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In [2], we have found, using brute force computations, some (not all) Kazhdan–
Lusztig relations (let us call them the elementary relations) between very particu-
lar elements of a Weyl group of type B . This shows in particular that the equivalence
classes generated by the elementary relations are contained in Kazhdan–Lusztig cells.

It was announced in [6, Theorems 1.2 and 1.3] that the elementary relations gen-
erate the equivalence classes defined by the domino insertion algorithm (let us call
them the combinatorial cells). As a consequence, we “deduced” that the combinato-
rial cells are contained in the Kazhdan–Lusztig cells [2, Theorem 1.5], thus confirm-
ing conjectures of Geck, Iancu, Lam and the author [3, Conjectures A and B]. How-
ever, as was explained in a revised version of [6] (see [7]), the equivalence classes
generated by the elementary relations are in general strictly contained in the combi-
natorial cells. This has no consequence on most of the intermediate results in [2], but
changes the scope of validity of [2, Theorem 1.5]. Indeed, for some special cases of
the parameters, T. Pietraho [5] has found that the elementary relations generate the
combinatorial cells. So part of [2, Theorem 1.5] can be saved: the aim of this note is
to explain precisely what is proved and what remains to be proved.

The online version of the original article can be found under doi:10.1007/s10801-009-0183-2.
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Remark The fact that [6, Theorems 1.2 and 1.3] is false does not imply that the result
stated in [2, Theorem 1.5] is also false: it just means that its proof is not complete
and we still expect the statement to be correct (as conjectured in [3, Conjectures A
and B]).

1 Proved and unproved results from [2]

Unproved results We keep the notation of [2]. First of all, the proof of the Theorem
stated in the introduction of [2], so its statement remains a conjecture (and similarly
for the Corollary stated at the end of this introduction). Also, [2, Theorem 1.5(a)] is
still a conjecture. However, [2, Theorem 1.5(b)] is still correct: its proof must only be
adapted, using Pietraho’s results [5].

Theorem 1 Let r ≥ 0 and assume that b = ra > 0. Let ? ∈ {L,R,LR} and x, y ∈ Wn

be such that x ≈r
? y. Then x ∼? y.

The proof of Theorem 1 will be given in the next section. It must also be noted
that [2, Theorem 1.5] is also valid if b > (n − 1)a (see [4, Theorem 7.7] and [1,
Corollaries 3.6 and 5.2]).

Proved results Apart from the above mentioned results, all other intermediate re-
sults (about computations of Kazhdan–Lusztig polynomials, structure constants, ele-
mentary relations) are correct.

2 Proof of Theorem 1

In [2, Sect. 7.1], we have introduced, following [6], three elementary relations �1,
�r

2 and �r
3: for adapting our argument to the setting of [5], we shall need to introduce

another relation, which is slightly stronger than �r
3.

Definition 2 If w and w′ are two elements of Wn, we shall write w �r
3 w′ whenever

w′ = tw and |w(1)| > |w(2)| > · · · > |w(r + 2)|. If r ≥ n − 1, then, by convention,
the relation �r

3 never occurs.

Using this definition, Pietraho’s Theorem [5, Theorem 3.11] can be stated as fol-
lows:

Pietraho’s Theorem The relation ≈r
R is the equivalence relation generated by �1,

�r
2 and �r−1

3 .

It is easy to check that, if w �r
3 w′, then w �r

3 w′. Therefore, Theorem 1 follows
from [2, Lemmas 7.1, 7.2 and 7.3] and the argument in [2, Sect. 7.2].
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