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Abstract Let � be the dual of a classical polar space and let e be a projective em-
bedding of �, defined over a commutative division ring. We shall prove that, if e is
homogeneous, then it is polarized.
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1 Introduction

1.1 The main result of this paper

In the sequel we assume that the reader is familiar with dual polar spaces and pro-
jective embeddings. If not, we refer him to Section 2, where all definitions and basic
results to be used in this paper are exposed. In this introduction we shall only briefly
explain a couple of notions which occur in the statement of our main result.
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Let � be an embeddable thick dual polar space of rank n ≥ 2. We recall that all
embeddings of � are defined over the same division ring F, called the underlying
division ring of � (see Subsection 2.2). We assume that F is commutative. We also
assume that � is classical, by which we mean that � is the dual of an embeddable
polar space.

First, we consider a symmetry condition on an embedding e for �. We denote by
Aut(�)0 the normal subgroup of Aut(�) generated by the root groups of the building
associated to � (see Subsection 3.4). (The group Aut(�)0 is in fact the largest normal
simple subgroup of Aut(�)). We say that e is Aut(�)0-homogeneous if Aut(�)0 lifts
through e to a subgroup of the full automorphism group P�L(V ) of PG(V ).

Next, we consider a geometric condition on the embedding e. The embedding e is
said to be polarized if, for every point x of �, the image e(Hx) of the hyperplane Hx

of �, formed by the points at non-maximal distance from x, spans a hyperplane of
PG(V ). The following theorem, which we will prove in Section 4, is the main result
of this paper. It exhibits a close connection between the symmetry and geometry of
the embedding e.

Theorem 1.1 If e is Aut(�)0-homogeneous, then it is polarized.

1.2 Another formulation of Theorem 1.1

Let � be a classical embeddable thick dual polar space of rank n ≥ 2 defined over a
commutative division ring as in Subsection 1.1.

Let ẽ : � → PG(˜V ) be the absolutely universal embedding of �, which exists by
Kasikova and Shult [29, 4.6]. As ẽ is absolutely universal, the full automorphism
group Aut(�) of � lifts through ẽ to a subgroup of P�L(˜V ). Therefore, every sub-
group G of Aut(�) lifts as well to a subgroup ẽ(G) of P�L(˜V ). In particular, ẽ is also
Aut(�)0-homogeneous. Hence it is polarized by Theorem 1.1 (see also Cardinali, De
Bruyn and Pasini [11, Corollary 1.8] for a different, more straightforward proof of
this claim).

Let us denote the point-set of � by P . We call R = ⋂

x∈P 〈ẽ(Hx)〉 the nucleus
of ẽ. By Cardinali, De Bruyn and Pasini [10], R defines a quotient ẽ/R of ẽ which
is polarized. Moreover, an embedding of � is polarized if and only if it admits a
(possibly improper) quotient isomorphic to ẽ/R. For this reason, ẽ/R is called the
minimal polarized embedding of ẽ. Note that R might be trivial. If that is the case
then ẽ is the unique polarized embedding of �.

Clearly R is an Aut(�)-invariant subspace of PG(˜V ), where we say that a subspace
U of PG(˜V ) is G-invariant for a subgroup G ≤ Aut(�) if it is stabilized by ẽ(G). As
R is Aut(�)-invariant, it is G-invariant for every subgroup G of Aut(�). In particular,
R is Aut(�)0-invariant. Hence ẽ/R is Aut(�)0-homogeneous. As we shall see in
Section 4, Theorem 1.1 implies the following:

Theorem 1.2 All Aut(�)0-invariant proper subspaces of PG(˜V ) are contained in R.

In other words R, regarded as a subspace of ˜V , is the largest proper Z · ẽ(G)-
submodule of ˜V , where G = Aut(�)0, Z stands for the center of GL(˜V ) and Z · ẽ(G)

is the preimage of ẽ(G) by the projection of GL(˜V ) onto PGL(˜V ).
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1.3 Some special cases

A number of consequences can immediately be drawn from Theorems 1.1 and 1.2.
We shall gather them in Corollary 1.3, to be stated below, but we first recall some
facts.

Let Q(2n,F) be the orthogonal polar space of rank n ≥ 2 of parabolic type over
a field F and let � = DQ(2n,F) be its dual. We have Aut(�)0 = P�(2n + 1,F).
The dual polar space � admits a polarized embedding espin : � → PG(2n − 1,F),
called the spin embedding of � (Buekenhout and Cameron [6, Section 7]; see
also De Bruyn [21]). When char(F) �= 2 the embedding espin is universal (Wells
[41]). This also follows from the fact that in this case � admits a generating set
of size 2n (Blok and Brouwer [2], Cooperstein and Shult [16]). If char(F) = 2
and F is perfect then Q(2n,F) is isomorphic to the symplectic polar space
W(2n − 1,F) of rank n over F. Accordingly, DQ(2n,F) ∼= DW(2n − 1,F). The dual
polar space DW(2n − 1,F) admits embeddings in projective spaces of dimension
larger than 2n − 1, which we will discuss later.

Let Q−(2n+1,F) be the orthogonal polar space of elliptic type arising from a non-
singular quadratic form of Witt index n ≥ 2 over a field F, which becomes a quadratic
form of Witt index n + 1 when regarded over a quadratic Galois extension F1 of F.
Let � = DQ−(2n + 1,F) be its dual. Then Aut(�)0 = P�−(2n + 2,F). The dual
polar space � admits a polarized embedding in PG(2n − 1,F1), often called the spin
embedding of �. It arises from the half-spin embedding of the half-spin geometry
of Q+(2n + 1,F1). We refer to Cooperstein and Shult [17] and De Bruyn [22] for
details. We shall denote this embedding by the symbol e−

spin. The embedding e−
spin is

universal. Indeed, � admits a generating set of size 2n (Cooperstein and Shult [17]
for the finite case, De Bruyn [22] for the general case).

Let H(2n − 1,F
2
0) be the hermitian polar space associated to a nonsingular her-

mitian variety of Witt index n ≥ 2 in PG(2n − 1,F
2
0). Here, F0 is the subfield of F =

F
2
0 fixed by the involutory automorphism of F which defines the hermitian variety. Let

� = DH(2n− 1,F
2
0) be the dual of H(2n− 1,F

2
0). We have Aut(�)0 = PSU(2n,F

2
0).

The dual polar space � admits a polarized embedding in PG(N − 1,F0), where
N = (2n

n

)

. (See Cooperstein [13]; also Cardinali, De Bruyn and Pasini [10], De Bruyn
[20].) We call this embedding the Grassmann embedding of � and we denote it by eH

gr .
The subscript ‘gr’ and the superscript H should remind us of the word ‘Grassmann’
and the fact that � is of hermitian type, in order to avoid confusion with Grassmann
embeddings of dual polar spaces of symplectic type, to be discussed later in this in-
troduction. The attribute ‘Grassmann’ is motivated by the fact that eH

gr arises from the
usual embedding of the grassmannian of n-subspaces of V (2n,F) in PG(N − 1,F),
via the choice of a suitable Baer subgeometry PG(N − 1,F0) of PG(N − 1,F). If
|F0| > 2 then eH

gr is universal. Indeed, in this case � admits a generating set of size
(2n

n

)

(see Cooperstein [13] for the finite case and De Bruyn and Pasini [25] for the
general case). We refer to Li [31] for information on the universal embedding of �

when |F0| = 2.

Corollary 1.3 (1) Let � = DQ(2n,F) (hence Aut(�)0 = P�(2n + 1,F)). If
char(F) �= 2 then the spin embedding espin : � → PG(2n − 1,F) is the unique
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Aut(�)0-homogeneous embedding of �. If char(F) = 2 then espin is the smallest
Aut(�)0-homogeneous embedding of �.

(2) Let � = DQ−(2n + 1,F) (hence Aut(�)0 = P�−(2n + 2,F)). Then the spin
embedding e−

spin is the unique Aut(�)0-homogeneous embedding of �.

(3) Let � = DH(2n − 1,F
2
0) (hence Aut(�)0 = PSU(2n,F

2
0)). If |F0| > 2 then the

Grassmann embedding eH
gr is the unique Aut(�)0-homogeneous embedding of �. If

|F0| = 2 then eH
gr is the smallest Aut(�)0-homogeneous embedding of �.

Proof As the proof is very short, we shall give it here. Parts (1) and (2) immediately
follow from Theorem 1.1, the fact that every polarized embedding of a dual polar
space has projective dimension at least 2n−1 (De Bruyn and Pasini [26]) and what we
have said above on the universal embeddings of DQ(2n,F) and DQ−(2n+1,F). Part
(3) follows from Theorem 1.1, the fact that eH

gr admits no proper polarized quotients
(Cardinali, De Bruyn and Pasini [10]) and what we have said above on the universal
embedding of DH(2n − 1,F

2
0). �

When � = DW(2n − 1,F) (dual of the polar space W(2n − 1,F) of symplectic
type and rank n ≥ 2 over F) then things go quite differently than in the cases con-
sidered in Corollary 1.3. The dual polar space � admits the so-called Grassmann
embedding egr : � → PG(V ), where V = V (N,F), N = (2n

n

) − ( 2n
n−2

)

. We refer the
reader to Cooperstein [14] (also Cooperstein and Shult [17], Cardinali, De Bruyn and
Pasini [10], De Bruyn [19]) for the definition of egr and a discussion of its proper-
ties. We only recall that egr is polarized (Cardinali, De Bruyn and Pasini [10]) and
it is universal when |F| > 2 (see Cooperstein [14] for the finite case and De Bruyn
and Pasini [25] for the infinite case). When |F| = 2, the dimension of the universal
embedding of � has been determined by Li [30] (also Blokhuis and Brouwer [5]). In
any case, Aut(�)0 = PSp(2n,F).

Let R be the nucleus of egr, regarded as a subspace of V = V (N,F). If char(F) = 0
then R = 0 (see e.g. De Bruyn [24]). On the other hand, when char(F) �= 0 then in
general R �= 0. In case char(F) > 2 a recursive formula by Premet and Suprunenko
in [33] describes the dimensions of the modules in the decomposition series of R as
a module for PSp(2n,F).

Let us consider the case char(F) = 2. By Blok, Cardinali and De Bruyn [3] (see
also Cardinali and Lunardon [12] for the rank 3 case), if char(F) = 2 then R has vec-
tor dimension dim(R) = N − 2n. In this case egr/R (which is the minimal Aut(�)0-
homogeneous embedding of �, by Theorem 1.1) has projective dimension 2n − 1.
In particular, if F is perfect then � ∼= DQ(2n,F) and egr/R is just the spin embed-
ding of DQ(2n,F). An analysis similar to that of Premet and Suprunenko in the case
char(F) = 2 was done by Adamovich [1]. The results by Premet, Suprunenko and
Adamovich are rather algebraic in nature. The present paper, along with [3, 10] is
the result of an initiative by Blok, Cardinali and Pasini to provide a more geometric
insight into their results.

We conclude this section with a remark on some irreducibility consequences to our
main results. From Claim (3) of Corollary 1.3 one can readily deduce (see Lemma 4.3
of Section 4.2) that the

(2n
n

)

-dimensional module for PSU(2n,F
2
0) produced by the

Grassmann embedding eH
gr of DH(2n − 1,F

2
0) is irreducible. This latter fact is also
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mentioned by Cooperstein [13, proof of Proposition 5.1], but with no proof. A proof,
different from the one we have given above, is implicit in Blok and Cooperstein [4].
One more proof, based on linear algebra, has been found by De Bruyn [24]. A proof
of Theorem 1.2 is also included in [24] for the case ẽ is the Grassmann embedding of
either DW(2n − 1,F) or DH(2n − 1,F

2
0).

1.4 Organization of the paper

In Section 2 we recall definitions and basics on point-line geometries, dual polar
spaces and embeddings. We also consider a class of strong parapolar spaces, which
we call near-polar spaces, first introduced by Shult [36]. In Section 3 we state a suffi-
cient condition for an embedding of a near-polar space to be polarized (Theorem 3.1).
We also prove a few lemmas on generalized quadrangles, automorphisms of projec-
tive spaces and groups generated by root groups. In Section 4, with the help of those
lemmas, we will show that an Aut(�)0-homogeneous embedding of a classical dual
polar space � defined over a commutative division ring satisfies the sufficient con-
dition of Theorem 3.1, thus proving Theorem 1.1. Theorem 1.2 is proved in the last
part of Section 4.

2 Definitions and basics

2.1 Near-polar spaces and dual polar spaces

Throughout this paper, a point-line geometry is a pair � = (P , L) where P (the point-
set of �) is a nonempty set, L (the set of lines of �) is a collection of subsets of P ,
every line l ∈ L has size |l| ≥ 2, no two lines meet in more than one point and the
collinearity relation defines a connected graph on P , called the collinearity graph of
�. We say that a line l of � is thick if |l| > 2.

The distance d(x, y) between two points x, y ∈ P is the distance between them in
the collinearity graph of �. A path of � is a path of the collinearity graph of �. The
diameter diam(�) of � is the diameter of the collinearity graph of �.

A subset S ⊆ P is a subspace of � if it contains every line l ∈ L for which
|l ∩ S| > 1. A subspace S is said to be proper if S �= P . A subspace is convex if it
contains every point on a shortest path joining any two of its points. Recall that the
intersection of convex subspaces is again convex. For a subset X ⊆ P , the subspace
〈X〉� of � spanned by X (also generated by X) is the smallest subspace of � con-
taining X, namely the intersection of all subspaces of � that contain X. The convex
closure [X]� of X is the smallest convex subspace of � containing X. A hyperplane
of � is a proper subspace H of � such that H ∩ l �= ∅ for every line l ∈ L. The fol-
lowing observation will be freely used throughout this paper: a hyperplane H of � is
a maximal proper subspace of � if and only if the collinearity graph of � induces a
connected graph on P \ H .

Given a point x ∈ P and an integer k ≥ 0, we set �k(x) = {y ∈ P | d(x, y) = k}
and �∗

k (x) = {y ∈ P | d(x, y) ≤ k}. Note that �0(x) = {x}. Moreover, if n = diam(�)

then �∗
n(x) = P for every point x. Also, �∗

m(x) = P and �m(x) = ∅ for every m > n.
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In this paper we are interested in the following class of geometries, introduced by
Shult [36, section 6]. Shult does not give these geometries a special name (he refers
to them by the symbol En), but we shall call them near-polar spaces. We say that a
point-line geometry � = (P , L) is a near-polar space of diameter 1 if it is a thick line,
namely |L| = 1 and |P | > 2. Let n be an integer greater than 1. We say that � is a
near-polar space of diameter n if it satisfies all of the following:

(NP1) diam(�) = n.
(NP2) �1(y) ∩ �k+1(x) �= ∅ for every nonnegative integer k < n and any two points

x, y ∈ P with d(x, y) = k.
(NP3) �∗

n−1(x) is a hyperplane of � for every x ∈ P .
(NP4) If x, y ∈ P have distance d(x, y) = n − 1, then the convex closure [x, y]� of

{x, y} carries the structure of a near-polar space of diameter n − 1.

Near-polar spaces are strong parapolar spaces in the sense of Cooperstein and Shult
[15]. A near-polar space of diameter 1 is a thick line. Hence by (NP2), (NP4) and
an easy inductive argument we obtain that in a near-polar space all lines are thick.
It is readily seen that the near-polar spaces of diameter 2 are just the non-degenerate
polar spaces where all lines are thick. The near-polar spaces of diameter n include
dual polar spaces of rank n, projective grassmannians of type A2n−1,n and half spin
geometries Dn,n with n even (Shult [36]). All dense near polygons of diameter n are
near-polar spaces of diameter n (De Bruyn [18, 23]). More examples of near-polar
spaces (of diameter 3) are the geometries of type E7,1 as described in Shult [36].

Proposition 2.1 All the following hold in a near-polar space � of diameter n ≥ 2.

(1) Every hyperplane of � is a maximal proper subspace. In particular, for every
point x, the set �∗

n−1(x) is a maximal proper subspace of �.
(2) If x, y ∈ P have distance k �= 0, then [x, y]� carries the structure of a near-polar

space of diameter k. In particular, if d(x, y) = 2 then [x, y]� carries the structure
of a non-degenerate polar space.

(3) �∗
k (x) is a subspace of � for every x ∈ P and every k = 0,1, . . . , n.

(4) For every k = 0,1, . . . , n and every point x ∈ P , the set �k(x) spans �∗
k (x). In

particular, �n(x) spans the complete point-set P = �∗
n(x) of �.

Proof See Shult [36, Lemma 6.1] for (1).
We shall prove (2). If k < n, then Claim (2) immediately follows from (NP2) and

repeated applications of (NP4). Suppose k = n. If z ∈ [x, y]� ∩ �n(x), then every
line through z meets �n−1(x) by (NP3) and hence is contained in [x, y]� . Since the
collinearity graph of � induces a connected graph on �n(x) (see (1)), we then have
that �n(x) ⊆ [x, y]� . By repeated application of (NP2), every point of � is contained
on a shortest path between x and a point of �n(x). Hence, [x, y]� coincides with the
whole point-set of �. So, Claim (2) is also valid in the case k = n.

We shall now prove (3). Let y, z be collinear points of �∗
k (x) and l a line through

them. We need to prove that l ⊆ �∗
k (x). If one of y or z has distance less than k

from x then there is nothing to prove. Suppose that d(x, y) = d(x, z) = k. If l is not
contained in �∗

k (x) then l contains a point u ∈ �k+1(x). The subspace � := [x,u]�
contains l. By (2), � is a near-polar space of diameter k + 1. Clearly, y, z ∈ �∗

k(x).
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By (NP3) on �, we have l ⊆ �∗
k(x), contrary to the assumption that d(x,u) = k + 1.

Therefore l ⊆ �∗
k (x).

We now prove (4). Let y ∈ �h(x) for h < k. By (NP2), there is a line l on y

containing a point z ∈ �h+1(x). By (3), �∗
h(x) is a subspace. Hence l ∩ �∗

h(x) = {y}.
However, lines are thick. So l contains at least two points z, z′ ∈ �h+1(x). Hence
y ∈ 〈z, z′〉� ⊆ 〈�h+1(x)〉� . Therefore �h(x) ⊆ 〈�h+1(x)〉� for every h < k. It follows
that �∗

k (x) = 〈�k(x)〉� . �

Another easy consequence of the near-polar space axioms that we will use in the
proofs of Proposition 3.2 and Lemma 4.3 is the following.

Lemma 2.2 Let x1, x2, y0 three distinct points on a line l of a near polar space �

of diameter n ≥ 2. Then there exist points y1, y2, . . . , yn−1 such that, for each i with
0 ≤ i ≤ n − 1, we have d(x1, yi) = d(x2, yi) = i + 1 and d(y0, yi) = i.

Proof The points yi , i ∈ {1, . . . , n − 1}, can be constructed in a recursive way as
follows. First note that y0 ∈ �1(x1) ∩ �1(x2) ∩ �0(y0). Now suppose that for a cer-
tain i ∈ {1, . . . , n − 1} we have yi−1 ∈ �i(x1) ∩ �i(x2) ∩ �i−1(y0). Then by (NP2)
there exists a point yi ∈ �i+1(x1) ∩ �1(yi−1). Combining this with d(x1, y0) =
1 and d(y0, yi−1) = i − 1, we find yi ∈ �i(y0) by the triangle inequality. Now
y0, x2 ∈ [x1, yi]� and so by Proposition 2.1(2) and (NP3), yi ∈ �i(y0) ∩ �i+1(x1) ∩
�i+1(x2). �

We now turn to dual polar spaces. We recall that, given a non-degenerate polar
space � of finite rank n ≥ 1, the dual polar space associated to � is the point-line
geometry �∗ = (P , L) where P is the collection of maximal singular subspaces of
� and the lines l ∈ L bijectively correspond to the co-maximal singular subspaces of
�. Explicitly, for every co-maximal singular subspace S of �, the set of all maximal
singular subspaces of � containing S is a line of �∗, and all lines of �∗ are obtained
in this way. The rank n of � is also called the rank of �∗.

We finish this section by stating some more terminology and notation. Let � be a
near-polar space of diameter n ≥ 2. The elements of Cn−1(�) and Cn−2(�) are called
maxes and co-maxes respectively, and the elements of C2(�) are called symplecta. As
we have remarked above, symplecta are polar spaces. For x ∈ P and k = 0,1, . . . , n

we put Ck(x) := {X | x ∈ X ∈ Ck(�)}. So, C0(x) = {{x}} and C1(x) is the set of lines
of � through x. We set Res�(x) := ⋃n−1

k=1 Ck(x) and we regard it as a poset, with
inclusion as the partial ordering. We call Res�(x) the residue of x. We also put Hx :=
�∗

n−1(x) and we call Hx the singular hyperplane of � with x as its deep point.
Let � be a dual polar space, say � = �∗ for a polar space � of rank n ≥ 2. Then

every symplecton of � carries the structure of a generalized quadrangle. Following
a well established custom, we call the symplecta of � quads, setting aside the word
‘symplecton’ in this context. The maxes of � correspond to the points of �. More
generally, if n = diam(�) = rank(�), then the members of Ck(�) correspond to the
singular subspaces of � of rank n− k. (We recall that the rank of a singular subspace
S of � is dim(S) + 1, where dim(S) is the projective dimension of S). If x ∈ P then
Res�(x) is a projective geometry of dimension n − 1.
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A dual polar space � = �∗ is thick if � is thick, namely all lines of � are thick
(so, � is a near-polar space) and every co-max is contained in at least three maxes.
We say that � is classical if � is classical, namely � is embeddable in the sense of
the next subsection. If � is classical and embeddable then � is thick.

2.2 Embeddings

A full projective embedding (or embedding for short) of a point-line geometry � =
(P , L) into a Desarguesian projective space � (embedding of � in �, for short) is
an injective mapping e from the point-set P of � to the point-set of � satisfying the
following:

(E1) the image e(P ) of P by e spans �;
(E2) every line of � is mapped by e onto a line of �.

The numbers dim(�) and dim(�) + 1 are respectively called the projective dimen-
sion and the vector dimension of the embedding e. The underlying division ring F of
� is called the underlying division ring of e and we say that e is defined over F, also
that e is an F-embedding for short. If � admits an embedding (an F-embedding) then
we say that � is embeddable (F-embeddable). Obviously, if � is embeddable then all
lines of � are thick. More explicitly, if � is F-embeddable then every line of � has
|F| + 1 points.

Let � be embeddable. If, up to isomorphism, the underlying division ring F of an
embedding e of � does not depend on the particular choice of the embedding e then
we say that � is defined over F. We also say that F is the underlying division ring
of �. For instance, this holds when the lines of � have a finite number of points. It
also holds when � is an embeddable non-degenerate polar space of rank n ≥ 3 and
when � is an embeddable non-degenerate thick generalized quadrangle. In the latter
case, the existence of the underlying division ring is a by-product of the existence
of the absolutely universal embedding (Buekenhout and Lefèvre [8], Dienst [27] and
Tits [38, Theorem 8.6]; see below for the definition of the absolutely universal em-
bedding). As a consequence of the above, every embeddable near-polar space of di-
ameter n ≥ 2 with thick symplecta admits an underlying division ring. In particular,
every embeddable thick dual polar space is defined over some division ring.

2.2.1 Isomorphisms and quotients of embeddings

Two embeddings e1 : � → �1 and e2 : � → �2 of a point-line geometry � are said
to be isomorphic (and we write e1 ∼= e2) if there exists an isomorphism f : �1 → �2
such that e2 = f ◦ e1.

Let e : � → � be an embedding of � and U a subspace of � satisfying the fol-
lowing:

(Q1) 〈U,e(x)〉 �= U for every point x ∈ P ;
(Q2) 〈U,e(x)〉 �= 〈U,e(y)〉 for any two distinct points x, y ∈ P .

Then there exists an embedding e/U of � into the quotient space �/U , mapping
each point x of � to 〈U,e(x)〉. We call e/U the quotient of e by U . If e1 : � → �1
and e2 : � → �2 are two embeddings, we say that e1 ≥ e2 if there exists a subspace
U in �1 satisfying (Q1), (Q2) and e1/U ∼= e2.
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Proposition 2.3 (See [32, Proposition 10]) Let e and � be as above. Then no two
distinct quotients of e are isomorphic.

2.2.2 Hulls, relatively and absolutely universal embeddings

Every embedding e : � → � admits a hull ẽ : � → ˜� uniquely determined up to
isomorphism by the following property (Ronan [34]): ẽ ≥ e and, if e′ : � → �′ is an
embedding such that e′ ≥ e, then ẽ ≥ e′. The hull ẽ of e is also said to be relatively
universal with respect to e.

An embedding ẽ : � → ˜� is said to be absolutely universal (also absolute, for
short) if it is the hull of every embedding of �. Clearly, absolute embeddings, when
they exist, are uniquely determined up to isomorphism. It is also clear that � admits
the absolute embedding only if it admits an underlying division ring.

It is well known that every embeddable non-degenerate polar space of rank at
least 2 which is not a grid admits the absolutely universal embedding (Buekenhout
and Lefèvre [8], Dienst [27] and Tits [38, 8.6]). Kasikova and Shult [29, 4.6] have
proved that all thick embeddable dual polar spaces admit the absolutely universal
embedding.

2.2.3 Homogeneity

Given an embedding e : � → � we say that an automorphism g of � lifts to �

through e if there exists an automorphism e(g) of � such that e(g)e = eg. Clearly
e(g), if it exists, is uniquely determined by g. We call it the lifting of g to �. Let G

be a subgroup of Aut(�). If all elements of G lift to � through e then we say that G

lifts to �, we put e(G) = {e(g)}g∈G and we call e(G) the lifting of G to � (also, the
lifting of G to Aut(�)). Notice that e(G) is indeed a group. If G lifts to � through e

then we also say that e is G-homogeneous. If e is G-homogeneous, then a subspace
U of � is said to be stabilized by G (also, to be G-invariant), if it is stabilized by
e(G). Clearly, if a subspace U of � defines a quotient of e and it is G-invariant, then
e/U is G-homogeneous.

Proposition 2.4 (See [32, Lemma 12]) Assume that e is G-homogeneous. Let U be
a subspace of � defining a quotient of e and suppose that e/U is G-homogeneous.
Then U is G-invariant.

If all automorphisms of � lift to � through e then we say that e is fully homo-
geneous. Suppose that � admits the absolutely universal embedding ẽ : � → ˜� =
PG(˜V ). Then ẽ is fully homogeneous. In this case, if G is a subgroup of Aut(�), we
put Glin := ẽ−1(ẽ(G) ∩ PGL(˜V )) and we call Glin the linear part of G. It is not diffi-
cult to see that Glin is a normal subgroup of G. We say that G is linear if G = Glin.

2.2.4 Polarized embeddings

Let � = (P , L) be a near-polar space of diameter diam(�) = n > 1 and let e : � → �

be an embedding of �. It is known that all hyperplanes of a near-polar space � are
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maximal subspaces of � (Shult [36, Lemma 6.1]). Therefore, if H is a hyperplane of
�, then SH = 〈e(H)〉 is either a hyperplane of � or the whole point-set of �. We say
that e is polarized if SH is a hyperplane of � for every singular hyperplane H of �

(recall that H is singular if H = Hx = �∗
n−1(x) for a point x ∈ P ).

Suppose that e is polarized and let Re be the intersection of all hyperplanes
〈e(Hx)〉 of � for x ∈ P . Following [3], we call Re the nucleus of e.

Proposition 2.5 De Bruyn [23] Let e be polarized. Then Re defines a quotient of e.

Suppose that � admits the absolutely universal embedding ẽ : � → ˜� and ẽ is
polarized. So, Rẽ defines a quotient of ẽ. Then e := ẽ/Rẽ is a polarized embedding of
�, called the minimal polarized embedding of �. If e = ẽ/U is another embedding of
�, then e is polarized if and only if U ⊆ Rẽ, namely e ≥ e. Suppose this is the case.
Then Re = Rẽ/U , Re defines a quotient of e and e/Re

∼= e. Note also that e is fully
homogeneous. Indeed, Rẽ is stabilized by the lifting of Aut(�) to ˜�.

So far for a general near-polar space. We shall now turn to polar spaces and dual
polar spaces. The following proposition is well known. It can be obtained from the
theory of Veldkamp spaces of polar spaces (see Buekenhout and Cohen [7, chap-
ters 9–12]). Another argument is given in [28, Proposition 5.4].

Proposition 2.6 All embeddings of non-degenerate polar spaces are polarized.

Let � be a non-degenerate thick polar space and let e : � → � be an embedding
of �. The embedding e is polarized by Proposition 2.6. By Proposition 2.5, the nu-
cleus Re of e defines a quotient of e. As � admits the absolute embedding, it also
admits the minimal polarized embedding e and we have e/Re

∼= e.
Let now � be a thick dual polar space and ẽ : � → ˜� be its absolute embedding.

The embedding ẽ is polarized by Cardinali, De Bruyn and Pasini [11, Corollary 1.8]).
By Proposition 2.5, Rẽ defines a quotient of �. Hence � admits the minimal polarized
embedding.

2.3 Tangent spaces

Let e : � → PG(V ) be an embedding of a near-polar space � = (P , L), with
diam(�) = n > 1. Following Cardinali and De Bruyn [9], for every point x ∈ P we
define T−1(x) := 0 (vector notation) and, for every i = 0,1, . . . , n we put Ti(x) :=
〈e(�∗

i (x))〉 (regarded as a subspace of V ). In particular, Tn(x) = 〈e(�∗
n(x))〉 = V .

The subspace Ti(x) is called the tangent space of e of degree i at e(x). Clearly,
Ti−1(x) ⊆ Ti(x) for every i = 0,1, . . . , n. We put Mi(x) := Ti(x)/Ti−1(x) and
we call Mi(x) the reduced tangent space of e of degree i at e(x). In particular,
M0(x) = e(x). Note that the set {e(y) + Ti−1(x)}y∈�i(x) spans Mi(x). Note also that
e is polarized if and only if Mn(x) �= 0 for every point x. For every C ∈ Ci (x) put

pi(C) := 〈e(C)〉 + Ti−1(x)

Ti−1(x)
.

The next proposition rephrases a result by Cardinali and De Bruyn [9].
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Proposition 2.7 Suppose Mi(x) �= 0 for a given point x ∈ P and an index
i ∈ {0,1, . . . , n}. Then pi(C) has vector dimension dim(pi(C)) ≤ 1 for every
C ∈ Ci (x). Moreover, {pi(C) | C ∈ Ci (x),pi(C) �= 0} is a spanning set of points
of PG(Mi(x)).

Proof We may assume that i ≥ 1. Let C ∈ Ci (x). Then C carries the structure of
a near-polar space. By (NP3), every line of C meets �∗

i−1(x). Moreover, HC
x :=

C ∩ �∗
i−1(x) is the singular hyperplane of C with x as the deep point. By (1) of

Proposition 2.1, HC
x is a maximal proper subspace of C. Hence the collinearity rela-

tion of C induces a connected graph on C \ HC
x . Therefore either e(C) ⊆ Ti−1(x) or

Ti−1(x) is a hyperplane of 〈e(C)〉+Ti−1(x), namely pi(C) is either the null subspace
of Mi(x) or a point of PG(Mi(x)).

Since
⋃

C∈Ci (x) e(C) spans Ti(x), {pi(C) | C ∈ Ci (x),pi(C) �= 0} spans
PG(Mi(x)). �

Assume that � is a dual polar space. For i ∈ {0,1, . . . , n}, Ci (x) can be regarded
as the set of (i − 1)-dimensional subspaces of the (n − 1)-dimensional projective
geometry Res�(x). In particular, the elements of C1(x) (lines of � through x) are the
points of Res�(x) and the elements of Cn−1(x) (maxes of � on x) are the hyperplanes
of Res�(x).

We denote by Gi (x), 1 ≤ i ≤ n − 1, the i-grassmannian of Res�(x). So, Ci (x)

is the set of points of Gi (x). The lines of Gi (x) bijectively correspond to the pairs
{A,B} with A ∈ Ci−1(x), B ∈ Ci+1(x) and A ⊂ B , where {C ∈ Ci (x) | A ⊂ C ⊂ B}
is the line of Gi (x) corresponding to {A,B}.

Proposition 2.8 (Cardinali and De Bruyn [9]) Assume that � is a dual polar space
and e is polarized. Let i ∈ {1,2, . . . , n − 1}. Then dim(Mi(x)) > 1, pi(C) �= 0 for
every C ∈ Ci (x) and pi is an injective mapping from the point-set Ci (x) of Gi (x) to
the set of points of PG(Mi(x)).

With � and e as in Proposition 2.8, the image by pi of a line of Gi (x) is a curve
of PG(Mi(x)), whose type depends on the type of � and features of e. We are not
going to discuss this matter here. We refer to Cardinali and De Bruyn [9] for more
details.

3 Preliminary results

3.1 A theorem on embeddings of near-polar spaces

Let � = (P , L) be a near-polar space of diameter n > 1 and let e : � → � be an
embedding of �. Let G be a subgroup of Aut(�) which lifts through e to a subgroup
e(G) of Aut(�). For a point x ∈ P , we denote by Gx the stabilizer of x in G. Clearly,
if X is a subgroup of Gx , then e(X) stabilizes the tangent space Ti(x) for every i =
−1,0, . . . , n. Accordingly, with Mi(x) = Ti(x)/Ti−1(x) as in the previous section,
e(X) acts on PG(Mi(x)) for every i = 0,1, . . . , n.
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Theorem 3.1 Assume the following:

(†) For every point x ∈ P , the stabilizer Gx of x in G admits a subgroup Kx such
that Kx acts transitively on �n(x) and e(Kx) acts trivially on PG(Mi(x)) for every
i = 1,2, . . . , n − 1.

Then e is polarized.

Proof By way of contradiction, suppose that e is not polarized. Then there exists a
point x ∈ P such that Tn−1(x) = �. (Here and throughout the rest of this proof we re-
gard tangent spaces as subspaces of �.) However, T0(x) = e(x) �= �. So, Ti(x) �= �

for some i. Let k be the largest index i (< n − 1) such that Ti(x) �= �. Then
Tk+1(x) = �, whence e(y) ∈ Tk+1(x) for every y ∈ �n(x). The group e(Kx) acts
trivially on PG(Mk+1(x)), by the second part of (†). Therefore, denoted by Kx(e(y))

the e(Kx)-orbit of e(y), we have 〈Kx(e(y)) ∪ Tk(x)〉 = 〈e(y), Tk(x)〉. On the other
hand, Kx acts transitively on �n(x). Hence 〈e(y), Tk(x)〉 = 〈e(z), Tk(x)〉 for any two
points y, z ∈ �n(x). Moreover, �n(x) spans � (claim (4) of Proposition 2.1). It fol-
lows that Tk(x) is a hyperplane of �. Also, e(y) �∈ Tk(x) for every point y ∈ �n(x).

Let now z be a point of �n−1(x) and l a line of � joining z with a point y of
�n(x). Such a line exists by (NP2). Note that all points of l but z belong to �n(x),
by (NP3). As Tk(x) is a hyperplane of �, the line e(l) of � meets Tk(x) in a point
p. We have p = e(z′) for a point z′ ∈ l because e maps l onto e(l). However, if
z′ �= z then z′ ∈ �n(x). Hence e(z′) �∈ Tk(x). It follows that z′ = z. So, e(z) ∈ Tk(x)

for every z ∈ �n−1(x). Moreover, �n−1(x) spans �∗
n−1(x) by (4) of Proposition 2.1.

Therefore Tn−1(x) ⊆ Tk(x). Since Tn−1(x) = �, also Tk(x) = �. We have reached a
contradiction. �

We now state an easy consequence of Property (†). It is irrelevant for the proof of
Theorem 1.1, but the proof contains an idea that will be recycled in the last lemma of
this paper (in Section 4).

Proposition 3.2 Suppose that G satisfies property (†) of Theorem 3.1. Then G acts
transitively on P .

Proof This follows from the connectedness of � and the fact that given any two
distinct collinear points x1 and x2, there is a point y with x1, x2 ∈ �n(y) by
Lemma 2.2. �

3.2 A lemma on generalized quadrangles

Let � = (P , L) be a thick embeddable generalized quadrangle and let e : � → PG(V )

be an embedding of �. Let F be the underlying division ring of �. As in Section 2, for
a point x ∈ P we put M1(x) = T1(x)/e(x) = T1(x)/T0(x) and we denote by C1(x)

the set of lines of � on x. So, the elements of C1(x) can be regarded as points of
PG(M1(x)).

Lemma 3.3 Suppose F �= F2. Given a point x ∈ P , let l1 and l2 be two distinct
members of C1(x) and let L be the line of PG(M1(x)) through them. Then one of the
following holds:
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(1) |L ∩ C1(x)| > 2;
(2) There is a line L′ of PG(M1(x)) such that |L′ ∩ C1(x)| ≥ 2 and L′ meets L in a

point p �∈ C1(x).

Proof Let ẽ : � → PG(˜V ) be the absolutely universal embedding of �. So, e ∼= ẽ/U

for a subspace U of ˜V . If l1 and l2 are distinct members of C1(x), then the 2-
dimensional subspace of ˜V spanned by ẽ(l1) ∪ ẽ(l2) meets U trivially. It follows
that, if the statement of the lemma holds for ẽ, then it also holds for e. So, we may
safely assume that e = ẽ, namely e is absolutely universal.

As e is absolute, � arises from a non-degenerate reflexive sesquilinear form f

of V or a non-singular pseudo-quadratic form q of V (Buekenhout and Lefèvre [8],
Dienst [27], Tits [38, 8.6]; see also Buekenhout and Cohen [7, chapter 11]).

Suppose that (1) is false for the given lines l1, l2 ∈ C1(x). Then, considering the
2-dimensional subspace of ˜V spanned by ẽ(l1) ∪ ẽ(l2) we see that the sesquilinear
form f or the sesquilinear form associated to q is in fact symmetric bilinear so
that � is quadratic. It follows that ˜V has dimension at least 5. In the latter case we
can consider the non-degenerate sub-quadrangle induced on some suitably chosen
5-dimensional subspace of ˜V containing x. Hence it suffices to check that (2) holds
in case � is quadratic and ˜V has dimension 5. Now, C1(x) is a conic of the Pappian
plane PG(M1(x)) and the claim follows. �

3.3 A lemma on projective spaces

Given a vector space V over a division ring F, let � = PG(V ). We do not assume F

to be commutative and we allow dim(�) to be infinite. Denoted by P the point-set
of �, let G = (S,∼) be a graph defined on a subset S ⊆ P such that (S1) S spans �

and (S2) G is connected.

Lemma 3.4 With �, S and G as above, let g ∈ Aut(�) be such that:

(1) g fixes all points of S;
(2) if {p1,p2} is an edge of G , then g fixes all points of the line 〈p1,p2〉 of �.

Then g fixes all points of �.

Proof We first quickly prove the following well-known fact.

(F) If dim(V ) = n ≥ 3, then the only automorphism of � fixing both a hyperplane
and a line off that hyperplane point-wise is the identity.

Let g be an automorphism of � that fixes both a hyperplane H and a line k off H

point-wise. Now any point p ∈ � not in H ∪ k lies on two distinct lines l and m

meeting k and H in four distinct points. Those four points are fixed, hence so are l

and m and their intersection point p.
Taking n = 3 in (F), and using that G is connected by (S2), we find that g also

satisfies conditions (1) and (2) for the complete graph on the vertex set S. Thus all
lines meeting S in at least two points are fixed point-wise by g.

If p is a point in the span of S, then it lies in a subspace �′ of � spanned by a finite
number n of points in S. The cases n = 1,2 being trivial, we use (F) and induction
on n ≥ 3 to see that g fixes p. We are done by (S1). �
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3.4 Root groups and the group Aut0(�)

In this subsection � is a non-degenerate thick polar space of rank n ≥ 2 and � is its
dual. We assume that both � and � are embeddable. As we have remarked earlier,
both � and � admit the absolutely universal embedding. Thus, both Aut(�)lin and
Aut(�)lin are defined (Subsection 2.2.3). Let � = �(�) = �(�) be the building (of
type Cn) associated to � and �. The groups Aut(�), Aut(�) and Aut(�) are distinct
faithful actions of the same abstract group. To be pedantic, we should keep them
distinct, but we will neglect these distinctions, thus regarding Aut(�), Aut(�) and
Aut(�) as the same group, as many people do. Accordingly, we regard Aut(�)lin

and Aut(�)lin as subgroups of Aut(�) (= Aut(�) = Aut(�)). Note that Aut(�)lin

and Aut(�)lin might be different. This can happen when � and � are defined over
non-isomorphic division rings.

In this subsection we will freely use some terminology from the theory of build-
ings. Since the concepts such as chambers, apartments, residues, panels, roots and
walls are well-known, we will not go into any detail, but refer the reader to Tits [38],
Ronan [35], and Weiss [40] for the general theory. For a detailed description of the
building of type Cn associated to a polar space, its automorphism groups and BN -
pairs, we refer to Taylor [37].

As we have already remarked in Section 2, the polar space �, being embeddable,
arises from a sesquilinear or pseudoquadratic form. Since it is thick, its building
� = �(�) is Moufang (Tits [38, page 274], Ronan [35], Weiss [40]; also Tits and
Weiss [39] for the case n = 2). Therefore, it makes sense to define Aut(�)0 to be the
subgroup of Aut(�) generated by the root subgroups. This group is simple except in
three cases (see Weiss [40, 12.20]). The only exception that occurs among the cases
we are considering is when Aut(�)0 = Sp4(F2), but the derived group has index 2.
In all other cases under consideration, Aut(�)0 is the largest normal simple subgroup
of Aut(�).

It readily follows from the definition of root subgroups that every root subgroup is
contained in Aut(�)lin ∩ Aut(�)lin. Therefore,

Lemma 3.5 Aut(�)0 ≤ Aut(�)lin ∩ Aut(�)lin.

In other words, Aut(�)0 is linear, no matter if it is regarded as a group of auto-
morphisms of � or of �.

The group Aut(�)0 acts transitively on the set of pairs (c, A) where A is an apart-
ment of � and c is a chamber of A (Ronan [35, Ch. 6], Weiss [40, 11.12]). It follows
that Aut(�)0 admits a BN -pair associated with � (Tits [38], Ronan [35, Ch. 5],
Weiss [40]). We call the above transitivity property BN -transitivity. In the case of
a spherical building this coincides with what is called strong-transitivity in the liter-
ature. In the present paper, the most important consequence of this is that Aut(�)0

is transitive on the set of ordered pairs (C1,C2) ∈ Cd1(�) × Cd2(�) (notation as in
Subsection 2.1) with C1 ∩ C2 ∈ Cd3(�) and [C1 ∪ C2]� ∈ Cd4(�), for any choice of
d1, d2, d3, d4 with −1 ≤ d3 ≤ d1, d2 ≤ d4 ≤ n and 0 ≤ d1, d2 ≤ n − 1. Here, we have
taken the convention that C−1(�) = {∅}.
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Lemma 3.6 For a point x of �, let Gx be the stabilizer of x in G := Aut(�)0 and let
Kx be the elementwise stabilizer of Res�(x) in Gx . Then both the following hold:

(1) the group Gx/Kx induced by Gx on Res�(x) is BN -transitive as a subgroup of
Aut(Res�(x));

(2) Kx acts simply transitively on �n(x).

Proof By strong-transitivity we may assume that x lies on the chamber c of the apart-
ment A such that G = 〈Uα | α ∈ 	(A)〉, B = StabG(c) and N = StabG(A). Here
	(A) is the set of all roots in A and Uα is the root group of the root α. Let 	x

consist of those roots α of A such that Uα fixes x. Then partition 	x = 	0
x � 	+

x

(� denotes disjoint union). Here 	+
x consists of those roots α of A such that every

chamber of A on x belongs to α and 	0
x denotes the set of roots of A such that x lies

on the wall ∂ of α. In other words, 	+
x consists of those roots α of A such that Uα

fixes every chamber of A on x.
Define Ux = 〈Uα | α ∈ 	+

x 〉 and Lx = 〈Uα,B ∩ N | α ∈ 	0
x〉. Then Levi de-

composition (cf. Theorem 6.18 of [35]) means that we have a semi-direct product
Gx = Ux � Lx . Interpreting the results to our setting, it is proved in loc. cit. that Ux

acts regularly on the points opposite to x, i.e. at distance n from x. Moreover, Lx in-
duces the full group generated by root groups of the Moufang building that is x itself.
In particular, Lx acts strongly transitively on the residue Res�(x). Now (1) follows.
Since by definition Ux fixes every chamber of A on x, and is normalized by Lx the
strong-transitivity of Lx on Res�(x) implies that Ux in fact fixes every chamber on
x. Thus, Ux ≤ Kx and (2) follows. �

4 Proofs of Theorems 1.1 and 1.2

4.1 Proof of Theorem 1.1

Let � = (P , L) be an embeddable classical dual polar space of rank n ≥ 2 defined
over a commutative division ring F, let e : � → PG(V ) be a G-homogeneous embed-
ding of �, with G = Aut(�)0 := Aut(�)0 and � = �(�) as in Subsection 3.4. We
know by Lemma 3.5 that G is linear. We must prove that e is polarized.

If n = 2 then � is a generalized quadrangle. In this case e is polarized by Propo-
sition 2.6. Let n > 2. For a point x ∈ P , let Gx be the stabilizer of x in G and let Kx

be the elementwise stabilizer of Res�(x) in Gx . By Lemma 3.6, Gx/Kx acts BN -
transitively on Res�(x) and Kx is transitive on �n(x). In view of Theorem 3.1, in
order to conclude that e is polarized we only need to prove the following:

Lemma 4.1 The group Kx acts trivially on PG(Mi(x)) for all i = 1,2, . . . , n − 1.

Proof If Ti−1(x) has codimension at most 1 in Ti(x) there is nothing to prove. Sup-
pose that Ti−1(x) has codimension at least 2 in Ti(x). We first prove the following:

(i) pi(C) �= 0 for every C ∈ Ci (x) and the mapping pi sending C ∈ Ci (x) to pi(C)

is injective.
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As Gx acts transitively on Ci (x), if pi(C) = 0 for some C ∈ Ci (x) then pi(C) = 0
for all C ∈ Ci (x). Hence Ti(x) = Ti−1(x) by Proposition 2.7, contrary to our as-
sumptions. So, pi(C) �= 0 for every C ∈ Ci (x). We now turn to the second part of (i).
We know by Lemma 3.6 that Gx/Kx acts BN -transitively on the projective geometry
Res�(x). The stabilizer of a member C ∈ Ci (x) in Gx/Kx is a maximal parabolic sub-
group of Gx/Kx . Hence the stabilizer Gx,C of C in Gx is a maximal subgroup of Gx .
Therefore Gx cannot preserve any non-trivial proper partition of Ci (x). It follows that
if pi(C1) = pi(C2) for two distinct members C1,C2 of Ci (x), then pi(C1) = pi(C2)

for any two C1,C2 ∈ Ci (x). Hence Ti−1(x) is a hyperplane of Ti(x), a contradic-
tion with our assumptions. Therefore pi(C1) �= pi(C2) for any two distinct members
C1,C2 of Ci (x). Claim (i) is proved.

We now put S := {pi(C)}C∈Ci (x). By Proposition 2.7, S is a spanning set of
points of PG(Mi(x)). If F = F2 then Kx fixes all points of PG(Mi(x)), as S spans
PG(Mi(x)) and Kx fixes all points of S. In this case we are done.

Let F �= F2. We recall that Ci (x) is the point-set of the grassmannian Gi (x) of
Res�(x) and the collinearity graph of Gi (x) is connected. That graph induces a
connected graph on S. By Lemma 3.4, in order to show that Kx acts trivially on
PG(Mi(x)) we only must prove the following:

(ii) Let C1 and C2 be distinct members of Ci (x), collinear in Gi (x). Then Kx acts
trivially on the line L = 〈pi(C1),pi(C2)〉.

If there is C3 ∈ Ci (x) such that pi(C3) ∈ 〈pi(C1),pi(C2)〉 and pi(C3) �= pi(C1),
pi(C2), then Kx fixes three distinct points of L. Hence Kx induces the identity map-
ping on L by the following well-known fact.

Fact 4.2 Let F be a commutative division ring. Then the identity is the only element
of PGL(2,F) that fixes three distinct points of PG(1,F).

(Recall that F is commutative by assumption and Kx acts on PG(V ) as a subgroup
of PGL(V ), by the definition of G.)

Suppose that L ∩ S = {pi(C1),pi(C2)}. As C1,C2 are collinear in Gi (x), A :=
C1 ∩ C2 is a member of Ci−1(x) and the convex closure B := [C1,C2]� of C1 ∪ C2

belongs to Ci+1(x). The line of Gi (x) through C1 and C2 is the set CA,B = {C ∈
Ci (x) | A ⊂ C ⊂ B}. Pick a point y ∈ A ∩ �i−1(x) and a point z ∈ B ∩ �i+1(x) ∩
�2(y) and let Q = [y, z]� be the quad of � on y and z. Let CQ

1 (y) be the set of lines

of Q through y. The mapping γQ sending l ∈ CQ
1 (y) to the convex closure [l,A]� ∈

CA,B of l ∪A is a bijection between CQ
1 (y) and CA,B . Its inverse map sends C ∈ CA,B

back to C ∩Q. Moreover, let eQ : Q → 〈e(Q)〉 be the embedding of Q induced by e.
Let T

Q
1 (y) be the tangent space of eQ of degree 1 at eQ(y) (= e(y)) spanned by the

lines l ∈ CQ
1 (y). Clearly, T

Q
1 (y) is a subspace of Ti(x) and the inclusion mapping of

T
Q
1 (y) into Ti(x) induces a morphism pQ from PG(M

Q
1 (y)) to PG(Mi(x)), where

M
Q
1 (y) := T

Q
1 (y)/eQ(y). The morphism pQ agrees with γQ on CQ

1 (y). Explicitly,

if p
Q
1 is the mapping from CQ

1 (y) to PG(M
Q
1 (y)) sending l ∈ CQ

1 (y) to the point

e(l)/e(y) of PG(M
Q
1 (y)), then pQ(p

Q
1 (l)) = pi(γQ(l)) for every l ∈ CQ

1 (y).
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Put SQ := {pQ
1 (l) | l ∈ CQ

1 (y)}, let l1, l2 be the lines of CQ
1 (y) that are sent by γQ

to C1 and C2 respectively, and let LQ be the line of PG(M
Q
1 (y)) spanned by p

Q
1 (l1)

and p
Q
1 (l2). Clearly, L = pQ(LQ) and, since L ∩ S = {pi(C1),pi(C2)}, we have

LQ ∩ SQ = {pQ
1 (l1),p

Q
1 (l2)}. By Lemma 3.3, there are lines l3, l4 ∈ CQ

1 (y) such that

the line L′
Q = 〈pQ

1 (l3),p
Q
1 (l4)〉 of PG(M

Q
1 (y)) meets LQ in a point different from

any of p
Q
1 (l1), p

Q
1 (l2), p

Q
1 (l3) or p

Q
1 (l4). For j = 3,4, put Cj = γQ(lj ) and let L′

be the line of PG(Mi(x)) spanned by pi(C3) and pi(C4). Then L′ = pQ(L′
Q) and

L ∩ L′ is a point different from any of pi(C1), pi(C2), pi(C3) or pi(C4). Indeed, if
otherwise, then we have pi(C3),pi(C4) ∈ L ∩ S, which contradicts the assumption
that L ∩ S = {pi(C1),pi(C2)}.

We can now finish the proof of (ii). As Kx fixes each of C1,C2,C3 and C4, it also
fixes the point L ∩ L′. So, Kx fixes three distinct points of L. Hence it acts trivially
on L, by Fact 4.2 and since Kx ⊆ G ≤ Aut(�)lin acts on PG(V ) as a subgroup of
PGL(V ). �

Remark In Lemma 4.1 we could replace Kx by Ux . Then that lemma follows imme-
diately for any embedding V of � on which Ux is known to act unipotently.

4.2 Proof of Theorem 1.2

Let � = (P , L) be an embeddable classical dual polar space of rank n ≥ 2 and let
G = Aut(�)0. The group G acts BN -transitively on the building � = �(�). Let
e : � → � be a G-homogeneous polarized embedding of � and let U be a G-invariant
proper subspace of �.

Lemma 4.3 The subspace U defines a G-homogeneous quotient of e.

Proof Clearly, if U defines a quotient e/U of e then e/U is G-homogeneous, since
U is G-invariant. So, we only must prove that U defines a quotient of e, namely it
satisfies conditions (Q1), (Q2) of Subsection 2.2. If e(x) ∈ U for some point x, then
U contains e(P ) by the transitivity of G on P . Hence U = �. This contradicts the
assumption that U �= �. Therefore U ∩ e(P ) = ∅, namely U satisfies (Q1).

For d = 1, . . . , n, let Gd be the graph defined on P by the relation ‘being at dis-
tance d’. We shall prove that Gd is connected. First, let x, y be two distinct collinear
points of �. By Lemma 2.2, �d(x) ∩ �d(y) �= ∅. Clearly, each of {x} ∪ �d(x) and
{y} ∪ �d(y) is contained in a connected component of Gd . Since �d(x) ∩ �d(y) �= ∅,
{x, y} ∪�d(x)∪�d(y) is contained in a connected component of Gd . In other words,
any two collinear points of � belong to the same connected component of Gd . Hence
Gd is connected, since the collinearity graph of � is connected.

Suppose now that 〈e(u),U 〉 = 〈e(v),U 〉 for two distinct points u,v ∈ P . Let
d = d(u, v). The graph Gd is connected. Moreover, G acts transitively on the set
of ordered edges of Gd , since it is BN -transitive on �. Therefore the equality
〈e(u),U 〉 = 〈e(v),U 〉 implies that 〈e(x),U 〉 = 〈e(y),U 〉 for any two points x, y ∈ P .
As e(P ) spans �, it follows that U is a hyperplane of �. However if so, then
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U ∩ e(l) �= ∅ for every line l of �, contrary to the fact that U ∩ e(P ) = ∅. There-
fore 〈e(x),U 〉 �= 〈e(y),U 〉 for any two distinct points x, y ∈ P . Consequently, U

satisfies (Q2). �

Theorem 4.4 With �, G, e and U as above, suppose moreover that � is defined over
a commutative division ring. Then U is contained in the nucleus Re of e.

Proof By Lemma 4.3, U defines a G-homogeneous quotient e/U of e. As the under-
lying division ring of � is assumed to be commutative, we can apply Theorem 1.1,
thus concluding that e/U is polarized. Therefore U ⊆ Re . �

Theorem 1.2 is a special case of the above.
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