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Abstract. We consider a class of random walks on a lattice, introduced by Gessel and Zeilberger,
for which the reflection principle can be used to count the number of K-step walks between two
points which stay within a chamber of a Weyl group. We prove three independent results about such
"reflectable walks": first, a classification of all such walks; second, many determinant formulas for
walk numbers and their generating functions; third, an equality between the walk numbers and the
multiplicities of irreducibles in the kth tensor power of certain Lie group representations associated
to the walk types. Our results apply to the defining representations of the classical groups, as well
as some spin representations of the orthogonal groups.
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1. Introduction

The ballot problem, a classical problem in random walks, asks how many ways
there are to walk from the origin to a point (A 1 ( . . . , An), taking k unit-length steps
in the positive coordinate directions while staying in the region x1 > x2 > • • • > xn.
The solution is known in terms of the hook-length formula for Young tableaux;
a combinatorial proof, using a reflection argument, is given in [16, 18],

In [5], Gessel and Zeilberger consider a more general question, for which
some of the same techniques apply. For certain "reflectable" walk types, we
want to count the number of fc-step walks between two points of a lattice, staying
within a chamber of a Weyl group. The steps must have certain allowable lengths
and directions.

In this paper, we show that this is equivalent to decomposing into irreducibles
the fcth tensor power of certain representations of reductive Lie groups. We
classify the reflectable walk types and their corresponding representations. For
many cases, we derive determinant formulas for the number of walks, or equiv-
alently, for the multiplicities of irreducibles in tensor powers. In particular, our
formulas apply to the defining representations of the classical groups, as well
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the orthogonal reflections ra : x >-> x —r,x)a preserve L and S for all a in A;
and the ra generate a finite group W of linear transformations, the Weyl group.

Example. In the ballot problem, L = Z n , S = {e1 = ( l ,0 , . . . ,0) , . . . ,en =
(0,..., 0,1)}, C is defined by the simple roots A = {e, - ei+1, 1 < i < n - 1}, and
W is the symmetric group Sn permuting the n coordinates.

Definition. A walk type (L, 5, C) is reflectable if the following equivalent condi-
tions hold:

(1) Any step s € S from any lattice point in the interior of C will not exit C.
(2) For each simple root ai, there is a real number ki, such that (ai,s) = ±ki; or

0 for all steps s E s and (ai, A) is an integer multiple of ki, for all A e L.

The reflectability condition guarantees that a walk cannot exit C without landing
on a wall of C at some step.

Example. The walk type L = Z2,S = {±e} ±e2},C = {(x},x2) | x2 > xj > 0}
is not reflectable. However, it becomes reflectable if we let C be a coordinate
quadrant, or if we restrict L to be the lattice points (x1 ,x2) with x1 + x2 even.

2.2. The theorem of Gessel and Zeilberger

In a reflectable random walk problem, we want to compute bnL,k, the number
of walks from 77 to A of length k which stay in the interior of a Weyl chamber.
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as some spin representations of the orthogonal groups. Our results are closely
related to those obtained by Proctor [11].

2. Reflectable random walks

2.7. Definitions

A walk type is defined by a lattice L, a set 5 of allowable steps between lattice
points, and a polygonal cone C to which the walks are confined. Without
affecting the walk problems, we may restrict L and C to the linear span of S,
so that L, S, and C have the same linear span. (We may weight the steps with
the relative probabilities of choosing each, but this will make little difference in
what follows.)

We will assume C is a Weyl chamber. That is, L,S, C c Rn; C is defined by a
system of simple roots A c Rn as
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(The ballot problem can be converted to this form by starting at the point
(n -1, n - 2,. . . , 0) instead of the origin, and requiring the coordinates to remain
strictly ordered.)

Let x(u) = EesU*, the generating function for the steps in the formal
monomials tit*' In) = u*1 • • -u*". (We call this x because it will later correspond
to a character, with weights equal to the permitted steps.) Let c7it denote the
number of random walks of length k, with steps in S, from the origin to 7, but
unconstrained by a chamber. Then we have

Let g n l ( x ) = StLo b^\,kxk/k\ be the corresponding generating function for random
walks in the Weyl chamber. Then we have:

COROLLARY 1. With hypotheses as in Theorem 1,

2.3. Generating functions

It is often natural to study these walks by studying their exponential generating
functions. If the generating function for unconstrained random walks is h-,(x) =
^2T=ocjkXk/k\, then we have

Proof. Every walk from any w(n) to A which does touch at least one wall has some
last step j at which it touches a wall; let the wall be the hyperplane perpendicular
to on, choosing the largest i if there are several choices [11]. Reflect all steps of
the walk up to step j across that hyperplane; the resulting walk is a walk from
waiw(n) to A which also touches wall i at step j. This clearly gives a pairing
of walks, and since wai has sign -1, these two walks cancel out in (2). The
only walks which do not cancel in these pairs are the walks which stay within
the Weyl chamber, and since w(n) is inside the Weyl chamber only if w is the
identity, this is the desired number of walks.

where ]-u denotes the coefficient of ur in the polynomial.
The fundamental result of Gessel and Zeilberger [5] is

THEOREM 1. If the walk from n to A is retiectable. then
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As an illustration of the usefulness of exponential generating functions, suppose
the set S of steps can be partitioned into two subsets S1 and S2 orthogonal to
each other, and W = W1 x W2 with Wi acting only on Si and fixing the
steps of the other subset, i = 1,2. Then we can use the corollary and the
properties of the exponential to factor the exponential generating function:
g n l ( x ) = g 1 n 1 L 1 (x)g 2 , r t 2 L 2 (x) , where gi.^x) is the generating function for the walk
with steps Si and 77 = n1 + 1)2, A = LI + L2, with ni, Aj e SpanRSi.

In particular, if S1 = {0} with W1 trivial, we have gn L (x ) = exg2,rL(x). That
is, adding the step 0 to the allowable steps for any random walk corresponds to
multiplying the exponential generating function by ex.

3. Decomposition of tensor powers

3.7. Characters

An important combinatorial problem in Lie theory is to determine the number of
times each irreducible representation of a group or algebra occurs in the K-fold
tensor power of a given finite-dimensional representation V. That is, we wish to
determine the positive integers au,k for which V®k = Qvau,kU, where U runs
over irreducible representations. We may let V be a virtual representation (a
formal difference of representations). We study the case of a complex reductive
group such as GLn(C), a compact real Lie group such as U(n), or O(n), or the
Lie algebra of such a group, (see [1, 3, 6]).

For convenience, we will discuss a, a reductive Lie algebra over C, and a
finite-dimensional virtual representation V. We recall some standard facts [6].
We know g possesses a maximal abelian subalgebra, its Cartan subalgebra ft; a
root system, a certain finite set in ft* (the linear functionals on ft); and a weight
lattice A in ft*. A Weyl group W defined by the root system acts on ft and ft*. We
choose a fundamental Weyl chamber of dominant weights in the weight lattice.

We define an integrable character of ft to be an element of C[h*], the formal
C-linear combinations of symbols UA for A in the weight lattice.

Example. For g = Bin (C), ft is the set of all diagonal matrices; the root system is
\&i - ej,l < i,j < n}, where ek gives the kth coordinate of a diagonal matrix;
and the weight lattice is Ze1 +— + Zen. W is the symmetric group Sn permuting
the n diagonal entries.

A representation V of such a g is defined up to isomorphism by its character
Xv = EA mv,L e C[A], where
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Characters of g are invariant under the Weyl group, and span the space of
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invariants C[A]w. In fact the irreducible representations of u are indexed by
dominant weights (or orbits of W on the weight lattice), and their characters
form a basis of C[A]w. A direct sum (or tensor product) of representations
corresponds to an ordinary sum (resp. ordinary product) of their characters.

Thus, our problem of decomposing V®k reduces to finding integers a^ such
that

a Vandermonde determinant. (We denote U1
| •• -u*" by u*A An).)

Now, dxu is essentially a monomial, i.e., there is only one dominant weight A
for which UA appears in this expression, and in fact A = fj, + p. Thus, multiplying
(4) by 6, we get

where xl-* denotes the coefficient of UA in the element x € C[h*]. Multiplying
out by the terms of 6, we obtain

where p e A is the half-sum of the positive roots, and the Weyl denominator 6 is

3.2. Weyl's character formula

The character xu is given by the Weyl character formula:

where Xu is the character of the irreducible representation of B with highest
weight U.

The case U = 0 corresponds to the trivial representation, so ao,k, will be the
dimension of invariants in the kth tensor power of V.
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Forming an exponential generating function, we have

3.3. Equivalence of tensor powers and random walks

The right-hand sides of these equations are the same sums of unconstrained walks
as in (2) and (3), with 77 = p, L = p +U. This gives us a correspondence between
random walks in a Weyl chamber and the decomposition of tensor powers. In
particular, equating the right sides of (8) and (2), and likewise of (9) and (3),
we have the following result.

THEOREM 2. Let V be a finite-dimensional representation of a reductive complex
Lie algebra g. Let C be a Weyl chamber, S the set of weights of V, and L some
lattice containing S and p, the half-sum of the positive roots.

If (L, S, C) defines a reflectable walk type, then the number bp,p+u,k of random
walks with k steps from p to p + U which stay strictly within the principal Weyl
chamber is equal to the multiplicity auk of the irreducible with highest weight \i in
the kth tensor power of V; and the corresponding exponential generating functions
gp,p+uand Fu are equal.

The statement remains valid if we replace G by a connected Lie group which is
reductive or compact.

Specific cases of the theorem are implicitly known. With allowed steps
e1 , . . . ,en and Weyl group An_1 = Sn (V being the defining representation of
Sln or GLn), the walks correspond to Young tableaux with at most n rows.
Likewise, the steps ±e1,...,±en and the Weyl group Bn (V a representation of
the symplectic group), correspond to up-down tableaux [14]. For relations with
orthogonal tableaux, see [10, 11, 12].

4. Classification

We outline a procedure to list all reflectable walks in a Weyl chamber, summarizing
our results in Subsection 4.5.

GRABINER AND MAGYAR244



RANDOM WALKS IN WEYL CHAMBERS

4.1. Maximal lattices

Given a reflectable walk type (L,S,C) in Rn, with C defined by a system of
simple roots A, we can embed I in a "maximal" lattice Ls,c as follows. Let
p0 be the orthogonal projection of Rn onto AL, and let (a, s) = ±ki or 0 for
ai € A, E S. Then

4.2. Classification of chambers

The simple roots A defining C and W may be partitioned into minimal subsets
each orthogonal to the others: A = A1 II • • • II Ar, with Aj J. Ak for j = k. We
may then write

4.3. Compatible steps

Given a Weyl group W and chamber C in Rn, we will say that two steps s1, s2 E R"
are compatible if: for each simple root ai( (aj,s1) and (ai, S2) have the same
absolute value fc,, or one of them is 0; and the projections P 0 ( s 1 ) , p 0 ( s 2 ) € AL

generate a discrete lattice. All the steps in 5 are compatible with each other if
and only if there is a lattice L such that (L, S, C) is a reflectable walk.

Let pj be the orthogonal projection from Rn to the irreducible compo-
nent Rnj. Then (L,S,C) is reflectable if and only if all the projections
( P j ( L ) , P j ( S ) , P j ( C ) ) , j = 0,.. . ,r, are reflectable. This is clear from the com-
patibility characterization of reflectability and the discussion of maximal lattices.
Thus, it suffices to classify pairs (5, C), where C is a chamber of one of the
irreducible Weyl groups listed above, and S is a W-invariant set of mutually
compatible steps. (Note that in the component Rn0 with trivial Weyl group, any
walk is reflectable.)

(This is maximal among all lattices L' for which (L', S, C) is a reflectable walk
type and for which P0(L') = P0(L).) Counting the walks for (L, S, C) is clearly a
special case of the problem for LS,C, so we shall assume L = Ls,c, choosing an
arbitrary lattice for P0(L).
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where Rnj = Span R Aj , and Rn0 = AL. Now, according to the classification of
Weyl groups [2, 6], the irreducible factors Aj c Rnj and the reflection group Wj
which they generate must be one of the classical types An,Bn = Cn,Dn or the
exceptional types E6,E7, E8,F4,G2 (the subscript indicating the rank nj).
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Thus, the coefficients of r j ( w j ) are the jth column of the identity matrix minus
the Cartan matrix. That is, wj is transformed under r, by the rule

4.4. Classification of steps

We now find the self-compatible W-orbits of steps for each irreducible Weyl
group. The reflection law above gives some general restrictions. For instance:
for each W-orbit, consider the representative sdom, which lies in the principal Weyl
chamber (i.e., all the w,-coefficients (ai,sdom) > 0). Only one of the coefficients
can be nonzero, since otherwise we can easily find a chain of reflections generating
incompatible steps from Sdom-

If s is any self-compatible step, then the coefficients of w,; for i in any parabolic
subgroup of W must define a self-compatible step for that sub-group. This allows
some use of induction on the rank of W. Finally, if s is any self-compatible step
in the case of a Dynkin diagram with a node of order 3, the only i's such that
(ai, s) is nonzero must lie in a parabolic subgroup whose diagram is linear.

For the classical Weyl groups we supplement the general description of the
W-action by the usual description in terms of permutations and sign changes in
the ei basis.

Example. The symmetric group An_1 acts on Rn-1 = { (x 1 xn)| Eixi = 0} c
W by permuting the n coordinate vectors ei; A = {ai = ei- — ei+1 | 1 < i < n - 1}
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Example. The Weyl group An-1 = Sn acts on Zn by permutations of the coor-
dinates. The roots of An_1 span the hyperplane H of points whose coordinates
sum to 0, the orthogonal complement of which is R(e1 + • • • + en). Thus, a walk
will be reflectable if the projections of the steps onto H give a reflectable walk
and the sums of the coordinates of the steps generate a discrete subgroup of R.

Now, all s € S must be compatible with their images ws for w € W. (If this
holds, we say s is self-compatible.) This is the main constraint on the possible S.
To see this, we examine the W-images of an arbitrary step.

The most general form of the W-action is as follows. We fix the lengths
of ai in one of the standard ways, and let {wi} c Rn be the dual basis to
{ai} = A c Rn so that s = E=1(ai,s)wi. Note that the reflection ri fixes
wj : ri(wj) = wj for i = j; and the coefficients of rj(wj) are

where cij is the number of links connecting the nodes i and j in the Dynkin
diagram of W, provided the arrow is pointed from i to j; and Ci,j = 1 otherwise.
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We may check that these self-compatible W-orbits are compatible with each other
(provided they are scaled the same), so we have concluded the classification in
this case: up to a uniform dilation, 5 is any union of the W-orbits of the
fundamental weights.

For the exceptional Weyl groups, we use the wi basis and the general reflection
law to determine the self-compatible weights. The restrictions above make the
computations easy for G-i and F4; we used the program SimpLie to exhaust the
remaining possibilities for the E series.

4.5. Results of classification

A walk type (L, S, C) in Rn is reflectable if and only if its orthogonal projections
( i r j (L) ,P j (S) ,P j (C)) to the irreducible factors of C are reflectable.

The walk types with irreducible Weyl chamber C and maximal lattice L = Ls,c
are as follows. S must be the W-orbit of a dominant self-compatible step, or
a union of such W-orbits which are mutually compatible. We list the dominant
self-compatible steps in the Wi-basis (the dual of the simple root basis), with
step lengths normalized for the most mutual compatibility. We use the Bourbaki
numbering of the simple roots [2, 6], and for the Weyl group Bn = Cn we
compute in the Bn root system.

The zero-step is always self-compatible dominant, and is compatible with all
other steps.

For the representation-theoretic problems corresponding to these reflectable
walks, Theorem 2 requires the additional condition that p lie in the lattice. (We
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and the wi coefficients of the W-orbit of s = (x1,...,xn) are (ai,s) = xa(i) -
xa(i+1),P € W. Since, for each i, these coefficients are to stay within {Ki,0, -ki}
as P varies, we conclude that at most two values may appear among the xi.
Assuming s = Sdom, x1 > • • • > xn, we find that s must be a scalar multiple of
one of the fundamental weights (or coweights)
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use the Killing form for which the square length of the long roots is 2, so that
the coweights equal the weights for simply-laced root systems.) Except for two
cases, the above list gives the unique normalization of steps for which this occurs.

One exceptional case is the weight w1 of the root system Bn. With an
additional step of 0 added, this corresponds to the defining representation of
S02n+1. The steps are 0 and ±e1,..., ±en, and the maximal lattice is Zn;
but p = ( 2 n - 1 , 2 n - 3 , . . . 1 ) is not in this lattice. Thus, we cannot solve this
representation-theoretic problem directly as a reflectable random walk: instead,
we must use the indirect technique given in Subsection 5.5.

The other case is the weight wn of the root system Cn. The steps are the
2n vectors ±e1 ± e2 • • • ± en, and the maximal lattice is 2D*n, the sublattice of
Zn containing points whose coordinates are congruent modulo 2. But p =
(n, n - 1,..., 1) is not in this lattice if n > 2. Our techniques do not work for
the resulting walks. In any case, for n > 3, the representation-theoretic problem
is not interesting; the nth fundamental representation of 5p2n has intermediate
weights which violate the reflectability condition, and the virtual representation
with weights ±e1±e2 • • -±en is a complicated sum of fundamental representations.
For n = 2, the second fundamental representation has the four weights ±e1 ± e2

and the weight 0, which gives an interesting problem and a walk that could be
handled by the technique of Subsection 5.5. However, this problem is equivalent
to the problem for the defining representation of SO5, using the isomorphism of
the Lie algebras ap4 and so5.

5. Computational techniques

The cases in which we can compute the number of random walks, or its ex-
ponential generating function, are those cases in which the generating function
x(u) for the steps is either a sum or a product of terms in only one variable,
and some closely related cases, such as SLn from the results for GLn.

In this section, we cover the techniques used to find the formulas. All of
the actual formulas, both for random walks and for decompositions, are given in
Section 6.

The formulas give generating functions which are determinants of Bessel
functions, or individual terms which are determinants of binomial coefficients.
Thus, the generating functions are D-finite (that is, each function satisfies a linear
homogenous differential equation with polynomial coefficients), or, equivalently,
the coefficients are P-recursive [13], satisfying a relation
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for some polynomials pi.
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The Bessel function determinants of this section must clearly be related to
the formulas of Gessel [4].

For the representation-theoretic problem of Theorem 2, we have n = pi where
Pi = (n + l)/2 - i. (If n is even, this is not in our lattice Zn, but we can translate
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where Im is the hyperbolic Bessel function of the first kind of order m [17].
Thus the determinant above becomes

5.7. The determinant technique

All cases use the same basic technique for converting the formulas in (2) and
(3) into a determinant, with the determinant coming from the sum over the
symmetric group Sn, which is either the whole Weyl group or a subgroup of it.

The basic example is the case of the Weyl group An-1 = Sn, with steps allowed
in both the positive and negative coordinate directions. In terms of representation
theory, this is the direct sum V @ V* of the defining representation of GLn and
its dual. The lattice is Zn.

Thus, using (3), with the generating function for the steps equal to E(ui + u-1),
the exponential generating function for the number of walks from 77 to A which
stay within the Weyl chamber is

This sum over a can be written as a determinant, which gives

And, finally, we can simplify the terms in this determinant. We have
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This can also be used to give decomposition formulas for the adjoint rep-
resentation of GLn. We know that V ® V* is the direct sum of the adjoint
representation with one copy of the trivial. Also, we have

We could rewrite this generating function as dm(x). However, it is not a standard
exponential generating function, because the denominator is (K!)2 instead of
K!. This prevents us from directly obtaining the decomposition function for the
adjoint representation from this generating function; if we had the exponential
generating function, we would just multiply by e - x . We can still calculate the
function term by term, using (20) to calculate the first k coefficients of dm.

We can also apply the determinant technique to (2). Consider the case
in which the steps are all the diagonals in the lattice; that is, the 2n vectors
±1e1 • • • ± 1en. The lattice is thus D*, the weight lattice of Dn, containing points
whose coordinates are all integers or all half-integers. The generating function
for the steps is
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everything by subtracting 1 from all the coordinates and get an equivalent random
walk.) For the representation with highest weight m, we have A = p + n, which
gives the decomposition formula

The weights of V®j ® V*®(k-j) all have total weight 2j - K, so only representations
with Emi = 2j - k can appear in these factors. Thus, in particular, the tensor
powers of V ® V* appear only in the factor with k = 2j, and the jth tensor
power appears (2j) times in the 2jth tensor power of V ®V*.

Thus, if we let bk be the multiplicity of the representation U, whose highest
weight has total weight 0, in the kth tensor power of V ® V*, we get

In the previous case, with steps in the coordinate directions, the generating
function for the steps was a sum of terms in the separate Ui, and thus its
exponential was a product of such terms. Here, the function itself is a product
of terms in the separate ui, so there is no need to apply the exponential; instead,
we can compute the bny,k explicitly.

We can get the formula for bny,k from (2).
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5.2. Projection from Zn onto An-1

The hook-length formulas (32) and (33) given in Section 6 for walks on Zn can also
be used for the corresponding walks on the lattice An_1 = {(A1 , . . . , An) | £i Ai =
0, Li = Aj(mod 1)}. The steps project to steps with one coordinate n-1 and the
others -1/n, the weights of the defining representation of SLn.

Let \u\ = u1 + • • • + un denote the total weight of the partition u = (u1 , . . . ,u n ) .
If k = tn + |A| - |n| for some integer t, then a walk of length k with steps in

the coordinate directions, starting at n, can end at L = A + (t, t,..., t). Thus,
bnL,k will be equal to the value given for bnL,k by (32). Likewise, if k = tn + \u\,
the multiplicity of the representation with highest weight u in the kth tensor
power for SLn will be the multiplicity of the representation with highest weight
u + (t,t,...,t) in the kth tensor power for GLn, as given by (33).

5.3. The multilinearity technique

In other cases, we get a determinant of a sum or difference of terms, be-
cause the Weyl group is not just Sn but a semidirect product of Sn and some
coordinate changes.

The most natural example is the problem of random walks on Zn with the Weyl
group Bn = Cn and steps in the positive or negative coordinate directions; this
corresponds to the decomposition of tensor powers of the defining representation
Of Sp2n.

Applying (3) for random walks, we get

The representation-theoretic problem is not as interesting here, because the
representation of GLn with weights ||ui

+1 is a complicated virtual representation,
not a natural one.

Again, we write the sum over a as a determinant. Since the coefficient of ut

in (u1/2 + u-1/2)k is ((k/2)+t), this gives us
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We now write the element w as a product of a a in the symmetric group and an
e which negates some of the coordinates ti, thus converting ui to u -1 . We get

Using the multilinearity of the products in the determinant, we can again write
the sum over a as a determinant, with separate terms for ei = 1 and ei = -1 in
each entry, and these terms are again the hyperbolic Bessel functions, so we have
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In the decomposition for Sp2n, we substitute ni = n + 1 - i, and A = m + n as
usual.

The same technique also applies, using (2) instead, for the diagonal walk with
Weyl group Bn = Cn; this corresponds to the spin representation of SO2n+1.

5.4. The splitting technique

The Weyl group Dn does not lend itself directly to the multilinearity technique
which we used for Bn. We need to use a trick, essentially turning the problem
into a sum over Bn.

The random walk on the lattice D*n with steps in the coordinate directions has
two orbits, the points with all integer coordinates and the points with all half-
integer coordinates. The computations are valid if n and A are in the same orbit;
otherwise, the number of walks will obviously be 0. The representation-theory
problem is the decomposition of tensor powers of the defining representation
of SO2n.

The formula for random walks is again (24), but when we write w = ae, only
those e with an even number of sign changes occur. We thus take the sum over
all e, but with an additional factor of (1 + Hei)/2; this factor is 1 when there
are an even number of sign changes and 0 when there are an odd number. We
treat the 1/2 and the (Hei)/2 terms separately, which gives

The first term in this sum carries through just as in (25), using the determinant
technique. The second term, with no factor of ei can be computed by the same
method; instead of the minus sign between the two terms in each entry of the
determinant (26), we get a plus sign.
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A similar argument works for the diagonal walk on D*, corresponding to the
direct sum of the two spin representations of SO2n.

The subgroup technique may also be useful for other nonreflectable random
walks which become reflectable when we use a smaller Weyl group. For example,
the seven-dimensional representation of G2 does not give a reflectable random
walk with Weyl group G2, but it gives a difference of two such walks with Weyl
group A2. Our methods do not work to analyze the resulting walks.

We could use the subgroup technique by considering An-1 as a subgroup of
Bn; this would give us 2n simple determinants of the from (16), corresponding
to the 2n choices of plus or minus signs in the n columns of (26). We could get
similar results for the diagonal walk, or the group Dn.

5.6. The parity technique for the odd-dimensional orthogonal group

The decomposition formulas for SO2n+1 can be used to give decompositions
for O2n+1. Every irreducible representation Um of SO2n+1 corresponds to two

253

5.5. The subgroup technique

Although D* is the weight lattice of SO2n+1, the techniques we used for the
defining representations of Sp2n and SO2n cannot be applied directly to find an
equivalent random walk, because the p is not in the maximal lattice Zn for the
reflectable walk. However, Dn has index 2 in Bn,Bn is generated by Dn and the
reflection in the last coordinate, and p is now in the maximal lattice D*.

Thus the sum (9) over Bn is equal to

where p1 is obtained from p by negating the last coordinate and then applying
w. This is a difference of two reflectable random walks; note that xv here is
1 + E(ui + u-1), so the exponential generating functions fm(x) will be ex times
the corresponding functions for SO2n with the same lattice. With A = m + p as
usual, we have fm(x) = g n y (x ) - gp ' y(x).

We can thus compute the generating function for SO2n+1 as a sum of these two
functions. However, this is a somewhat indirect argument; we wind up computing
a difference of two walks and then adding them together. To actually compute
the formulas, it is easier to work directly from (9), not bothering to convert to
reflectable random walks in Weyl chambers and then back. We can just use the
determinant and multilinearity techniques to get the single determinant,
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From this, we can get the decomposition formula for O2n+1 by adding this to or
subtracting it from (29).

The parity argument also works for the spin representations of O2n+1. For
the spin representation which preserves the determinant, we again have that odd
tensor powers preserve the determinant, while even tensor powers do not. O2n+1

also has another spin representation which takes -1 to the identity; all tensor
powers of this representation take -1 to the identity.

6. Formulas

We now present the formulas obtained by using the techniques of the previous
section, broken down by Weyl group. For each random walk, we list the following
information:

The Weyl group W, and corresponding Lie groups G.
The inequalities defining the Weyl chamber C in Rn.
The set S of steps, in the usual basis e1 , . . . , en of Rn.
The maximal lattice LS,C. The lattices occurring are Zn, An-1 = {(An-1 ..., An) |
Ei Ai = 0, Ai = Ai (mod 1)}, and D* = Zn U (Z + 1)n.
The representation V of G whose tensor powers correspond to the random
walk.
Formulas for bny,k , the number of k-step walks in C from 77 to A, and the
exponential generating function g n y ( x ) - Ek=0

 bny,kxk.
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representations U* of O2n+1, with U+ taking the transformation -1 to the identity
and U- taking it to -1. Since the defining representation of O2n+1 preserves
the determinant, the representation U+ can occur only in even tensor powers,
and U- can occur only in odd tensor powers. Thus we have

The formula for f i ( -x) contains the determinant

Since Im(2x) is even if m is even and odd if m is odd, we can easily convert
this back to a determinant of Im(2x). If we replace -2x by 2x, this changes the
sign of the second term if mi + i + j is even, and of the first term if mi + i + j is
odd. In the resulting matrix, we can then negate column j if j is even, and row
i if mi + i is even, getting
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Formulas for ai,k = bp+m,k, the multiplicity of the irreducible m in the kth
tensor power of the representation V of G corresponding whose weights are
the steps in 5, and the exponential generating function fi(x) = Ek=0

 ap,kxk.
The functions are usually given in terms of the hyperbolic Bessel functions
[17]

6,1. Weyl group An-1, Lie groups GLn, Un, SLn, SUn

Weyl chamber: x1 > x2 > • • • > xn.

Steps: e1,...,en

Lattice: Zn.
Representation: Defining representation of GLn or Un.
Techniques used: Determinant, then use matrix techniques to get the hook-

length formulas [3, 9].
Random-walk formula: bny,k = number of standard skew tableaux of shape

y'\n', where k = |A| - |n|,

The techniques from Section 5 used to produce the formulas.

In some cases, there is another representation of a Lie group which does not
lead directly to a reflectable random walk problem but can be reduced to one;
such problems are listed as "Related representation." In each case, we refer to
the specific techniques, which are listed in the previous section with examples.
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The formula is

Decomposition formula: ai,k = number of standard Young tableaux of shape
H, where k = \n\.

where hij is the hook of the square (i,j) in the Young diagram for m.

Steps: e1 - v,..., en - v, where v = 1/nEn
j=1ej.
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Steps: ±1e1 ± 1e2 • • • ± 1en (2n vectors)
Lattice: D*n.

Techniques used: Determinant.
Random-walk formula:

The representation-theoretic problem is not interesting here.

6.2. Weyl group Bn = Cn, Lie groups Sp2n,SO2n+1, and O2n+1

Weyl chamber: x1 > x2 > • • • > xn > 0.

Steps: ±e1,...,±en

Lattice: Zn.
Representation: Defining representation for Sp2n (see [14] for related results).

256

Related representation: Adjoint representation of GLn or Un.
Decomposition doubly-exponential generating function for direct sum of the

adjoint and trivial representations (see Subsection 5.1):

Decomposition exponential generating function:

Lattice: An-1.
Representation: Denning representation of SLn or SUn.
Techniques used: Project the lattice Zn onto An-1.
Random-walk formula: bny,k as given by (32) for bp+(t,t, . . . ,t),A,k where k =

tn + |A| - |n|.
Decomposition formula: a t+(t, t t),k as given by (33), where k = tn + \m\.

Steps: ±e1,...,±en
Lattice: Zn.

Representation: Direct sum of defining and dual representations for GLn

or Un.
Techniques used: Determinant.
Random-walk exponential generating function:



Techniques used: Determinant, multilinearity.
Random-walk exponential generating function:

Steps: ±e1 . . . ,±en

Lattice: D*n.
Representations: Defining representations of SO2n+1 and O2n+1.
Although the weights and Weyl group are the same in the case above, we do

not have p in the lattice as required by Theorem 2. We can use the Weyl group
Dn to get a reflectable walk, and thus the formula is given in Subsection 6.3.

Steps: ±1e1 ± 1e2 • • • ± 1en

Lattice: D*.
Techniques used: Determinant, multilinearity.
Representation: Spin representational of SO2n+1.
Random-walk formula:

6.3. Weyl group Dn Lie group SO2n, defining representations of SO2n+1 and O2n+1

Weyl chamber: x1 > x2 > • • • > xn, xn-1 > -xn

Related representation: Spin representations of O2n+1.
Additional technique used: Parity.
Decomposition formula: For the spin representation which takes -1 to the

identity, the formula above is valid if the representation n takes -1 to the
identity. For the spin representation which takes -1 to itself, the above formula
is valid if the representation m, takes -1 to itself for k odd, and to the identity
for k even. In the other cases, ai,k = 0.

Decomposition formula:
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Decomposition exponential generating function:



Steps: ±e1,...,±en

Lattice: D*n.
Techniques used: Determinant, multilinearity, splitting.
Representation: Defining representation of SO2n (see [7, 8] for related results).
Random-walk exponential generating function (for Ai = mi (mod 1); clearly 0

otherwise):

(The first column of the other determinant is 0.)

Related representation: Defining representation of SO2n+1 (see [7, 8, 10, 15] for
related results). This requires that 0 be added to the list of steps, since it is a
weight of the representation.

Additional technique used: Subgroup (or work directly from (9), don't use
reflectable random walks, and use determinant and multilinearity techniques).

Decomposition exponential generating function:
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Related representation: Defining representation of O2n+1.
Additional technique used: Parity. (See Subsection 5.6 for the f+ notation.)
Decomposition exponential generating function:

Steps: ±1e1 ±1e2 • • • ± 1en

Lattice: D*n.
Techniques used: Determinant, multilinearity, splitting.
Representation: Sum of the two spin representations of SO2n.

Decomposition exponential generating function (for mi € Z):
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Random-walk formula:

Decomposition formula:
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