(λ), δj (λ)} = {0,1}. Then

1. The size of r is |r| = j − i.
2. The height h of r is the number of 1 in δ(λ) between the indices i and j , i.e.,

h = |{k ∈ Z | i < k < j and δk(λ) = 1}|.

Proof It goes simply by using the fact that the 1s correspond to vertical steps on the
boundary of λ, and the 0s to horizontal ones; so j − i is equal to the number of cells
occupied by r , and each 1 between i and j corresponds to going up from one row to
another in the ribbon.

Now the data of λ,μ, ν (when μ,ν = λ) in a direct rule is equivalent to the
data of δ(λ) and integers i1 < j1, i2 < j2 (corresponding to μ/λ and ν/λ), where
δi1(λ) = 1, δj1(λ) = 0 and δi2(λ) = 1, δj2(λ) = 0.

Every operation of Sect. 2.2 can be, in fact, best understood given this represen-
tation; we shall do it for the switchout operation, which corresponds to the local rule
S in Sect. 5. Using the notations above, the rule S applies precisely when one of the
following two cases occur:

1. i1 = i2, j1 = j2 and δj1+j2−i1(λ) = 1, or
2. j1 = j2, i1 = i2 and δi1+i2−j1(λ) = 0.

Let i be the common value of i1 and i2 in the first case, and j the common value
of j1 and j2 in the second case. Then applying rule S consists simply in defining λ̂ as
the partition whose code is obtained from δ(λ) by exchanging 0s and 1s at positions
i, j1, j2 and j1 + j2 − i in the first case, and at positions i1, i2, j and i1 + i2 − j in the
second case. The first case is illustrated in Fig. 19: λ is shown above with the ribbons,
and the applications of rule S gives the partition below. (The symbols ‘x’ represent
indifferently 1s or 0s.)

One notices that the partition μ/̂λ and μ/̂λ are ribbons of the same size j1 − i1,
and ν/λ and ν/̂λ are ribbons of the same size j2 − i2; therefore, λ and λ̂ belong to
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Fig. 19 The rule S

the same set Dk(μ, ν) for a certain k. The rule S is also clearly an involution, as it
exchanges cases 1 and 2 defined above.

Now we will check finally that it exchanges signs, which is just a matter of count-
ing particles, thanks to Lemma A.1. Since S is involutive, we can assume to be in
case 1 above, and, by the symmetry of the roles of μ and ν, we also assume j1 < j2
without any loss of generality; we are therefore in the case of Fig. 19, top. Let a

(resp., b, c) be the number of 1s in λ that are strictly between the indices i and j1
(resp., j1 and j2; resp., j2 and j1 + j2 − i); these numbers are the same in λ and λ̂. As
elements of the signed set Dj1−i (μ, ν), λ and λ̂ have signs (−1)x and (−1)y , with
x = 2a + b and y = b + 2c + 1; this gives opposite signs since x and y have opposite
parity. �
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155(Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII):156–175, 195 (1986)

6. Fomin, S.: Duality of graded graphs. J. Algebr. Comb. 3(4), 357–404 (1994)
7. Fomin, S.: Schensted algorithms for dual graded graphs. J. Algebr. Comb. 4(1), 5–45 (1995)
8. Fomin, S.: Schur operators and Knuth correspondences. J. Comb. Theory, Ser. A 72(2), 277–292

(1995)
9. Fomin, S., Stanton, D.: Rim Hook Lattices. Algebra Anal. 9(5), 140–150 (1997)

10. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge Uni-
versity Press, Cambridge (1997). With applications to representation theory and geometry

11. Garsia, A., Milne, S.: Method for constructing bijections for classical partition identities. Proc. Natl.
Acad. Sci. USA 78(4, part 1), 2026–2028 (1981)

12. Garsia, A., Milne, S.: A Rogers–Ramanujan bijection. J. Comb. Theory, Ser. A 31(3), 289–339 (1981)
13. Isaacs, I.M.: Character Theory of Finite Groups. Dover, New York (1994). Corrected reprint of the

1976 original (Academic Press, New York; MR0460423 (57 #417))
14. Kerber, A.: Applied Finite Group Actions. Algorithms and Combinatorics, vol. 19, 2nd edn. Springer,

Berlin (1999)



102 J Algebr Comb (2012) 36:67–102

15. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs,
2nd edn. Clarendon/Oxford University Press, New York (1995)

16. Murnaghan, F.D.: On the representations of the symmetric group. Am. J. Math. 59(3), 437–488
(1937)

17. Nakayama, T.: On some modular properties of irreducible representations of a symmetric group. I.
Jpn. J. Math. 18, 89–108 (1941)

18. Roby, T.: The connection between the Robinson–Schensted correspondence for skew oscillating
tableaux and graded graphs. Discrete Math. 139(1–3), 481–485 (1995). Formal power series and al-
gebraic combinatorics (Montreal, PQ, 1992)

19. Sagan, B.E.: Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley. J. Comb. Theory,
Ser. A 45(1), 62–103 (1987)

20. Sagan, B.E.: The Symmetric Group. Graduate Texts in Mathematics, vol. 203, 2nd edn. Springer, New
York (2001). Representations, combinatorial algorithms, and symmetric functions

21. Sagan, B.E., Stanley, R.P.: Robinson–Schensted algorithms for Skew tableaux. J. Comb. Theory, Ser.
A 55(2), 161–193 (1990)

22. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)
23. Shimozono, M., White, D.E.: Color-to-spin ribbon Schensted algorithms. Discrete Math. 246(1–3),

295–316 (2002). Formal power series and algebraic combinatorics (Barcelona, 1999)
24. Sloane, N.: On-line encyclopedia of integer sequences. Accessible from N. Sloane’s homepage
25. Stanley, R.P.: Differential posets. J. Am. Math. Soc. 1(4), 919–961 (1988)
26. Stanley, R.P.: Variations on differential posets. In: Invariant Theory and Tableaux, Minneapolis, MN,

1988. IMA Vol. Math. Appl., vol. 19, pp. 145–165. Springer, New York (1990)
27. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics,

vol. 62. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and
appendix 1 by Sergey Fomin

28. Stanton, D.W., White, D.E.: A Schensted algorithm for rim hook tableaux. J. Comb. Theory, Ser. A
40(2), 211–247 (1985)

29. Sundaram, S.: The Cauchy identity for Sp(2n). J. Comb. Theory, Ser. A 53(2), 209–238 (1990)
30. van Leeuwen, M.A.A.: Edge sequences, ribbon tableaux, and an action of affine permutations. Eur. J.

Comb. 20(2), 179–195 (1999)
31. White, D.E.: A bijection proving orthogonality of the characters of Sn . Adv. Math. 50(2), 160–186

(1983)


	Signed enumeration of ribbon tableaux: an approach through growth diagrams
	Abstract
	Introduction
	Ribbons
	Definitions
	Operations on ribbons

	Signed sets and signed bijections
	The involution principle of Garsia and Milne

	Hook permutations
	Local rules
	Direct rules
	Inverse rules

	Bijective approach
	Hook permutations and pairs of ribbon tableaux
	Hook involutions and ribbon tableaux
	Hook involutions
	Signed correspondence with ribbon tableaux


	Main results
	Relation with previous work

	Proof of Theorems 7.1 and 7.2
	Proof of Theorem 7.1
	Configurations
	Application of the involution principle of Garsia and Milne

	Proof of Theorem 7.2

	Algebraic approach
	Columns of the character table of the symmetric group
	A formula for lambdachiµlambda
	Other evaluations of C(µ)

	Extensions
	A result of Stanton and White
	Other correspondences based on the graph GR
	Layered graphs in duality

	Acknowledgements
	Appendix: Partitions as sequences of zeros and ones
	References


