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Abstract C. Bonnafé, M. Geck, L. Iancu, and T. Lam have conjectured a description
of Kazhdan-Lusztig cells in unequal parameter Hecke algebras of type B which is
based on domino tableaux of arbitrary rank. In the integer case, this generalizes the
work of D. Garfinkle. We adapt her methods and construct a family of operators
which generate the equivalence classes on pairs of arbitrary rank domino tableaux
described in the above conjecture.
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1 Introduction

In [6], D. Garfinkle classified the primitive spectrum of the universal enveloping al-
gebra for a complex semisimple Lie algebra in types B and C. By using annihilators
of highest weight modules, this problem is reduced to studying equivalence classes
in the corresponding Weyl group Wn. The existence of a Robinson-Schensted bijec-
tion between elements of Wn and same shape pairs of standard domino tableaux with
n dominos [4] turns this into an essentially combinatorial problem. In fact, Garfin-
kle’s classification shows that two elements in Wn are equivalent iff their left domino
tableaux are related by moving through a set of open cycles, a certain combinatorial
operation. The key step of this classification was achieved by studying the action of
the wall-crossing operators arising from the general τ -invariant, as defined in [21],
which were shown to be generators for both equivalences.

When interpreted in terms of cells of the equal parameter Hecke algebra of type B ,
the above work takes on a new meaning.
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In the 1980s, G. Lusztig extended the cell theory to Hecke algebras with unequal
parameters; see [12] for an exposition. For Weyl groups of type B , cell theory then
depends on an additional parameter s, which reduces to the equal parameter case
when s = 1; Garfinkle’s work classified cells in exactly this latter setting. As observed
in [20], Garfinkle’s bijection also admits an extension

Gr : Wn → SDTr(n) × SDTr(n)

to a bijection between Wn and same shape pairs of standard domino tableaux of
rank r . It is reasonable to hope that the above two parameters can be linked and that
a similar classification of cells is possible in this more general case. In fact:

Conjecture ([3]) When s is a positive integer, two elements of Wn lie in the same
left cell if and only if their left domino tableaux of rank s − 1 are related by moving
through a set of open cycles.

This is of course true when s = 1 and has been verified in the asymptotic case
s ≥ n, when the bijection Gs−1 degenerates to the generalized Robinson-Schensted
correspondence of [18], see [2]. Among finite Coxeter groups, cells in unequal pa-
rameter Hecke algebras have been classified in the dihedral groups and type F4 by
Lusztig [12] and Geck [7]. Only the problem of their classification in type B remains.

We will say that two elements of the hyperoctahedral group Wn are in the same
irreducible combinatorial left cell of rank r if they share the same left domino tableau
under the Robinson-Schensted map Gr , and in the same reducible combinatorial left
cell of rank r if their rank r left domino tableaux are related by moving through an
open cycle. The previous conjecture can be restated as:

Conjecture ([3]) When s is a positive integer, left cells in Wn coincide with reducible
combinatorial left cells of rank s − 1.

Inspired by Garfinkle’s approach in the equal parameter case, the main goal of this
paper is to construct a set of generators for the reducible combinatorial left cells in
arbitrary rank which draws on the notion of the generalized τ -invariant used in the
equal parameter case. Such a set Λr+1 is constructed in Section 3. The main theorem
then can be stated as:

Theorem 3.9 The family of operators Λr+1 generates the reducible combinatorial
left cells of rank r . More precisely, given w and v ∈ Wn whose rank r left domino
tableaux differ only by moving through a set of non-core open cycles, there is a se-
quence of operators in Λr+1 sending w to v.

This result falls into a family of similar theorems on generating sets for equiv-
alence classes of standard tableaux, Garfinkle’s work not withstanding. In type A,
a family of operators generating a similar equivalence for the symmetric group on
standard Young tableaux appears in [11] and is known as the set of Knuth relations.
Domino tableaux whose shapes are also partitions of nilpotent orbits in types B , C, or
D correspond to the so-called orbital varieties. Their classification has been carried
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out by W. M. McGovern in [13] by relying on a similar set of generators found in [9],
see also [14]. The work of C. Bonnafé and L. Iancu in the asymptotic parameter case
relies on finding a generating set for cells defined in terms of standard bitableaux.
Finally, very recently M. Taskin has independently found another set of generators in
the arbitrary rank case, see [19].

Combinatorial cells in the unequal parameter Hecke algebras in type B have also
appeared in the work of I. Gordon and M. Martino, where it is shown that nilpotent
points of the Calogero-Moser space correspond to the partitions arising from arbitrary
rank domino tableaux [8].

This paper is organized as follows. In Section 2, we define the necessary objects
and catalogue basic results. Section 3 defines the family of operators Λr+1 and Sec-
tion 4, in addition to showing that reducible combinatorial cells are stable under their
action, describes this action on pairs of domino tableaux. In Section 5, we verify the
main result, and leave the proof of a few crucial lemmas to Sections 6 and 7.

2 Definitions and preliminaries

2.1 Robinson-Schensted algorithms

The hyperoctahedral group Wn of rank n is the group of permutations of the set
{±1,±2, . . . ,±n} which commute with the involution i �→ −i. It is the Weyl group
of type Bn. We will write w ∈ Wn in one-line notation as

w = (w(1) w(2) . . .w(n)).

A Young diagram is a finite left-justified array of squares arranged with non-
increasing row lengths. We will denote the square in row i and column j of the
diagram by Si,j so that S1,1 is the uppermost left square in the Young diagram below:

Definition 2.1 Let r ∈ N and λ be a partition of a positive integer m. A domino
tableau of rank r and shape λ is a Young diagram of shape λ whose squares are
labeled by integers in such a way that 0 labels Sij iff i + j < r + 2, each element of
some set M labels exactly two adjacent squares, and all labels increase weakly along
both rows and columns. A domino tableau is standard iff M = {1, . . . , n} for some n.
We will write SDTr(n) for the set of standard domino tableaux with n dominos. The
set of squares labeled by 0 will be called the core of T .

Following [4] and [20], we describe the Robinson-Schensted bijections

Gr : Wn → SDTr(n) × SDTr(n)

between elements of Wn and same-shape pairs of rank r standard domino tableaux.
The algorithm is based on an insertion map α which, given an entry w(j) in the one-
line notation for w ∈ Wn, inserts a domino with label w(j) into a domino tableau.
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This insertion map is similar to the usual Robinson-Schensted insertion map and
is precisely defined in [4](1.2.5). To construct the left tableau, start with T1(0), the
only tableau in SDTr(0). Define T1(1) = α(w(1), T1(0)) and continue inductively by
letting

T1(k + 1) = α
(
w(k + 1), T1(k)

)
.

The left domino tableau T1(n) will be standard and of rank r . The right tableau keeps
track of the sequence of shapes of the left tableaux; we define T2(n) to be the unique
tableau so that T2(k) ∈ SDTr(k) has the same shape as T1(k) for all k ≤ n. The
Robinson-Schensted map is then defined by Gr(w) = (T1(n), T2(n)). We will also
often use the notation (T1(n − 1), T2(n − 1)) = (T1(n), T2(n))′.

2.2 Cycles and extended cycles

We briefly recall the definition of a cycle in a domino tableau as well as a number of
related notions which we will use later.

For a standard domino tableau T of arbitrary rank r , we will say the square Sij is
fixed when i + j has the opposite parity as r , otherwise, we will call it variable. If Sij

is variable and i is odd, we will say Sij is of type X; if i is even, we will say Sij is of
type W . We will write D(k,T ) for the domino labeled by the positive integer k in T

and supp D(k,T ) will denote its underlying squares. Write label Sij for the label of
the square Sij in T . We extend this notion slightly by letting label Sij = 0 if either i

or j is less than or equal to zero, and label Sij = ∞ if i and j are positive but Sij is
not a square in T .

Definition 2.2 Suppose that supp D(k,T ) = {Sij , Si+1,j } or {Si,j−1, Sij } and the
square Sij is fixed. Define D′(k) to be a domino labeled by the integer k with
supp D′(k, T ) equal to

1. {Sij , Si−1,j } if k < label Si−1,j+1
2. {Sij , Si,j+1} if k > label Si−1,j+1

Alternately, suppose that supp D(k,T ) = {Sij , Si−1,j } or {Si,j+1, Sij } and the square
Sij is fixed. Define supp D′(k, T ) to be

1. {Sij , Si,j−1} if k < label Si+1,j−1
2. {Sij , Si+1,j } if k > label Si+1,j−1

Definition 2.3 The cycle c = c(k, T ) through k in a standard domino tableau T is a
union of labels of T defined by the condition that l ∈ c if either

1. l = k,
2. supp D(l, T ) ∩ supp D′(m,T ) 
= ∅ for some m ∈ c, or
3. supp D′(l, T ) ∩ supp D(m,T ) 
= ∅ for some m ∈ c.

We will identify the labels contained in a cycle with their underlying dominos.

Starting with a standard domino tableau T of rank r containing a cycle c, it
is possible to define a new domino tableau MT (T , c) by replacing every domino



J Algebr Comb (2009) 29: 509–535 513

D(l, T ) ∈ c by the shifted domino D′(l, T ) defined above. This operation changes
the labels of the variable squares in c while preserving the labels of all of the fixed
squares of T . In fact, if we pick a label l of a square in T , the definition of a cycle
together with [4](1.5.27) imply that moving through c(l, T ) is in some sense the min-
imal transformation of T which changes the label of the variable square of D(l, T ),
maintains the labels of all of the fixed squares of T , and results in a standard domino
tableau.

The shape of MT (T , c) either equals the shape of T , or one square will be re-
moved (or added to its core) and one will be added. In the former case, the cycle c is
called closed; otherwise, it is called open. If moving through c adds a square to the
core, we will call c a core open cycle; the other open cycles will be called non-core.
For an open cycle c of a tableau T , we will write Sb(c) for the square that has been
removed or added to the core by moving through c. Similarly, we will write Sf (c)

for the square that is added to the shape of T . Note that Sb(c) and Sf (c) are always
variable squares.

Definition 2.4 A variable square Sij satisfying the conditions that

1. neither Si,j+1 nor Si+1,j lie in T , and
2. either

a) both Si−1,j and Si,j−1 lie in T , or
b) either Si−1,j lies in T and j = 1 or Si,j−1 lies in T and i = 1,

will be called a hole if it is of type W and a corner if it is of type X. It will be called
full if Sij ∈ T and empty otherwise.

Let U be a set of cycles in T . Because the order in which one moves through a set
of cycles is immaterial by [4](1.5.29), we can unambiguously write MT (T ,U) for
the tableau obtained by moving through all of the cycles in the set U .

Moving through a cycle in a pair of same-shape tableaux is somewhat problem-
atic, as it may result in a pair of tableaux which is not same-shape. We require the
following definition.

Definition 2.5 Consider (T1, T2) a pair of same-shape domino tableaux, k a label in
T1, and c the cycle in T1 through k. The extended cycle c̃ of k in T1 relative to T2
is a union of cycles in T1 which contains c. Further, the union of two cycles c1 ∪ c2
lies in c̃ if either one is contained in c̃ and, for some cycle d in T2, Sb(d) coincides
with a square of c1 and Sf (d) coincides with a square of MT (T1, c2). The symmetric
notion of an extended cycle in T2 relative to T1 is defined in the natural way.

For an extended cycle c̃ in T2 relative to T1, write c̃ = c1 ∪ . . . ∪ cm and let
d1, . . . , dm be cycles in T1 such that Sb(ci) = Sb(di) for all i, Sf (dm) = Sf (c1), and
Sf (di) = Sf (ci+1) for 1 ≤ i < m. The union d̃ = d1 ∪ · · · ∪ dm is an extended cycle
in T1 relative to T2 called the extended cycle corresponding to c̃. Symmetrically, c̃ is
the extended cycle corresponding to d̃ .

We can now define a moving through operation for a pair of same-shape domino
tableaux. Write b for an ordered pair (c̃, d̃) of extended cycles in (T1, T2) that corre-
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spond to each other. Define MT ((T1, T2), b) to equal

(MT (T1, c̃),MT (T2, d̃)).

It is clear that this operation produces another pair of same-shape domino tableaux.
Speaking loosely, we will often refer to this operation as moving through either of
the extended cycles c̃ or d̃. Note that if the cycle c is closed, then c̃ = c and moving
through a pair of tableaux boils down to the operation (MT (T1, c), T2).

Definition 2.6 We will say that a set of squares in a domino tableau is boxed iff it is
entirely contained in a set of squares of the form

{Sij , Si+1,j , Si,j+1, Si+1,j+1}
where Sij must be of type X. A set will be called unboxed if it is not boxed.

Boxing is well-behaved with respect to cycles. If c is a cycle in T , then all of
its underlying dominos are either boxed or unboxed. Furthermore, moving through a
domino changes its boxing, and consequently, the boxing of all the dominos in the
cycle containing it. The same holds for all of the dominos in an extended cycle of a
same-shape tableau pair.

We will say that two sets of squares are adjacent in a tableau T if there are two
squares, one in each set, which share a common side. One set of squares in T will be
said to be below another if all of its squares lie in rows strictly below the rows of the
squares of the other set. The notion of above is defined similarly. We will often call
the squares underlying a domino its position, and say that a position is extremal if its
removal from a Young diagram results in another Young diagram corresponding to a
partition of the same rank.

2.3 Combinatorial cells

Definition 2.7 Consider w,v ∈ Wn of type Bn and fix a non-negative integer r letting
Gr(w) = (T1, T2) and Gr(v) = (T̃1, T̃2). We will say that w and v are

1. in the same irreducible combinatorial left cell of rank r if T2 = T̃2, and
2. in the same reducible combinatorial left cell of rank r if there is a set U of non-

core open cycles in T2 such that T̃2 = MT (T2,U).

We will say that w and v are in the same irreducible and reducible combinatorial
right cells iff their inverses lie in the same irreducible and reducible combinatorial
left cells, respectively.

When r ≥ n − 1, the situation is somewhat simpler; there are no non-core open
cycles implying that combinatorial left cells are determined simply by right tableaux.
Furthermore, by the main result of [15], for these values of r all combinatorial cells
are actually independent of r .

Reducible combinatorial left cells of rank r can also be described in terms of right
tableaux of ranks r and r +1. A similar characterization holds for combinatorial right
cells.
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Theorem 2.8 ([16]) Reducible combinatorial left cells of rank r in the Weyl group of
type Bn are generated by the equivalence relations of having the same right tableau
in either rank r or rank r + 1.

In what follows we will focus on reducible combinatorial right cells. Since our
generalizations of the Robinson-Schensted algorithm Gr behave well with respect to
inverses by merely changing the order of the two tableaux, all the statements can be
easily modified to apply to reducible combinatorial left cells as well.

3 Knuth relations

The purpose of this section is to define the operators on the hyperoctahedral group
Wn which generate the reducible combinatorial right cells of rank r . We first recount
the situation in type A for the symmetric group Sn.

3.1 Type A

Writing the elements of Sn in one-line notation, the Knuth relations on Sn are the
transformations

(w(1) w(2) . . .w(j − 1) w(j + 1) w(j) . . .w(n))

which transpose the j th and (j + 1)st entries of w ∈ Sn whenever

(i) j ≥ 2 and w(j − 1) lies between w(j) and w(j + 1), or
(ii) j < n − 1 and w(j + 2) lies between w(j) and w(j + 1).

Every Knuth relation preserves the Robinson-Schensted left tableau T1(w) of w.
However, even more can be said:

Theorem 3.1 ([11]) Knuth relations generate the combinatorial left cells in Sn. More
precisely, given w and v with T1(w) = T1(v), there is a sequence of Knuth relations
sending w to v.

Aiming to adapt this theorem to the hyperoctahedral groups, we begin by rephras-
ing the Knuth relations first in terms of the length function on Sn, and then again in
terms of the τ -invariant.

The group Sn is a Weyl group of a complex semisimple Lie algebra g of type An−1
with Cartan subalgebra h. Let Πn = {α1, α2, . . . , αn−1} be a set of simple roots for a
choice of positive roots in the root system �(g,h) and write sα for the simple reflec-
tion corresponding to α ∈ Πn. We view Sn as the group generated by the above sim-
ple reflections and let � : Sn → Z be the corresponding length function on Sn. If we
identify the reflection sαj

with the transposition interchanging the j th and (j + 1)st
entries of the permutation corresponding to w ∈ Sn, then the Knuth relations on Sn

are the transformations taking w to wsαj
. Noting that �(wsαj

) < �(w) exactly when
w(j) > w(j + 1), the domain for the Knuth relations is the set of w ∈ Sn satisfying
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(i) �(wsαi
) < �(w) < �(wsαj

) < �(wsαj
sαi

), or
(ii) �(wsαi

) > �(w) > �(wsαj
) > �(wsαj

sαi
)

for some αi ∈ Πn. This condition is satisfied only when αi and αj are adjacent simple
roots, that is, when i = j ± 1.

Armed with this restatement of the Knuth conditions, following [21] we define the
τ -invariant for Sn and a related family of operators.

Definition 3.2 Write W = Sn. For w ∈ W , let τ(w) = {α ∈ Πn | �(wsα) < �(w)}.
Given simple roots α and β in Πn, let

Dαβ(W) = {w ∈ W | α /∈ τ(w) and β ∈ τ(w)}.
When α and β are adjacent roots, define Tαβ : Dαβ(W) → Dβα(W) by

Tαβ(w) = {wsα,wsβ} ∩ Dβα(W).

When defined, the operators Tαβ are single-valued and preserve the Robinson-
Schensted left tableau T1(w) of w. These so-called wall-crossing operators also ap-
pear as the “star operator” in [10]. The following is a direct consequence of the result
on Knuth relations:

Corollary 3.3 The family of operators Tαβ : Dαβ(W) → Dβα(W) generates the
combinatorial left cells in Sn. More precisely, given w and v with T1(w) = T1(v),
there is a sequence of Tαβ operators sending w to v.

That combinatorial left cells for Sn coincide with Kazhdan-Lusztig left cells is
shown in [10] using A. Joseph and D. Vogan’s results on the primitive spectrum
of semisimple Lie algebras. A direct proof of this fact using entirely combinatorial
methods has subsequently appeared, see [1].

3.2 Type B

In order to define similar relations for the hyperoctahedral groups, we mimic the final
construction in type A. The group Wn is a Weyl group of a complex semisimple Lie
algebra g of type Bn with Cartan subalgebra h. Let {ε1, . . . εn} be a basis for h∗ such
that if we define α′

1 = ε1 and αi = εi − εi−1, then

Πn = {α′
1, α2, . . . , αn}

is the set of simple roots for some choice of positive roots �+(g,h). While this choice
of simple roots is not standard, we adopt it to obtain somewhat cleaner statements and
reconcile our work with [6].

We modify Πn slightly to include certain non-simple roots. For i ≤ n, let α′
i =

α′
1 + α2 + . . . + αi and when k is a non-negative integer write

Πk
n = {α′

1, α
′
2, . . . α

′
min(n,k), α2, . . . αn}.
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Further, write si for the simple reflection sαi+1 and ti for the reflection sα′
i
. We realize

Wn as a set of signed permutations on n letters by identifying si with the transposition
(1 2 . . . i + 1 i . . . n) and ti with the element (1 2 . . . − i . . . n).

The generating set for reducible combinatorial right cells will be drawn out of the
following three types of operators:

Definition 3.4 For w ∈ Wn, and a non-negative integer k, let

τ k(w) = {α ∈ Πk
n | �(wsα) < �(w)}.

Given roots α and β in Πk
n define Dk

αβ(Wn) = {w | α /∈ τ k(w) and β ∈ τ k(w)}. The

operator T k
αβ : Dk

αβ(Wn) → Dk
βα(Wn) is defined by

T k
αβ(w) = {wsα,wsβ} ∩ Dk

βα(Wn).

The above definitions add the parameter k to the standard notions of root system
Πn, τ -invariant τ(w), domains Dαβ , and the wall-crossing operators Tαβ as defined
explicitly, say in [5]. Our definitions coincide with these standard ones when the value
of this parameter is k = 1.

When the set {α,β} contains roots of unequal length, the operator T k
αβ may be two-

valued. The next definitions are an attempt to remedy this by splitting this operator
into two new ones: T k

IN and T k
SC . Henceforth, we will reserve the notation Tαβ to

mean T 0
αβ and Dαβ to mean D0

αβ , in which case the operators are single-valued.

Definition 3.5 We will say w ∈ Dk
IN(Wn) if for some {δ,β} = {αk+1, α

′
k}, we have

w ∈ Dk
δβ(Wn) and wsk ∈ Dk

βδ(Wn).

Define T k
IN for w ∈ Dk

IN(Wn) by T k
IN(w) = wsk.

Definition 3.6 We will say w ∈ Dk
SC(Wn) if for some choice of {δi, βi} = {αi+1, α

′
i}

for every i ≤ k, we have

w ∈ Dk
δiβi

(Wn) and wti ∈ Dk
βiδi

(Wn) ∀i ≤ k.

Define T k
SC for w ∈ Dk

SC(Wn) by T k
SC(w) = wt1.

To phrase the above in more digestible terms, we note that in Wn the length func-
tion satisfies �(wsj ) < �(w) iff w(j) > w(j + 1), and �(wtj ) < �(w) iff w(j) < 0.
Armed with this characterization, the domains and actions for the three types of op-
erators which we will be interested in can be described more succinctly.
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Tαβ : w lies in Dαβ(W) for {α,β} = {αj+1, αj+2} whenever w(j + 1) is
either greater than or smaller than both w(j) and w(j + 2); Tαβ then
interchanges the smallest and largest entries among w(j),w(j + 1),

and w(j + 2).

T k
IN : w ∈ Dk

IN(W) iff w(k) and w(k + 1) are of opposite sign. The op-
erator T k

IN interchanges the kth and k + 1st entries of w.
T k

SC : w ∈ Dk
SC(W) iff |w(1)| > |w(2)| > . . . > |w(k+1)|. The operator

T k
SC changes the sign of w(1).

Definition 3.7 For an integer k, we define a set of operators

Λk = {Tαβ | α,β ∈ Π0
n } ∪ {T i

IN | i ≤ k} ∪ {T k
SC}.

This is the sought-after set of generators for reducible combinatorial right cells of
arbitrary rank. The following are our two main results:

Theorem 3.8 The operators in Λr+1 preserve reducible combinatorial left cells of
rank r . If S ∈ Λr+1, and w ∈ Wn is in the domain of S, then the Robinson-Schensted
left domino tableaux T1(w) and T1(Sw) of rank r differ only by moving through a set
of non-core open cycles in T1(w).

Theorem 3.9 The family of operators Λr+1 generates the reducible combinatorial
left cells of rank r . More precisely, given w and v ∈ Wn whose Robinson-Schensted
left domino tableaux T1(w) and T1(v) of rank r differ only by moving through a set
of non-core open cycles, there is a sequence of operators in Λr+1 sending w to v.

These results have previously been obtained in two special cases. In her work on
the primitive spectrum of the universal enveloping algebras in types B and C, Devra
Garfinkle constructed a generating set for the reducible combinatorial cells of rank
zero [6]. Additionally, C. Bonnafé and L. Iancu obtained a generating set for combi-
natorial left cells in the so-called asymptotic case when r ≥ n− 1. The generating set
Λr+1 proposed above for domino tableaux of arbitrary rank generalizes both of these
results.

Theorem 3.10 (D. Garfinkle) The reducible combinatorial left cells of rank zero are
generated by the family of operators T 1

αβ where α and β are adjacent simple roots
in Πn.

At first glance, the set Λ1 is not exactly Garfinkle’s generating set. The latter
contains multi-valued operators T 1

α′
1α2

and T 1
α2α

′
1
. However, we note that the combined

action and domains of T 1
α′

1α2
and T 1

α2α
′
1

agree precisely with those of T 1
SC and T 1

IN ∈
Λ1. The operators T 1

SC and T 1
IN merely split up Garfinkle’s original multi-valued

operators.

Theorem 3.11 (C. Bonnafé and L. Iancu) When the rank r ≥ n − 1, the reducible
and irreducible combinatorial left cells coincide. They are generated by the family of
operators Λr+1 = Λn.
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We note that in the asymptotic case, the operator T r+1
SC is not defined, so that Λr+1

consists entirely of the Tαβ and T k
IN operators, as exhibited in [2].

It was observed in [17] that combinatorial right cells are in general not well-
behaved with increasing rank. This phenomenon is readily explained by examining
the composition of Λr+1 more closely. While increasing r expands the family of TIN

operators contained in Λr+1, it also diminishes the domain of TSC . The complicated
behavior of right cells as r increases is a manifestation of this interplay.

Recent work of M. Taskin finds a family of relations on Wn which generates the
irreducible combinatorial left cells of rank r . Using the results of [16] which show
that reducible combinatorial left cells are common refinements of irreducible ones, it
is then possible to describe a set of generators of the reducible combinatorial left cells
of rank r based on Taskin’s work. This set; however, does not coincide with Λr+1, but
can be shown to be equivalent. It would be desirable to use the methods of the current
paper to produce results on irreducible cells; however, it seems to the author that the
moving-through operation which changes the shape of the underlying tableau is very
intricately intertwined with the method of proof and the necessary unentanglement
does not appear to be an easy task.

4 Stability under Λr+1

The goal of this section is to prove Theorem 3.8, showing that reducible right cells
in rank r are invariant under the operators in Λr+1. We will rely on a decomposition
of Wn, which we describe presently. Let Wm be the subgroup of Wn generated by the
reflections {s1, . . . , sm−1, t1} and define Xn

m to be the set of x ∈ Wn which satisfy

0 < x(1) < x(2) < . . . < x(m).

Then Xn
m is a cross-section of Wn/Wm and we can write every w ∈ Wn as a product

w = xw′ with x ∈ Xn
m and w′ ∈ Wm. The following appears in [3].

Proposition 4.1 If x ∈ Xn
m and w′, v′ ∈ Wm are in the same irreducible combinator-

ial left cell of rank r , then xw′ and xv′ ∈ Wn are in the same irreducible combinato-
rial left cell of rank r .

Corollary 4.2 If x ∈ Xn
m and w′, v′ ∈ Wm are in the same reducible combinatorial

left cell of rank r , then xw′ and xv′ ∈ Wn are in the same reducible combinatorial
left cell of rank r .

Proof The main result of [16] shows that reducible combinatorial left cells of rank
r are the least common refinements of irreducible combinatorial left cells of ranks r

and r + 1. Hence the corollary follows directly from the above proposition. �

4.1 The operator TSC

We first examine the family of operators T k
SC which, under appropriate circumstances,

change the sign of the first entry of w.
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Proposition 4.3 The operator T r+1
SC preserves the irreducible and, consequently, the

reducible combinatorial right cells of rank r in Wr+2.

Proof Consider w ∈ Dr+1
SC (Wr+2) so that

|w(1)| > |w(2)| > . . . |w(r + 2)|.
Write v = w−1 and u = (T r+1

SC (w))−1. We will show that their right tableaux T2(v)

and T2(u) agree. Note that the condition on w implies |v(1)| > |v(2)| > . . . |v(r + 2)|
and the fact that T r+1

SC only changes the sign of w(1) forces

1. v(i) = u(i) for i ≤ r + 1, and
2. u(r + 2) = −v(r + 2) ∈ {±1}.
If we write the positive entries in v as a1 > . . . > ap and the negative ones as −b1 <

. . . < −bq , then the left tableau of v before the insertion of v(r + 2) must have the
form:

This is also the left tableau of u before the insertion of u(r + 2) and we point out that
the corresponding right tableaux for both u and v are the same. If a1 > b1, then the
insertion of v(r + 2) and u(r + 2) into the above tableau yields either:

or

In either case, the same domino is added to their shared right tableau and T2(v) =
T2(u). The proof is similar when a1 < b1. �

Corollary 4.4 When n ≥ r + 2, the operator T r+1
SC preserves the irreducible and,

consequently, the reducible, combinatorial left cells of rank r in Wn.

Proof For an element w of the set Dr+1
SC (Wn), write w = xw′ ∈ Xr+2

n Wr+2. Then
w′ ∈ Dr+1

SC (Wr+2) and by Proposition 4.3, T r+1
SC (w′) and w′ share the same irre-

ducible combinatorial left cell of rank r . Since T r+1
SC (w) = xT r+1

SC (w′) ∈ Xr+2
n Wr+2,

Proposition 4.1 and Corollary 4.2 imply the same is true of T r+1
SC (w) and w. �

Our final aim is to describe the action of T r+1
SC on the right tableau of w. This is

more or less captured in the proof of Proposition 4.3, but we will attempt to be more
precise. Consider w ∈ Dr+1

SC (Wn), write T2 for the right tableau T2(w) of rank r , and
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define T2(r +2) to be the subtableau of T2 which contains only dominos whose labels
are less than or equal to r + 2. Because w ∈ Dr+1

SC (Wn), T2(r + 2) contains exactly
the dominos adjacent to the core of T2 as well as the unique domino of T2 which
shares its long edge with the long edge of one of the dominos adjacent to the core.
Furthermore, T2(r + 2) must have the form

or

where α1 = r +2, noting that p may equal zero. By the proof of Proposition 4.3, T r+1
SC

acts on T2(r + 2) by interchanging one of its possible two forms of the same shape
with the other. It is easy to see that the remaining dominos of the tableaux T2 and
the right tableau T2(T

r+1
SC (w)) are the same, since both keep track of the subsequent

insertions into the left tableau T1(w)(r + 2) = T1(T
k+1
SC (w))(r + 2).

Example 4.5 Consider w = (4,−3,−2,1) which lies in D3
SC(W4). Then T 3

SC(w) =
(−4,−3,−2,1) and

T2(w) = and T2(T
3
SC(w)) =

On a final note, we observe that this description of the action of T r+1
SC reproduces the

action of a portion of the multi-valued Tα′
1α2

operator detailed in [5](2.3.4) for the
rank zero case.

4.2 The operators Tαβ

Given adjacent simple roots {α,β} = {αj+1, αj+2}, an operator Tαβ interchanges the
smallest and largest entries among w(j), w(j + 1), and w(j + 2). The following is
a consequence of Proposition 3.10 in [3].

Proposition 4.6 The operators Tαβ preserve the irreducible and, consequently, the
reducible combinatorial right cells of rank r in Wn.

What is still required is a description of their action on right tableaux. We begin
with an explicit description of their domains. Recall that αj+1 ∈ τ(w) iff �(wsαj+1) <

�(w) which occurs iff w(j) > w(j + 1). This condition is easily read off from the
right tableau T2(w). We will say that k lies below l in a domino tableau iff every
row containing a square of the domino labeled k lies below every row of the domino
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labeled l. Then αj+1 ∈ τ(w) iff j +1 lies below j in T2(w). Unraveling the definition
of Dαβ(W), we find that when {α,β} = {αj+1, αj+2}, w lies in the domain of Tαβ iff
in the tableau TR(w) either:

1. j + 1 lies below j and j + 2 does not lie below j + 1, or
2. j + 1 does not lie below j and j + 2 lies below j + 1.

Two cases are necessary to describe the action of Tαβ .
Case 1. In the following, let k = j +1 and l = j +2. If either one of the following

four configurations of dominos appears in T2(w):

F1(j) = and F̃1(j) =

F2(j) = and F̃2(j) =

then the action Tαβ on the right tableau of w swaps Fi(j) and F̃i(j) within TR(w).
Case 2. If none of the above four configurations appear in T2(w) and w lies in

the domain Dαβ(Wn), then Tαβ acts by swapping either the dominos labeled j and
j + 1 or j + 1 and j + 2.

The proof that this description of Tαβ on domino tableau accurately depicts the
action of Tαβ defined on Wn is not difficult. It appears as [5](2.1.19) in rank zero, and
follows almost identically for higher rank tableaux.

4.3 The operators T k
IN

The operator T k
IN interchanges the entries w(k) and w(k + 1) in w whenever they are

of opposite signs. The following is again a consequence of Proposition 3.10 in [3].

Proposition 4.7 When k ≤ r , the operator T k
IN preserves the irreducible and, conse-

quently, the reducible combinatorial left cells of rank r in Wn.

Slightly more is true:

Proposition 4.8 The operator T r+1
IN preserves the reducible combinatorial left cells

of rank r in Wn.

Proof By Proposition 4.7, the operator T r+1
IN preserves the irreducible combinatorial

left cells of rank r + 1 in Wn. Since reducible combinatorial left cells of rank r are
the least common refinements of irreducible cells in ranks r and r + 1, the result
follows. �

Next, we describe the action of T k
IN on the left and right tableaux T1(w) and T2(w).

Recall that α′
k ∈ τ(w) iff �(wtk) < �(w) which occurs iff w(k) < 0. As long as k ≤

r + 1, this occurs iff the domino with label k in T2(w) is vertical. Recalling that
αk+1 ∈ τ(w) iff k + 1 lies below k in T2(w), we can describe the domain of T k

IN as
follows.
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Definition 4.9 We will call a tableau T of rank r sparse if there is a square of the
form Sm,r+3−m which is empty in T .

Case 1. If the tableau T2(w)(r + 2) is sparse, then w ∈ Sk
IN for all k ≤ r + 1 iff

the dominos with labels k and k + 1 in T2(w) are of opposite orientations. In this
setting, since T k

IN swaps w(k) and w(k + 1) in w whenever they are of opposite sign,
its action merely reverses the order in which the kth and k + 1st dominos are inserted
into the left tableau. Since T2(w)(r + 2) is sparse, these insertions do not interact
with each other. Thus on the shape-tracking tableau T2(w), T k

IN merely swaps the
dominos with labels k and k + 1, while acting trivially on T1(w).

Case 2. If the tableau T2(w)(r +2) is not sparse, then k = r +1 and the insertions
of w(k) and w(k + 1) into the left tableau interact with each other.

It is easy to see that there are four possible configurations of dominos with labels
k = r + 1 and l = r + 2 within T2(w) when w ∈ Sr+1

IN (W):

E0(j) = and Ẽ0(j) =

E1(j) = and Ẽ1(j) =

Proposition 4.10 Consider w ∈ Dr+1
IN (W) and let v = T r+1

IN (w). If Gr(w) =
(T1, T2), then the tableau pair Gr(v) = (T̃1, T̃2) admits the following description:

1. If T2(r + 2) is sparse, then T1 = T̃1 and T̃2 is obtained by swapping the dominos
with labels r + 1 and r + 2 in the tableau T2.

2. If T2(r + 2) is not sparse, then the description of the action depends on the exact
configuration of the dominos with labels r + 1 and r + 2 in T2:
(a) If the configuration E0(r +1) or E1(r +1) appears in T2, write it as Ei(r +1)

and let T̄2 = (T2 \Ei(r+1))∪E1−i (r+1). Let c be the extended cycle through
r + 2 in T̄2 relative to T1. Then

(T̃1, T̃2) = MT ((T1, T̄2), c).

(b) If Ẽ0(r + 1) or Ẽ1(r + 1) appears in T2, let c be the extended cycle through
r + 2 in T2 relative to T1 and define (T̄1, T̄2) = MT ((T1, T2), c). Note that
T̄2 must contain one of the configurations E0(k) or E1(k), which we label
Ei(r + 1). Then

(T̃1, T̃2) = (
T̄1, (T̄2 \ Ei(r + 1)) ∪ E1−i (r + 1)

)
.

Proof The first case has already been considered above. In the special situation when
n = r + 2, the second case follows by inspection. We mimic the proof of [5](2.3.8) to
verify the second case in general. So consider w ∈ Dr+1

IN (W) assuming that T2(r + 2)

is not sparse. By symmetry and the fact that T r+1
IN is an involution, it is sufficient

to consider only w for which also |w(r + 1)| < |w(r + 2)|, w(r + 1) > 0 and
w(r + 2) < 0. For such a w, let w̄ = vtr+1. Write Gr(w̄) = (T̄1, T̄2). Then
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1. Ẽ1(r + 1) ⊂ T2, E0(r + 1) ⊂ T̃2, and E1(r + 1) ⊂ T̄2,

2. T̄2 = (T̃2 \ E0(r + 1)) ∪ E1(r + 1) and T̄1 = T̃1,

3. (T̄1, T̄2) = MT ((T1, T2), c) where c is the extended cycle through r + 2 in T2

relative to T1.

Once these are verified, the proposition follows. The last two parts imply that T̃1 = T̄1,
and the latter equals MT (T1, d) where d is the extended cycle in T1 corresponding
to c, as desired. Meanwhile, the second part then implies that T̃2 will be as specified
by the proposition.

Statements (1) and (2) follow easily from the definition of domino insertion, while
the proof of (3) is identical to the rank zero case. That the extended cycle through
r + 2 in T2 consists only of non-core cycles follows from the remark at the end of
this section, and then, for non-core cycles, the description detailing the relationship
between moving through and domino insertion of [5](2.3.2) carries without modifi-
cation to the arbitrary rank case. �

Example 4.11 Let w = (4,−3,−2,1) ∈ D3
IN (W4). Then T 3

IN (w) = (4,−3,1,−2)

and the corresponding tableau pairs are:

G2(w) = and

G2(T
3
IN (w)) =

The extended cycle through r + 2 = 4 in T2(w) consists of the open cycle {4} in
T2(w) and the corresponding open cycle {4} in T1(w).

Remark 4.12 In the case when T2(r +2), is not sparse it is not immediately clear that
the operation on tableaux described in Proposition 4.10 actually produces a domino
tableau of rank r . That it does follows from the fact that the extended cycle through
which the tableaux are being moved through does not contain any core open cycles.
We verify this presently. Suppose that w ∈ T r+1

IN , so that w(r + 1) and w(r + 2) are
of opposite sign.

Case 1. Suppose either Ẽ0(r + 1) or Ẽ1(r + 1) appears in T2, and without loss
of generality, assume that it is Ẽ0(r + 1). The domino with label r + 2 is adjacent to
r + 1 as well as to another domino adjacent to the core of T2, which we label l. For
r +2 to be in an extended cycle containing a core open cycle, the extended cycle must
also contain either r + 1 or l. We show that this is impossible. First, r + 1 and r + 2
cannot be in the same extended cycle; one of them is boxed but not the other. Since
w(r + 1) and w(r + 2) are of opposite sign, it is easy to check that within T2(r + 2),
r + 2 and l are in different extended cycles. But Lemmas 3.6 and 3.7 of [15] imply
that this remains the case within the full tableau T2, see also [5](2.3.3).
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Case 2. Suppose either E0(r + 1) or E1(r + 1) appears in T2, and without loss
of generality, assume that it is E0(r + 1). The first operation prescribed by Proposi-
tion 4.10 is to swap E0(r +1) with E1(r +1) in T2. If we now define l as before, then
r + 2 and l must be in different extended cycles as one of them is boxed but not the
other. Since w(r + 1) and w(r + 2) are of opposite sign, it is again easy to check that
within (T2(r + 2) \ E0(r + 1)) ∪ E1(r + 1), r + 2 and r + 1 are in different extended
cycles, and the rest of the proof follows as above.

5 Generators of combinatorial cells

The goal of this section is to verify that the set of operators in Λr+1 generates the
reducible combinatorial right cells of rank r in the hyperoctahedral group Wn. We
state Theorem 3.9 more precisely as:

Theorem 5.1 Suppose that w,v ∈ Wn with Gr(w) = (T1, T2) and Gr(v) = (T̃1, T̃2).
If T̃1 = MT (T1,U) for some set of non-core open cycles U in T1, then there is a
sequence of operators Σ in the set Λr+1 such that Σ(w) = v.

Its proof follows directly from two auxiliary facts. However, we need a definition
first.

Definition 5.2 We will say that a domino tableau is somewhat special if all of its
non-core open cycles are boxed.

A tableau is somewhat special iff all of its corners are empty, thus this is really
a property of the underlying partition. Since moving through a non-core open cycle
changes it from boxed to unboxed and vice-versa, there is a unique somewhat special
tableau in the family of tableaux obtained from each other by moving through non-
core open cycles. We will write S(T ) for the somewhat special tableau corresponding
to T .

Proposition 5.3 Given w ∈ Wn, there is a sequence of operators Σ in Λr+1 such
that the left tableau of Σ(w) is somewhat special.

Proposition 5.4 Suppose that w,v ∈ Wn with Gr(w) = (T1, T2) and Gr(v) =
(T̃1, T̃2). If T1 = T̃1 and both are somewhat special, then there is a sequence of oper-
ators Σ in the set Λr+1 such that Σ(w) = v.

The verification of these two propositions will occupy the remaining sections of
this paper. Our main approach to their proof is inductive; to check Propositions 5.3
and 5.4, we will assume that the proposition itself as well as Theorem 3.9 is true
for smaller n. In this section, we will show how Theorem 3.9 follows from Proposi-
tion 5.3 and Proposition 5.4 once they are known to hold, as well as check the base
case for the induction. Section 6 contains the proof of Proposition 5.4 while Section 7
contains the proof of Proposition 5.3 and an auxiliary lemma which also relies on a
similar induction.
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We now show how the main theorem follows from the two propositions. We will
write Σ for a sequence of operators, Σ−1 for the same sequence taken in the opposite
order, and Σ2Σ1 for the sequence of operators obtained from sequences Σ1 and Σ2
by applying the operators in Σ1 first followed by the ones from Σ2.

Proof Since T̃1 = MT (T1,U) for some set of non-core open cycles U , the definition
of somewhat special implies that S(T1) = S(T̃1). According to Proposition 5.3, there
are sequences of operators Σ1 and Σ2 in Λr+1 such that

1. Σ1(w) has left tableau S(T1), and
2. Σ2(v) has left tableau S(T̃1)

Since S(T1) = S(T̃1), Proposition 5.4 implies that there is another sequence Σ3 in
Λr+1 such that Σ3(Σ1(w)) = Σ2(v). In other words,

Σ−1
2 Σ3Σ1(w) = v. �

The following lemma in a sense serves as the base case for our inductive approach
to Propositions 5.3 and 5.4. We show that family of operators Λr+1 is enough to gen-
erate combinatorial left cells in two special cases when n is small when compared to
r . In what follows, we will identify group elements with their corresponding tableau
pairs and apply the operators in Λr+1 directly to them via the action described in
Section 3.2.

Lemma 5.5 Let Λ̃r+1 consist of the operators Λr+1 \ {T r+1
SC }. Then

1. Λ̃r+1 generates the irreducible, and consequently the reducible combinatorial left
cells of rank r in Wn when n ≤ r + 1, and

2. Λr+1 generates the reducible combinatorial left cells of rank r in Wr+2.

Proof The first part is just a restatement of Theorem 3.11, proved by C. Bonnafé and
L. Iancu. So consider w,v in Wr+2 and let

Gr(w) = (T1, T2) and Gr(v) = (T̃1, T̃2)

so that T̃1 = MT (T1,U) for some set U of non-core open cycles in T1. We would
like to define a sequence Σ of operators in Λr+1 so that Σ(w) = v, or identifying
group elements with tableau pairs, Σ(T1, T2) = (T̃1, T̃2).

Suppose first that T1 = T̃1 and the domino with label r + 2 appears in the same
position in T2 and T̃2. Then by the first part of the lemma, there is a sequence Σ1 ⊂
Λr+1 so that Σ1(T1, T2)

′ = (T̃1, T̃2)
′. But because T1 = T̃1, this implies Σ1(T1, T2) =

(T̃1, T̃2).

Next, suppose that T1 = T̃1 and the domino with label r + 2 appears in different
positions in T2 and T̃2. We will say that a tableau of rank r is full if all of its squares
of the form Si,r+3−i are occupied. First suppose that T2 is not full. We will show that
there are sequences Σ ′

2 and Σ ′′
2 so that Σ ′

2(T1, T2) and Σ ′′
2 (T̃1, T̃2) have the r + 2

domino in the same position; because of what we have already proved, this will be
sufficient. Because T2 and T̃2 are not full, either their top rows or first columns must
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have two dominos. Without loss of generality, assume that it is the top rows, and
furthermore, assume that r + 2 is not in the top row of T2, for otherwise we could
simply swap (T1, T2) and (T̃1, T̃2). By the first part of the lemma, there is a sequence
Σ ′

2 so that Σ ′
2(T1, T2)

′ has the dominos r and r + 1 in the top row. However, note
that Tαr+1αr+2 now can swap the r + 1 and r + 2 dominos in the right tableau of
Σ ′

2(T1, T2). If r + 2 is in the top row of T̃2, then we are done. If not, we can repeat
the above procedure with (T̃1, T̃2) to form a sequence Σ ′′

2 .

Next, suppose that T1 = T̃1, the domino with label r + 2 appears in different po-
sitions in T2 and T̃2, and T2 is full. Let Σ ′

3 be the sequence of operators in Λr+1

which arranges the entries of w in decreasing order of absolute values; because T2

is full, the sequences of positive and negative entries in w are both decreasing in ab-
solute value and so such a Σ ′

3 always exists. By construction, Σ ′
3(T1, T2) lies in the

domain of TSC . If T r+1
IN is not an element of the sequence Σ ′

3, then the left tableau of
Σ ′

3(T1, T2) is T1 and the sought-after sequence of operators is TSCΣ ′
3. If T r+1

IN is in
Σ ′

3, then the left tableau of Σ ′
3(T1, T2) differs from T1 by moving through the cycle

{r +2}. Then, it is always possible to find a sequence Σ ′′
3 ⊂ Λr so that TSCΣ ′

3(T1, T2)

is in the domain of T r+1
IN , perhaps after interchanging the roles of w and v. The de-

sired sequence is then T r+1
IN Σ ′′

3 TSCΣ ′
3.

Finally, suppose T1 
= T̃1. The only possible non-core cycle in T1 is {r + 2} so that
D(r + 2, T̃1) = D′(r + 2, T1). Because of what we have already proved, it will be
enough to find a sequence Σ4 so that Σ4(T1, T2) and (T̃1, T̃2) are of the same shape.
Note that because T1 and T̃1 are of different shapes, either w or v must contain some
entries with opposite signs. Without loss of generality, assume that it is w; then it is
possible to find a sequence Σ ′

4 ⊂ Λr so that Σ ′
4(T1, T2) is in the domain of T r+1

IN .
The desired sequence is then Σ4 = T r+1

IN Σ ′
4. �

6 Somewhat special cells

The goal of this section is to verify Proposition 5.4 and prove a few auxiliary facts
which we will need for Proposition 5.3, whose proof we defer to the next section. We
will say that a sequence Σ in Λr+1 is inductive if it does not contain the operators
Tαn−1αn and Tαnαn−1 , or the operators T n−1

SC and T n−1
IN . The first lemma describes

what happens to the maximal domino in the right tableau of Σ(w) for an inductive
sequence Σ in Λr+1 and is essentially [6] (3.2.7). While the statement of the result
is the same, minor adaptations in the proof are necessary in this more general setting.
We relate the entire proof for completeness.

Lemma 6.1 Consider an inductive sequence Σ of operators in Λr+1, and let
Gr(w) = (T1, T2) and Gr(Σ(w)) = (T̃1, T̃2). Then:

1. D(n, T̃2) is either D(n,T2) or its image under moving through.
2. If T̃2(n − 1) and T2(n − 1) have the same shape, then D(n, T̃2) = D(n,T2).

3. If D(n,T2) is boxed and T̃2(n − 1) is somewhat special, then so is T̃2.
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Proof The proof of part one proceeds by induction on the size of Σ . If Σ consists
of one operator, then because Σ is inductive the operators Tαβ , T r+1

SC and T k
IN for

k ≤ r (when inductive) leave D(n,T2) untouched. The operator T r+1
IN , when induc-

tive, changes D(n,T2) into D′(n,T2) iff n is in the extended cycle affected by its
action. The inductive step is an immediate consequence of the fact that n is the max-
imal entry in T2 and that moving through is an involution.

The other two parts rely on the following consequence of the condition D(n, T̃2) 
=
D(n,T2). If this is the case, then either

1. for some k < n the positions of the dominos D(k, T̃2) and D(n,T2) intersect, so
that k is in the same cycle as n, or

2. for some k < n there are non-core open cycles c, d in T̃2 and a cycle e in T̃1 with
Sb(e) = Sb(d) ∈ D(k, T̃2) and Sf (e) = Sb(c) ∈ D(n,T2), implying that k is in the
same extended cycle as n.

Both possibilities imply that the shapes of T̃2(n − 1) and T2(n − 1) are not the
same, which proves the second part of the lemma. For the third part, we will show that
D(n, T̃2) = D(n,T2), which will imply that T̃2 is somewhat special. We will argue
by contradiction, so assume that D(n, T̃2) = D′(n,T2) instead. If (1) holds, then the
boxing condition implies that D(k, T̃2) ∩ D(n,T2) is a filled corner in T̃2(n − 1),
contradicting the hypothesis that T̃2(n−1) is somewhat special. On the other hand, if
(2) holds then D(n, T̃2) is unboxed as is its entire extended cycle in T̃2. Then Sb(d) ∈
D(k, T̃2) is a filled corner T̃2(n − 1), contradicting the hypothesis that T ′

2(n − 1) is
somewhat special. �

The next lemma shows that inductive sequences behave well with respect to
domino insertion.

Lemma 6.2 Let Σ in Λr+1 be an inductive sequence and let (T1, T2)
′ be the tableau

pair obtained by deleting the highest-numbered domino from T2 and reversing one
step of the insertion procedure for T1. Then

Σ((T1, T2)
′) = (Σ(T1, T2))

′.

Proof It is enough to verify this statement when Σ consists of just one operator.
When the operator is of the form Tαβ , T k

IN for k ≤ r , and T r+1
SC for r + 2 < n the

result is clear. When r + 2 > n, T r+1
SC is not defined, and when r + 2 = n, it is ex-

cluded. It remains to check the lemma for the operator T r+1
IN under the assumption

that r + 2 < n.
If the action of the operator T r+1

IN merely swaps two not adjacent dominos in T2,
then the result is again clear. If not, then its action on T2 either swaps two domino
configurations and then moves through the extended cycle through r + 2, or vice
versa. Write T for the tableau to which the moving through will be applied. By Re-
mark 4.12, the extended cycle through r + 2 in T with respect to T1 contains only
non-core cycles. Thus to show the lemma, it is only necessary to verify the following:

Lemma 6.3 Consider an extended cycle c in T2 relative to T1 which contains only
non-core cycles and excludes the cycle {n}, if one exists. Write (T̄1, T̄2) for the pair
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MT ((T1, T2), c), and form the set c′ by deleting the label n from any cycle in c. Write
(T̄ ′

1, T̄
′
2) = (T̄1, T̄2)

′. Then

1. c′ is an extended cycle in T ′
2 relative to T ′

1, and
2. (T̄ ′

1, T̄
′
2) = MT ((T1, T2)

′, c′).

Because c contains only non-core cycles, [5](2.2.9) holds, and the proof of the lemma
is identical to that of [5](2.3.3). �

We will need one more lemma to prove Proposition 5.4, which we state presently
and whose proof we defer until the next section. For a somewhat special tableau, it
constructs a sequence of operators whose action moves the domino with label n to
any other pre-prescribed extremal position.

Lemma 6.4 Consider (T1, T2) of rank r with T2 somewhat special. If P ′ is a remov-
able pair of adjoining squares in T2, then there is a sequence of operators Σ ⊂ Λn

such that the n domino of the right tableau of Σ(T1, T2) is in position P ′ and the left
tableau of Σ(T1, T2) remains equal to T1.

Armed with this, we are ready to prove Proposition 5.4, which we restate for the
reader’s convenience.

Proposition 5.4 Suppose that w,v ∈ Wn with Gr(w) = (T1, T2) and Gr(v) =
(T̃1, T̃2). If T1 = T̃1 and both are somewhat special, then there is a sequence of oper-
ators Σ in the set Λr+1 such that Σ(w) = v.

Proof We argue by induction and assume that Theorem 3.9 holds for numbers smaller
than n. Let P ′ be the position of the n domino in T̃2. By Lemma 6.4, there is a
sequence Σ1 of operators so that the right tableau of Σ1(T1, T2) = (T 1

1 , T 1
2 ) has its

n domino in position P ′ and T1 = T 1
1 . Note that the left tableaux of (T 1

1 , T 1
2 )′ and

(T̃1, T̃2)
′ must be the same since T̃2 and T 1

2 have their n dominos in the same position,
and by hypothesis, T 1

1 = T̃1. By induction, we can construct an inductive sequence Σ2

such that Σ2(T
1
1 , T 1

2 )′ = (T̃1, T̃2)
′, which, by Lemma 6.2, also equals (Σ2(T

1
1 , T 1

2 ))′.
We would like to show that Σ2(T

1
1 , T 1

2 ) = (T̃1, T̃2), which will complete the proof.
Since (T 1

1 , T 1
2 )′ and (T̃1, T̃2)

′ must have the same shape, Lemma 6.1 implies that the
n dominos of the right tableau of Σ2(T

1
1 , T 1

2 ) and T 1
2 must be in the same position,

which also happens to be the position of the n domino in T̃2. But since Σ2(T
1

1 , T 1
2 )′ =

(T̃1, T̃2)
′, the right tableaux of Σ2(T

1
1 , T 1

2 ) and (T̃1, T̃2) must agree. Hence their left
tableaux must be of the same shape, and because T 1

1 = T̃1, the rest follows. �

7 Technical lemmas

In this section, we verify Proposition 5.3 and Lemma 6.4. They are both adaptations
of lemmas from [5] and follow from case by case analyses of relative domino posi-
tions.
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Proposition 5.3 Given w ∈ Wn, there is a sequence of operators Σ in Λr+1 such
that the left tableau of Σ(w) is somewhat special.

Proof Consider w ∈ Wn and let Gr(w) = (T1, T2). Our goal is to find a sequence
Σ ∈ Λr+1 so that Σ(w) has a somewhat special left tableau. We will superficially
follow the outline of the proof of [6] (3.2.4), but the new situations in the general rank
case will require a slightly different approach and our cases are somewhat different.
We will use induction on n, assuming both, that Proposition 5.3 and Theorem 3.9 are
true for values smaller than n.

Let (T̄1, T̄2) = (T1, T2)
′. By induction, we know that there is an inductive sequence

Σ1 so that the left tableau of Σ1((T1, T2)
′) = (T̄ 1

1 , T̄ 1
2 ) is somewhat special. Let

Σ1(T1, T2) = (T 1
1 , T 1

2 ). Then Lemma 6.2 implies (T 1
1 , T 1

2 )′ = (T̄ 1
1 , T̄ 1

2 ). There are
two cases:

1. If T 1
2 is somewhat special, then so is T 1

1 and we are done.
2. If T 1

2 is not somewhat special, then one of its non-core open cycles is not boxed.
But since T̄ 1

2 itself is somewhat special, the only possibility is that {n} is an un-
boxed extended open cycle in T 1

2 relative to T 1
1 .

We assume the latter is true and without loss of generality, take the domino D(n,T 1
2 )

to be horizontal writing {Sij , Sij+1} for its underlying squares. Because {n} is a cycle,
D(n,T 1

2 ) is unboxed, and T 1
2 is not somewhat special, Sij+1 must be a filled corner

and Si+1,j must be empty hole in T 1
1 implying that Si,j+1 is a square of type X. We

will examine a number of cases in order to find a sequence of operators which will
take T 1

2 to a somewhat special tableau.
Our general goal will be to find two pairs of adjacent squares P1 and P2 in

T 1
2 , so that P1 is extremal in T 1

2 (n − 1) and P2 is extremal in T 1
2 (n − 1) \ P1.

If this is possible, then induction on Theorem 3.9 provides a sequence Σ2 so that
(T̄ 2

1 , T̄ 2
2 ) = Σ2(T̄

1
1 , T̄ 1

2 ) with T̄ 2
1 = T̄ 1

1 and the n − 1 domino of T̄ 2
2 is P1 while its

n − 2 domino is P2. Let (T 2
1 , T 2

2 ) = Σ2(T
1

1 , T 1
2 ). If (T 2

1 , T 2
2 ) is in the domain of ei-

ther Tαβ = Tαn−1αn or Tαnαn−1 , then let (T 3
1 , T 3

2 ) = Tαβ(T 2
1 , T 2

2 ). Again by induction,
it is then possible to find a sequence Σ4 so that (T̄ 4

1 , T̄ 4
2 ) = Σ4(T

3
1 , T 3

2 )′ is somewhat
special. Finally, let

(T 4
1 , T 4

2 ) = Σ4(T
3
1 , T 3

2 ).

This turns out to be somewhat special, and Σ = Σ4(Tαβ)Σ2Σ1 is the promised se-
quence of operators.

If pairs of adjacent squares P1 and P2 cannot be suitably chosen, we will find that
T 1

2 satisfies the hypotheses of Lemma 5.5, which provides the desired sequence of
operators. To simplify the details, we will let a number of our cases overlap.

Case 1. Assume i > 1, which, because of our choice of boxing, implies that i ≥ 3.
Let s and t be the lengths of the i − 1st and i − 2nd rows of T 1

2 , and further assume
that t − s and s − j are both greater than 1. Define P1 = {Si−2,t−1, Si−2,t } and P2 =
{Si−1,s−1, Si−1,s}. Then (T 2

1 , T 2
2 ) lies in the domain of Tαn−1αn , which acts on T 2

2 by
interchanging the n and n − 1 dominos. That (T 4

1 , T 4
2 ) is somewhat special follows

from Lemma 6.1 since T̄ 4
2 is somewhat special and P1 is boxed in T̄ 1

2 which is also
somewhat special.
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Case 2. Assume the same situation as in Case 1, but suppose t = s > j + 1.
The proof is identical to Case 1 if we let P1 = {Si−2,t , Si−1,t } and P2 =
{Si−2,t−1, Si−1,t−1}.

Case 3. Assume the same situation as in Case 1, but suppose t = s = j +1. Define
P1 = {Si−2,t , Si−1,t } and P2 = {Si−2,t−1, Si−1,t−1}. The action of Tαn−1αn on T 2

2 this
time is not just an interchange and is described by case 1 of 4.2. That T 4

1 is somewhat
special follows because T̄ 4

2 is somewhat special and D(n,T 4
2 ) occupies the squares

{Si−2,j+1, Si−1,j+1} and therefore is boxed.
Case 4. Assume that Si+2,j−1 is in T 1

2 . Because T̄ 1
2 is somewhat special, this

implies Si+3,j−1 is also in T 1
2 , otherwise T̄ 1

2 would have a filled corner. Let l

be the length the of j − 1st column of T 1
2 and define P1 = {Sl−1,j−1, Sl,j−1}

P2 = {Sl−3,j−1, Sl−2,j−1}. The rest of the proof follows as before, except the op-
erator Tαnαn−1 must be used.

Case 5. Assume Si+2,j−1 is not in T 1
2 , but that Si+2,j−2 is. Let P2 be the pair

of squares {Si,j−1, Si+1,j−1}. The definition of P1 is more involved. Let m be the
smallest positive number so that either {Si+m+1,j−m−1} is not a square in T 1

2 or
{Si+m+1,j−m} is a square in T 1

2 . We examine the former as case (a), the latter as
case (b), and if neither occurs as case (c).

(a) Define P1 = {Si+m,j−m−1, Si+m,j−m},
(b) Let p be the length of the (j − m)th column of T 1

2 and define P1 to be the pair
of squares {Sp−1,j−m−1, Sp,j−m}.

In either of these two cases, the proof follows as before using the operator Tαnαn−1 .

(c) In this case, no adequate extremal position for P1 exists below D(n,T 1
2 ). If i = 1,

then T 1
2 in fact has to satisfy the hypotheses of Lemma 5.5, so we can assume

(as described in Case (1)) that i > 2. We may further assume that T 1
2 does not

satisfy the hypotheses of any of the previous cases, so that we can also assume
s = j +1 and t = j +2. Define m to be the smallest positive number so that either
{Si−m−1,j+m+1} is not a square in T 1

2 or {Si−m,j+m+1} is a square in T 1
2 . As be-

fore, define P1 to be respectively {Si−m−1,j+m,Si−m,j+m} or {Si−m,q−1, Si−m,q}
where q is the length of the i − mth row of T 1

2 . In either of these two cases, the
proof follows as before using the operator Tαn−1αn . If no such m exists however,
then T 1

2 again has to satisfy the hypotheses of Lemma 5.5, which provides the
necessary sequence of operators.

Case 6. Assume j > 2 and Si+2,j−2 /∈ T 1
2 . Note that since Si+2,j−2 /∈ T 1

2 , the
square Si,j−1 cannot lie in the core of T 1

2 . Thus let P1 = {Si+1,j−2, Si+1,j−1} and
P2 = {Si,j−2, Si,j−1}. The proof proceeds as before, with D(n,T 4

2 ) = D′(n,T 3
2 ) =

{Si+1,j−1, Si+1,j }.
Case 7. Assume j = 2 and Si+2,j−1 /∈ T 1

2 . If we assume that T 1
2 satisfies the

hypotheses of none of the previous cases, then let P2 = {Si,j−1, Si+1,j−1} and the
proof proceeds exactly as in Case 5(c).

Case 8. Assume j = 1, so that i cannot equal 1, implying i > 2. If we assume
that T 1

2 satisfies the hypotheses of none of the other cases above, then we can take
s = 2 and t = 3. Let P2 = {Si−1,1, Si−1,2}. Again, the proof proceeds exactly as in
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Case 5(c). It is a quick check to see that our cases cover all possibilities, and so the
proof of the lemma is complete. �

The following lemma is a general rank version of [6] (3.2.9). We adapt its proof
to the general rank case. There are two complications: the existence of a nontrivial
core and the fact that the tableau is only somewhat special, so we cannot count on all
holes being filled. Almost entirely, cases which do not match those in the rank zero
proof will degenerate into the setting of Lemma 5.5, where we proved the main result
for tableaux whose rank is large relative to n.

Lemma 6.4 Consider (T1, T2) of rank r with T2 somewhat special. If P ′ is a remov-
able pair of adjoining squares in T2, then there is a sequence of operators Σ ⊂ Λn

such that the n domino of the right tableau of Σ(T1, T2) is in position P ′ and the left
tableau of Σ(T1, T2) remains equal to T1.

Proof The proof is by induction where we assume both, that Lemma 6.4 and Theo-
rem 3.9 are true for values smaller than n. Write P for the set of squares occupied by
the n domino in T2 and assume that P 
= P ′. Without loss of generality assume that
P is horizontal, writing P = {Sij , Si,j+1}.

Cases 1-4. For the first cases, also assume that P ′ = {Skl, Sk,l+1} is horizontal.
We first define an auxiliary domino position P1.

1. If k = i − 1, we must have l ≥ j + 2 since P ′ is extremal. If Si−1,j is in the core
of T2, then l ≥ j + 3. In either case, let P1 = {Si−1,l−2, Si−1,l−1}.

2. If k < i − 1, let u be the length of the (i − 1)st row of T2. Then l ≥ u + 1 and we
can set P1 = {Si−1,u−1, Si−1,u}.

3. If k = i + 1, then l ≤ j − 2. Let P1 = {Si,j−2, Si,j−1}. Note that if Si,j−2 is in the
core of T2, then P ′ could not have been extremal.

4. If k > i + 1, then let u be the length of the (k − 1)st row of T2. Let P1 =
{Sk−1,u−1, Sk−1,u}.

Proceeding by induction as in the proof of Proposition 5.3, we can find an inductive
sequence Σ1 so that Σ1(T1, T2)

′ has the same left tableau as (T1, T2)
′ and whose right

tableau has domino n − 1 in position P ′, and n − 2 in position P1. By Lemma 6.1,
Σ1(T1, T2) has left tableau T1. The desired sequence is then Tαn−1,αnΣ1 in the first
two cases and Tαn,αn−1Σ1 in the second two.

Cases 5-7. For the rest of the cases assume that P ′ = {Skl, Sk+1,l} is vertical. We
again define an auxiliary domino position P1.

(5) If k + 1 = i − 1, let P1 = {Si−1,l−2, Si−1,l−1} as in Case (1).
(6) If k + 1 < i − 1, let P1 = {Si−1,u−1, Si−1,u} as in Case (2).
(7) If k = i + 1 and l < j − 1, let P1 = {Si,j−2, Si,j−1} as in Case (3).

The proof proceeds exactly as in the first four cases, with Tαn−1,αn applied in Cases 5
and 6, and Tαn,αn−1 in Case 7.

Case 8. Again assume that P ′ = {Skl, Sk+1,l} and suppose that k > i + 1.

i. Suppose that P ′′ is an extremal domino shape in T2 \ P \ P ′. If P ′′ is above P ′
but not above P , let P1 = P ′ and proceed as in Case (4). If P ′′ is below P ′ and
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horizontal, then using cases (1)-(4) we can find a sequence so that the resulting
right tableau will have the n domino in position P ′′. Then we are in the setting of
cases (5)-(7). If P ′′ is below P ′ and vertical, by induction it is possible to find a
sequence so that the resulting right tableau will have the n − 1 domino in position
P ′ and the n − 2 domino in position P ′′. After applying Tαn,αn−1 , we are in the
setting of the transpose of cases (1)-(4). If P ′′ is above P and also extremal in T2
itself, then arguments similar to the above apply.

ii. Suppose that P ′′ = {Sk+1,l−2, Sk+1,l−1} is extremal in T2 \ P ′ and P ′′′ =
{Sk,l−2, Sk,l−1} is extremal in T2 \ P ′ \ P ′′. By induction it is possible to find
a sequence so that the resulting right tableau will have the n − 1 domino in posi-
tion P ′, n− 2 domino in position P ′′, and the n− 3 domino in position P ′′′. After
applying Tαn−2,αn−1 , we are in the setting of cases (1)-(4). A similar argument
works if
(a) P ′′ = {Sk,l−1, Sk+1,l−1} is extremal in T2 \ P ′ and the domino shape P ′′′ =

{Sk−1,l−1, Sk−1,l} is extremal in T2 \ P ′ \ P ′′.
(b) P ′′ = {Si−2,j+1, Si−1,j+1} is extremal in T2 \ P and the domino shape P ′′′ =

{Si−2,j , Si−1,j } is extremal in T2 \ P \ P ′′.
(c) P ′′ = {Si−1,j , Si−1,j+1} is extremal in T2 \ P and the domino shape P ′′′ =

{Si−1,j−1, Si,j−1} is extremal in T2 \ P \ P ′′.
If there is no extremal P ′′ in T2 \P \P ′ above P ′ but not above P , Si+1,j−2 ∈ T2,

but Si+1,j−1 /∈ T2. It then follows by an easy but tedious inspection that if we are not
in any of the above cases, then we must be within the scope of Lemma 5.5.

Case 9. Assume that P and P ′ are both boxed and that k = i − 1, so that P and
P ′ intersect in the square Si,j+1. Since they are both boxed, we know that Sij+1 must
be of type W , and consequently, that i is even.

i. Assume that i > 2, and hence that i ≥ 4. Let u be the length of the row i − 2 of
T2 and let s be the length of row i − 3.
(a) If u = j + 1, let P1 = {Si−1,j+1, Si−2,j+1} and P2 = {Si−1,j , Si−2,j }. Note

that Si−2,j cannot be in the core of T2, since D(n,T2) occupies the square
Sij . By induction, we can find a sequence Σ1 so that the n − 1 domino in
the right tableau of Σ1(T1, T2)

′ is P1 and the n − 2 domino is P2. Then the
n domino of Tαn−1,αnΣ1(T1, T2) occupies the squares {Si,j+1, Si−1,j+1}, as
desired.

(b) Assume that s = u > j + 1. If we let P ′′ = {Si−3,u, Si−2,u}, then Case 6 pro-
vides a sequence Σ1 so that the right tableau of Σ1(T1, T2) has the n domino
in position P ′′. The transpose of the first two cases now provides a sequence
Σ2 such that the n domino of Σ2Σ1(T1, T2) is P ′, as desired.

(c) Assume that s > u > j + 1. If there is an extremal domino shape P ′′ in T2
strictly above P , we can use the already considered cases (or their transposes),
to find a sequence Σ1 so that Σ1(T1, T2) has left tableau T1 and the n domino
is in position P ′′ in its right tableau. Then, again by the already considered
cases (or their transposes), we can find a sequence Σ2 so that Σ2Σ1(T1, T2)

has left tableau T1 and the n domino is in position P ′ in its right tableau,
as desired. A similar argument works if there is an extremal domino shape
P ′′ in T2 strictly below P . If neither is the case, then we are in the scope of
Lemma 5.5, which provides the necessary sequence.
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ii. If i = 2 and j > 2, then this case is parallel to the previous one. If i = 2 and
j = 2, then we are either in the setting of Lemma 5.5 or Case 8. Finally, if i = 2
and j = 1, we are in rank zero, which has been considered in [6].

Case 10. Assume that P and P ′ are both boxed and that k = i + 1 and l = j − 1.
The boxing condition implies that Si,j+1 must be of type W , and consequently, that
i is even. Let r be the length of the i − 1st row of T2. If u = j + 1, then let P ′′ =
{Si−1,j+1, Si,j+1}. By Case 9, we can find a sequence Σ1 so that Σ1(T1, T2) has left
tableau T1 and its right tableau has the n domino in position P ′′. Then Case 2 provides
a sequence Σ2 so that Σ2Σ1(T1, T2) has left tableau T1 and its right tableau has the
n domino in position P ′. If u > j + 1, then because T2 is somewhat special it cannot
have filled corners, so that u ≥ j + 3. But then we can let P ′′ = {Si−1,r−1, Si,r} and
the proof is the same as when r = j + 1.

Case 11. Assume that P ′ is boxed and P is not. Our goal is to find a sequence
of operators which will move the n domino to a boxed position, reducing our work
to the previous cases. Because T2 is somewhat special, it cannot have filled corners,
so that Sij must be of type W and consequently, i ≥ 2. Let u be the length of the
i − 1 row of T2. If u = j + 1, let Σ1 be the sequence of operators such that the right
tableau of Σ1(T1, T2)

′ is somewhat special; it exists by induction and Proposition 5.3.
The shape of the tableaux Σ1(T1, T2)

′ is (shape(T2) \ Si−1,j+1) ∪ Sij . If T 1
2 is the

right tableau of Σ1(T1, T2), then Lemma 6.1, implies that D(n,T 1
2 ) = D′(n,T1) =

{Si−1,j+1, Si,j+1}, which is boxed, as desired. If u > j + 1, then because T2 is some-
what special and cannot have filled corners, u ≥ j + 3. Let P ′′ = {Si−1,u−1, Si−1,u}.
Then from Cases 1 through 4, where a boxing condition was not assumed, we can find
a sequence of operators Σ1 so that the n domino in the right tableau of Σ1(T1, T2) is
P ′′, which, because T2 is special, must be boxed.

Case 12. Assume that P ′ is unboxed in T2. Since Cases 1 through 8 were verified
without any boxing assumptions, we only have to check this case when

i. k = i − 1 so that P and P ′ intersect in the square Si,j+1, or
ii. k = i + 1 and l = j − 1.

Furthermore, we can also take P to be boxed, as otherwise the boxing conditions
imply in both cases that Si,j+1 is a filled corner, contradicting the assumption that
T2 is somewhat special. With this assumption, the transpose of (i) is the last case
considered in [6](3.2.9), and we omit its proof. So assume that we are in case (ii).
Then the type of Sij is X.

(a) Assume that there are no extremal domino positions strictly below P ′ or above P .
If i > 1 and Si−1,j+2 is not a square in T2, or if Si+2,j−2 ∈ T2 and Si+3,j−2 /∈ T2,
then we can use case (i) above to find a sequence Σ1 so that the right tableau of
Σ1(T1, T2) has the n domino in position {Si,j+1, Si−1,j+1}. Then Σ1(T1, T2) is
in the setting of Case 2. If neither of the two possibilities above is true, then we
are in the setting of Lemma 5.5.

(b) If there is an extremal domino position P ′′ strictly below P ′, then using induction
we can find a sequence Σ1 so that the right tableau of Σ1(T1, T2) has domino
n − 1 in position P ′′ and n − 2 in position P ′. Then Tαnαn−1Σ1(T1, T2) is within
scope of the previous cases. If there is an extremal domino position P ′ strictly



J Algebr Comb (2009) 29: 509–535 535

above P , then by the previous cases, there is a sequence Σ1 so that the n domino
of the right tableau of Σ1(T1, T2) is P ′′. We can use induction to find a sequence
Σ2 which puts the n − 2 domino in position P and the n − 1 domino in position
P ′. Then the desired sequence is Tαnαn−1Σ2Σ1(T1, T2). �
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