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Abstract Questions about a graph’s connected components are answered by study-
ing appropriate powers of a special “adjacency matrix” constructed with entries in
a commutative algebra whose generators are idempotent. The approach is then ap-
plied to the Erdös–Rényi model of sequences of random graphs. Developed herein is
a method of encoding the relevant information from graph processes into a “sec-
ond quantization” operator and using tools of quantum probability and infinite-
dimensional analysis to derive formulas that reveal the exact values of quantities that
otherwise can only be approximated. In particular, the expected size of a maximal
connected component, the probability of existence of a component of particular size,
and the expected number of spanning trees in a random graph are obtained.

Keywords Random graphs · Graph processes · Quantum probability

1 Introduction

The evolution of random graphs has been studied in some detail. The first works in
this area are attributed to Erdös and Rényi [9–11].

Definition 1.1 Let n be a positive integer, let V = {1,2, . . . , n}, and define Ω = (
n
2

)
.

A graph process on V is a sequence (Gt )
Ω
t=0 = (V ,Et )

Ω
t=0 such that each Gt is a

graph on V with t edges, and G0 ⊂ G1 ⊂ · · · ⊂ GΩ .
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Fig. 1 A graph process on 10 vertices

Let Ĝ denote the probability space formed by the set of all Ω! graph processes
with equal probability defined for all. It is well known that any graph process is a
Markov chain whose states are graphs on V .

Example 1.2 Graphs G0 through G11 of a graph process on ten vertices are pictured
in Fig. 1. Note that G11 is the first connected graph of the sequence.

Erdös and Rényi proved that if t ∼ cn for some fixed c ∈ R where 0 < c < 1
2 , then

almost every Gt is such that its largest component has O(logn) vertices. If c > 1
2 ,

then the largest component of almost every Gt has (1−αc +o(1))n vertices for some
0 < αc < 1. Finally, if t = �n/2�, then the maximal size of a component of almost
every Gt is O(n2/3).

Another notable work is that of Bollobás [7], who showed that almost every G ∈ Ĝ
is such that for t ≥ n/2 + (logn)1/2n2/3, the graph Gt has a unique component of
order at least n2/3, referred to as the giant component.

Considering “online” processes, Bohman and Frieze [3] investigated algorithms
for avoiding the emergence of the giant component in a graph process. Bohman,
Frieze, and Wormald [4] and Bohman and Kim [5] also considered avoiding the giant
component.

In contrast, Flaxman, Gamarnik, and Sorking [12] and Bohman and Kravitz [6]
considered algorithms for obtaining a giant component in a graph process.

Chung and Lu [8] investigated the distribution of the sizes of the connected com-
ponents in a family of random graphs with given expected degree sequence.

Frieze and Łuczak [13] considered maximal numbers of edge-disjoint spanning
trees in random graphs. In related work, Palmer and Spencer [17] showed that in
almost every random graph process, the hitting time for having k edge-disjoint span-
ning trees equals the hitting time for having minimum degree k.

Also of interest is the investigation by Molloy [15] of the connections between
satisfiability thresholds for random k-SAT and thresholds for the emergence of the
giant component in a graph process.
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What is proposed in this paper is an algebraic framework in which many quantities
related to a random graph’s connected components can be expressed explicitly.

Defined here is an adjacency matrix whose entries lie in a commutative algebra
with idempotent generators. After labeling the graph’s edges with idempotent gener-
ators of the algebra, computing powers of this matrix reveals information about the
graph’s connected components.

The idempotent-adjacency matrix approach is then extended to graph processes
by creating a second quantization space of graph processes. All possible graph pro-
cesses are encoded in one operator, and information about the connected components
contained in the N th graph of the sequence is revealed by considering powers of this
operator.

The method of second quantization is well known to physicists and goes back to
the original work of Berezin [2].

Quantum probabilistic approaches to graph theory are also not new. Hashimoto,
Hora, and Obata [14] used the method of quantum decomposition to obtain cen-
tral limit theorems for growing sequences of graphs. Other applications of quantum
probabilistic techniques to graph theory include the work of Obata [16] and Accardi
et al. [1].

Historically, the graph-theoretic work done by quantum probabilists has dealt with
specific graphs whose relationship to problems of mathematical physics are under-
stood. In contrast, the philosophy of the current authors is that the tools of quantum
probability can be applied to more general graph-theoretic problems.

In earlier work, the current authors defined nilpotent adjacency matrices and ap-
plied them to the study of cycles in random graphs [19, 20]. A similar approach based
on a commutative algebra whose generators {ςi} satisfy ςi

2 = 1 has been used to for-
mulate random walks on the hypercube [21].

1.1 Algebraic preliminaries

Throughout this paper, let N denote the set of positive integers. The notation N0 will
be used to denote the set N ∪ {0}.

Definition 1.3 Let V be a finite set with n > 0 elements. Let IV be the associative
algebra over R generated by commuting idempotents {ε{i} : i ∈ V } along with the
unit scalar ε∅ = 1 ∈ R. In particular, for i, j ∈ V , the generators satisfy

ε{i}ε{j} = ε{j}ε{i} (1.1)

and

ε{i}ε{i} = ε{i}. (1.2)

For simplicity of notation, linear basis elements will be indexed by subsets of the
power set 2V ; i.e.,

εi =
∏

ι∈i

ει. (1.3)
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Remark 1.4 An easy realization is the algebra generated by canonical projections
onto orthogonal hyperplanes in R

n. For example, consider the collection {εi}1≤i≤n

defined by

εi(x1, . . . , xn) = (x1, . . . , xi−1,0, xi+1, . . . , xn). (1.4)

Note that any element x ∈ IV has canonical expansion of the form

x =
∑

i∈2V

xi εi, (1.5)

where xi ∈ R for each i ∈ 2V .
Define the grade of x ∈ IV by the mapping λ : IV → N0 satisfying

λ(x) = max
xi �=0

|i|. (1.6)

Hence, the grade of x is the size of a maximal multi-index in the canonical expan-
sion of x. For example, λ(1 + ε{1,2} + 3ε{1,3,4} − 4ε{1,2,3,4,5}) = 5.

Remark 1.5 Letting n = |V |, it is worth noting that the idempotent-generated algebra
IV can be constructed within the 2n-particle fermion creator/annihilator algebra [19].

Definition 1.6 Let {ε{i} : i ∈ V } denote the idempotent generators of IV . Associated
with any finite graph G = (V ,E) on n vertices is a column idempotent-adjacency
matrix a defined by

aij =

⎧
⎪⎨

⎪⎩

ε{j} if i = j,

ε{j} if (vi, vj ) ∈ E ⊂ V × V,

0 otherwise.

(1.7)

Further, define the notation a† to be the matrix transpose of a.

Defining the diagonal matrix Δ by Δii = ε{i}, the column idempotent-adjacency
matrix a associated with a finite graph satisfies

a = (A + I )Δ, (1.8)

where A denotes the usual adjacency matrix of the graph. The addition of the identity
matrix I is necessary to account for any isolated vertices in the graph.

For any column idempotent-adjacency matrix a, the transpose a† satisfies

a†
ij =

⎧
⎪⎨

⎪⎩

ε{i} if i = j,

ε{i} if (vi, vj ) ∈ E ,

0 otherwise.

(1.9)
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Moreover,

a† = Δ(A + I )† = Δ(A + I ), (1.10)

where A denotes the usual adjacency matrix of the graph. For this reason, a† will be
referred to as a row idempotent-adjacency matrix.

For each positive integer n, the collection of n × n matrices over IV constitutes
a unital ∗-algebra A with the usual matrix identity and involution a∗ = a†. Within
this ∗-algebra, the column idempotent-adjacency matrix (A + I )Δ generates a mul-
tiplicative semigroup with right identity Δ. This semigroup is defined by

Gc = {(
(A + I )Δ

)	 : 	 ∈ N
}
. (1.11)

Likewise, within this ∗-algebra, the row idempotent-adjacency matrix Δ(A + I )

generates a multiplicative semigroup with left identity Δ. This semigroup is defined
by

Gr = {(
Δ(A + I )

)	 : 	 ∈ N
}
. (1.12)

The results in the remainder of the paper hold for either choice of idempotent-
adjacency matrix. Without loss of generality, fix G = Gr or G = Gc throughout the
remainder of the paper.

Letting {ei}1≤i≤|V | be the standard basis for R
|V | taken as column vectors, a linear

mapping G → I |V |
V is naturally induced for each i by a �→ a ei . Using Dirac notation,

〈ei |a ei〉 := ei
†a ei = aii . Moreover, define the notation ρi := |ei〉〈ei |.

The trace of a ∈ G is the linear mapping τ : G → IV defined by

τ(a) :=
|V |∑

i=1

〈ei |a ei〉. (1.13)

The mapping τ will also be considered a state on G , making the pair (G, τ ) an alge-
braic probability space.

For positive integer m, we refer to 〈ei |am ei〉 = τ(ρia
m) as the mth moment of a

in the state ei . Further, we refer to τ(am) as the mth moment of a in the state τ .

2 Connected components

Proposition 2.1 Let G be a simple graph on n vertices {v1, . . . , vn}, let a denote
an idempotent-adjacency matrix for G, and let Ci (1 ≤ i ≤ n) denote the size of the
maximal connected component of G containing vertex vi . Then,

λ
(
τ
(
ρi a

n(n−1)
)) = Ci. (2.1)

Proof A straightforward inductive argument shows that for any positive integer k

the matrix entry (ak)ij corresponds to the collection of k-walks from the ith vertex
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Fig. 2 A simple graph on 12 vertices and its idempotent-adjacency matrix

to the j th vertex in the graph. By definition of the adjacency matrix, all vertices
included in such a walk are contained in the same connected component of the graph.
By construction of the idempotent-adjacency matrix, the grade of (ak)ij reveals the
maximum number of distinct vertices contained in any k-walk from vi to vj . In the
worst case, a closed walk repeats every edge in covering the vertices of a connected
component, hence 2

(
n
2

) = n(n − 1) steps are allowed. �

By Proposition 2.1, an idempotent-adjacency matrix of a graph on n vertices is a
quantum random variable whose (n2 −n)th moment in the state ei reveals the size of
the maximal component containing the graph’s ith vertex. As a corollary, summing
the reciprocals of the grades of nth moments over the states ei gives the number of
connected components in the graph.

Corollary 2.2 Let G be a simple graph on n vertices, let a denote an associated
idempotent-adjacency matrix, and let C denote the number of connected components
of G. Then,

n∑

i=1

1

λ(τ(ρi an(n−1)))
= C. (2.2)

Proof Note that by construction of the idempotent-adjacency matrix,
λ(τ(ρi a

n(n−1))) ≥ 1 for all 1 ≤ i ≤ n. The result then follows from Proposi-
tion 2.1. �

Example 2.3 Consider the graph of Fig. 2. Direct computation shows the grade of
the trace to be 7, corresponding to the maximal connected component consisting of
vertex set {v4, v5, v6, v7, v9, v11, v12}.
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Examining the diagonal entries of the 22nd power of the matrix appearing in
Fig. 2, reveals components (and sub-components) containing each vertex.

Vertex Maximum grade term

v1 2097151 ε{1,8}
v2 ε{2}
v3 2097151 ε{3,10}
v4 28633021 ε{4,5,6,7,9,11,12}
v5 13224244 ε{4,5,6,7,9,11,12}
v6 28633021 ε{4,5,6,7,9,11,12}
v7 31249000 ε{4,5,6,7,9,11,12}
v8 2097151 ε{1,8}
v9 31033277 ε{4,5,6,7,9,11,12}
v10 2097151 ε{3,10}
v11 31033277 ε{4,5,6,7,9,11,12}
v12 13224244 ε{4,5,6,7,9,11,12}

Proposition 2.4 Let G be a simple graph on n vertices, let a denote an associated
idempotent-adjacency matrix, and let M denote the size of a maximal connected com-
ponent in G. Then,

λ
(
τ
(
an(n−1)

)) = M. (2.3)

Proof An inductive argument shows that the diagonal entries of an2−n are sums of
idempotents representing closed walks of length n2 − n on the graph. Because the
graph contains n vertices, the maximal connected component of G will be covered
by a closed walk of length n(n− 1) or less. All components can be covered by closed
walks of length equal to n2 − n by the inclusion of a loop based at each vertex in the
definition of the idempotent-adjacency matrix. �

By Proposition 2.4, an idempotent-adjacency matrix of a graph on n vertices is
a quantum random variable whose (n2 − n)th moment in the state τ corresponds to
the graph’s connected components. The corresponding grade is the maximum size
among the connected components.

Usually, the unique largest component of a graph is called the giant component [7].
In general, one can define a giant component as one containing a fixed proportion of
the graph’s vertices.

Noting that in a graph on n vertices, any connected component containing a ma-
jority of the graph’s vertices is the unique largest component, we define the giant
component accordingly.

Definition 2.5 Given a simple graph G on n vertices, the giant component of G, if
it exists, is defined as the unique connected component of order greater than n/2.
Equivalently, any component containing a majority of the vertices of G is the giant
component of G.
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Corollary 2.6 A simple graph G on n vertices contains a giant component if and
only if λ(τ(an2−n)) > n

2 , where a is an idempotent-adjacency matrix of the graph.

2.1 (k, d)-components

Definition 2.7 A component of a graph is said to be a (k, d)-component if it has k

vertices and k + d edges.

When considering (k, d)-components, it quickly becomes apparent that the ex-
isting idempotent-adjacency matrix construction is inadequate. To address this, it is
necessary to label edges as well as vertices with idempotents.

Definition 2.8 Let V be a finite set with n > 0 elements. Let IV ×V be the associative
algebra over R generated by commuting idempotents

{
γ{(i,j)} : (i, j) ∈ V × V

}

along with the unit scalar γ∅ = 1 ∈ R.
In particular, for (i, j), (k, 	) ∈ V × V , the generators of IV ×V satisfy

γ{(i,j)}γ{(k,	)} = γ{(k,	)}γ{(i,j)} (2.4)

and

γ{(i,j)}γ{(i,j)} = γ{(i,j)}. (2.5)

To simplify notation, linear basis elements will be indexed by subsets of the power
set 2V ×V ; i.e.,

γi =
∏

(i,j)∈i

γ{(i,j)}. (2.6)

Definition 2.9 Let {ε{i} : i ∈ V } denote the idempotent generators of IV , and let
{γ{(i,j)} : i, j ∈ V } denote the idempotent generators of IV ×V . Associated with any
finite graph G = (V ,E) on n vertices is a vertex/edge-labeled idempotent-adjacency
matrix â having entries in IV ⊗ IV ×V defined by

âij =

⎧
⎪⎨

⎪⎩

ε{j} ⊗ 1 if i = j,

ε{j} ⊗ γ{(i,j)} if (i, j) ∈ E,

0 otherwise.

(2.7)

Further, for nonnegative integers m and 	, the m,	-grade projection is defined by
〈∑

i∈2V

∑

j∈2V ×V

αi,j εi ⊗ γj

〉

m,	

=
∑

|i|=m

∑

|j |=	

αi,j εi ⊗ γj . (2.8)

Given arbitrary element u ∈ IV ⊗ IV ×V , the notation dim(u) will denote the di-
mension of the smallest subspace S of IV ⊗ IV ×V such that u ∈ S.
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Definition 2.10 A term ui,j εi ⊗ γj of the canonical expansion of an element u ∈
IV ⊗ IV ×V will be said to be a top form for u if for every term u	,k ε	 ⊗ γk of the
canonical expansion of u, the following conditions hold: (i) |i| ≥ |	|, and (ii) i = 	 ⇒
|j | ≥ |k|.
Definition 2.11 Define the top-form projection μ on IV ⊗ IV ×V by

μ(u) =
∑

top forms

ui,j εi ⊗ γj . (2.9)

Define Ge to be the multiplicative semigroup generated by vertex/edge-labeled
idempotent-adjacency matrices, and extend the trace mapping to τ : Ge → IV ⊗
IV ×V in the natural way; i.e., the trace of a ∈ Ge is the linear mapping τ : Ge →
IV ⊗ IV ×V defined by

τ(a) :=
|V |∑

i=1

〈ei |a ei〉. (2.10)

Proposition 2.12 Let G be a simple graph on n vertices {v1, . . . , vn}, let â denote
a vertex/edge-labeled idempotent-adjacency matrix for G. Then, for fixed positive
integers k and d , vertex vi is contained in a (k, d)-component of G if and only if

〈
τ
(
ρi â

n(n−1)
)〉

k,k+d
= μ

(
τ
(
ρi â

n(n−1)
))

. (2.11)

Proof As in Proposition 2.1, vertex vi is contained in a maximal connected compo-
nent on k vertices if and only if the top-form component of τ(ρi â

n(n−1)) is of the
form ui,j εi ⊗ γj with |i| = k. This component is a (k, d) component if and only if
|j | = k + d . �

Proposition 2.12 says that the vertex/edge-labeled idempotent-adjacency matrix
of a graph is a quantum random variable whose (n2 − n)th moment in the state ei

corresponds to the vertices and edges in the (k, d) components containing vertex vi .

Proposition 2.13 Let G be a simple graph on n vertices, let â denote the associated
vertex/edge-labeled idempotent-adjacency matrix, and let C(k, d) denote the number
of (k, d)-components of G. If 〈τ(ρi â

n(n−1))〉k,k+d = μ(τ(ρi â
n(n−1))), then

dim
(
μ

(
τ
(
ân(n−1)

))) = 
{
(k, d)-components of G

}
. (2.12)

Proof The edges and vertices of each (k, d) component are represented by a unique
basis element εi ⊗γj . The result follows immediately from Proposition 2.12 by sum-
ming over states. �

In particular, when G is a simple graph on n vertices with associated vertex/edge-
labeled idempotent-adjacency matrix â, 〈τ(ρi â

n(n−1))〉k,k−1 = μ(τ(ρi â
n(n−1))) im-

plies

dim
(〈
τ
(
ân(n−1)

)〉
k,k−1

) = {k-vertex tree components of G}. (2.13)
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Proposition 2.14 Let â denote the vertex/edge-labeled idempotent-adjacency matrix
of a simple graph G = (V ,E) on n vertices. Then,

dim
(〈
τ
(
ân2−n

)〉
n,n−1

) = {spanning trees of G}. (2.14)

Proof By construction of the vertex/edge-labeled idempotent-adjacency matrix,
nonzero terms of 〈τ(ân2−n)〉n,n−1 correspond to connected components on n ver-
tices and n − 1 edges, i.e., spanning trees. The subsets i and j indexing εi ⊗ γj in

these terms specify the vertices and edges contained in the spanning tree, respectively.
Distinct blades in IV ×V correspond to distinct edge sets, and thus distinct spanning
trees. �

Let {c(k,	) : (k, 	) ∈ V × V } ⊂ R denote a collection of costs associated with the
edges in G = (V ,E). Let â denote the vertex/edge-labeled idempotent-adjacency
matrix for G, and let B denote the set of basis elements εi ⊗ γj for 〈τ(ân2−n)〉n,n−1.
Define the mapping � : B → R by

�(εi ⊗ γj ) =
∏

(k,	)∈j

e−c(k,	) . (2.15)

Corollary 2.15 Let G be a simple graph on n vertices, and let â denote the associ-
ated vertex/edge-labeled idempotent-adjacency matrix. Then, a minimum cost span-
ning tree of G has cost CT , given by

CT = − ln
(

max
x∈B

{
�(x)

})
. (2.16)

The edge sets of the minimum cost spanning trees are determined by the correspond-
ing elements of B.

Definition 2.16 Let NV ×V denote the associative algebra over R generated by com-
muting null-squares

{
ζ{(i,j)} : (i, j) ∈ V × V

}

along with the unit scalar ζ∅ = 1 ∈ R. In particular, for (i, j), (k, 	) ∈ V × V , the
generators of NV ×V satisfy

ζ{(i,j)}ζ{(k,	)} = ζ{(k,	)}ζ{(i,j)} (2.17)

and

ζ{(i,j)}ζ{(i,j)} = 0. (2.18)

To simplify notation, linear basis elements will be indexed by subsets of the power
set 2V ×V ; i.e.,

ζi =
∏

(i,j)∈i

ζ{(i,j)}. (2.19)
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Remark 2.17 The authors have used algebras generated by commuting nilpotents to
treat a number of problems related to enumerating cycles and self-avoiding walks in
graphs (cf. [19, 20]).

Now define the mapping Ψ : IV ⊗ IV ×V → IV ⊗ NV ×V by linear extension of
α εi ⊗ γj �→ α εi ⊗ ζj , and let B̂ denote the sum of elements in B. That is,

B̂ =
∑

εi⊗γj ∈B
εi ⊗ γj . (2.20)

The nilpotent properties of NV ×V now make it possible to sieve out pairwise edge-
disjoint spanning trees.

Proposition 2.18 Let G be a simple graph on n vertices, and let â denote the associ-
ated vertex/edge-labeled idempotent-adjacency matrix. Let B̂ be defined as in (2.20).
Let Ds denote the size of a maximal collection of pairwise edge-disjoint spanning
trees of G. Then,

Ds = degt exp
(
tΨ (B̂)

)
. (2.21)

In other words, Ds is equal to the degree of exp(tΨ (B̂)) as a polynomial in t .

Proof The proposition is a corollary of Proposition 2.14. By the nilpotent properties
of NV ×V , straightforward induction reveals that for each 	 > 0,

(
tΨ (B̂)

)	 = t	 	!
∑

pairwise-disjoint 	-tuples
ζj1

,...,ζj	

	∏

k=1

εik ⊗ ζjk
. (2.22)

Thus, the multivectors associated with pairwise edge-disjoint 	-tuples of spanning
trees are recovered with multiplicity 	! from the 	th power. The multiplicity factor
is removed by considering the power series expansion of the exponential, and the
highest power of t appearing in this expansion reveals the size of a maximal pairwise
edge-disjoint collection. �

3 Second quantization of graph processes

With tools in hand, graph processes can now be formulated as sequences in the al-
gebraic probability space (G, τ ). Associated with any graph process (Gt )

Ω
t=0 is a

corresponding sequence of idempotent-adjacency matrices, (at )
Ω
t=0. This sequence is

a quantum stochastic process.
For each 0 ≤ k ≤ Ω , define the indicator function χk : (G, τ ) → {0,1} by

χk(a) =
{

1 if λ(τ(ak
n2−n)) > n

2 ,

0 otherwise.
(3.1)
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Defining the set S of all quantum stochastic processes associated with graph pro-
cesses on n vertices, (S, τ ) is an algebraic probability space.

Lemma 3.1 On the space of quantum stochastic processes associated with graph
processes on n > 1 vertices, define the random variable

X(ω) =
∞∑

k=1

2−kχk(ω). (3.2)

Then, the time step k at which a giant component first emerges in the corresponding
graph sequence is given by

k0 = 1 − log2 X(ω). (3.3)

Proof Begin by noting that the value k0 corresponds to the first value of k for which
χk(ω) = 1. It then follows from the identity

1 =
∞∑

k=1

2−k =
k0−1∑

k=1

2−k +
∞∑

k0

2−k (3.4)

that

1 −
k0−1∑

k=1

2−k = 2−k0+1. (3.5)

Hence, k0 = − log2 X(ω) + 1. �

The method of second quantization refers to the extension of operator-theoretic
models of single-particle systems to systems of arbitrarily many particles. In quantum
probability theory, a single particle can be represented in a Hilbert space H. In order
to work with a system of arbitrarily many particles, an infinite-dimensional Hilbert
space is constructed. For example, the Hilbert space

⊕∞
n=1 H⊗n is referred to as the

free Fock space over H. The nth direct summand is the n-particle subspace (cf. [18]).
Second quantization associates the Hilbert space with the corresponding Fock

space. Operators on the finite-dimensional subspaces are extended to operators on
the Fock space.

Borrowing the notion of creation operators from quantum probability, we can think
of graphs on n vertices as systems of some number of particles between 0 and Ω . At
each step of the process, an edge is “created” between a randomly chosen pair of
non-adjacent vertices. Hence, the N th graph of the process (Gt )

Ω
0 will correspond

to an N -particle system. This system can be in any one of
(
Ω
N

)
states, depending on

which edges are present.
The goal now is to create a single operator that encodes all possible graph pro-

cesses on n vertices. For fixed n > 0, consider the vertex set V = {1,2, . . . , n}.
For each 1 ≤ i ≤ Ω , let ai denote the idempotent-adjacency matrix associated
with G = (V ,E) where |E| = 1. In other words, the collection {ai} represents all
idempotent-adjacency matrices of one-edge subgraphs of the complete graph Kn.



J Algebr Comb (2012) 35:141–156 153

Define

Γ1 = a1 ⊗ a2 ⊗ · · · ⊗ aΩ. (3.6)

By construction, Γ1 encodes all one-step graph processes on n vertices. Extending
this idea to N -step graph processes, define the operator ΓN by

ΓN :=
Ω⊗

i1=1

Ω⊗

i2=i1+1

· · ·
Ω⊗

iN=iN−1+1

(ai1 + · · · + aiN ). (3.7)

The operator ΓN can now be written in the form

ΓN =
(Ω
N)⊗

	=1

M	, (3.8)

where each M	 is the idempotent-adjacency matrix of a simple graph on n vertices
having N edges. In particular, each M	 represents the N th step of a graph process.

Define the scalar sum functional 〈〈·〉〉 : IV ⊗ IV ×V → R by

〈〈x〉〉 =
〈〈 ∑

i∈2V ,j∈2V ×V

αi,j εi ⊗ γj

〉〉
=

∑

i∈2V ,j∈2V ×V

αi,j . (3.9)

Finally, define the mapping τ � by

τ �(M1 ⊗ · · · ⊗ M(Ω
N)) =

(Ω
N)∏

	=1

exp
(
λ
(
τ(M	)

))
. (3.10)

Proposition 3.2 Let a graph process (Gt ) be given. Let XN denote the size of a
maximal connected component of GN . Then, the expected value of XN is given by

E(XN) = N !(Ω − N)!
Ω! ln

(
τ �

(
(ΓN)n

2−n
))

. (3.11)

Proof By construction, ln(τ �((ΓN)n
2−n)) is the sum of maximal component sizes

taken over all graphs occurring in the N th step of the process. There are
(
Ω
N

)
such

graphs, and all occur with equal probability. Hence, the result. �

Define the mapping νκ : G → {0,1} by

νκ(M) =
{

1 if λ(τ(M)) = κ,

0 otherwise.
(3.12)

Now, define ν�
κ by

ν�
κ(M1 ⊗ · · · ⊗ M(Ω

N)) =
(Ω
N)∏

	=1

exp
(
νκ(M	)

)
. (3.13)
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Proposition 3.3 Let a graph process (Gt ) be given. Let M ≤ n be an arbitrary posi-
tive integer. Let EN,κ be the event that GN contains a maximal connected component
of size κ . Then,

P(EN,κ) = N !(Ω − N)!
Ω! ln

(
ν�
κ

(
(ΓN)n

2−n
))

. (3.14)

Proof As in the proof of Proposition 3.2, each graph occurs with equal probability(
Ω
N

)
, and ln(ν�

κ((ΓN)n
2−n)) represents the number of N -edge graphs containing a

maximal component of size κ . �

The following corollary is an immediate consequence of the preceding results us-
ing simple inclusion–exclusion.

Corollary 3.4 Let a graph process (Gt ) be given. Let κ ≤ n be an arbitrary positive
integer. Let XN,κ denote the event that a maximal connected component of size κ

emerges at time step N . Then,

P(XN,κ) ≤ (N − 1)!(Ω − (N − 1))!
Ω!

(
ln

(
μ�(ΓN−1)

) − ln
(
ν�
κ

(
(ΓN−1)

n2−n
)))

+ N !(Ω − N)!
Ω! ln

(
ν�
κ

(
(ΓN)n

2−n
))

. (3.15)

By considering a second quantization using vertex/edge-labeled idempotent-
adjacency matrices, it becomes possible to compute the expected number of (k, d)-
components of the N th graph of the process. In particular, the expected number of
spanning trees of GN can be computed.

By considering vertex/edge-labeled idempotent-adjacency matrices {âi} in place
of the matrices {ai} used to construct ΓN , the second quantization operator ΥN is
analogously defined.

That is,

ΥN :=
Ω⊗

i1=1

Ω⊗

i2=i1+1

· · ·
Ω⊗

iN=iN−1+1

(âi1 + · · · + âiN ). (3.16)

The operator ΥN can now be written in the form

ΥN =
(Ω
N)⊗

	=1

M̂	, (3.17)

where each M̂	 is the vertex/edge-labeled idempotent-adjacency matrix of a simple
on n vertices having N edges; i.e., simple graphs representing N th steps of graph
processes.
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Define the mapping d� : G⊗(Ω
N)

e → R by

d�
(
M̂1 ⊗ · · · ⊗ M̂(Ω

N)

) =
(Ω
N)∏

	=1

exp
(
dim

(〈
τ
(
M̂n2−n

	

)〉
n,n−1

))
. (3.18)

The following proposition follows from Proposition 2.14 and the construction of
the second quantization operator.

Proposition 3.5 Let a graph process (Gt ) be given. Let TN denote the number of
spanning trees of GN . Then, the expected value of TN is given by

E(TN) = N !(Ω − N)!
Ω! ln

(
d�

(
Υ̂N

))
. (3.19)

Proof By definition,

E(TN) =
∑

k≥0

k P(TN = k). (3.20)

Since the graphs G occurring in the N th step of the process are mutually exclusive,

∑

k

k P(TN = k) =
∑

k

k
∑

G having k
spanning trees

P(GN = G)

=
∑

k

k · {N th Graphs with k spanning trees} · N !(Ω − N)!
Ω!

= N !(Ω − N)!
Ω!

∑

N -edge graphs GN

{spanning trees in GN }

= N !(Ω − N)!
Ω! ln

(
d�

(
Υ̂N

))
. (3.21)

�

4 Conclusion

This paper represents one step toward a comprehensive study of graph processes and
algorithms using tools of algebraic probability.
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