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Abstract Although the phenomenon of chirality appears in many investigations of
maps and hypermaps, no detailed study of chirality seems to have been carried out.
Chirality of maps and hypermaps is not merely a binary invariant but can be quan-
tified by two new invariants—the chirality group and the chirality index, the latter
being the size of the chirality group. A detailed investigation of the chirality groups
of orientably regular maps and hypermaps will be the main objective of this paper.
The most extreme type of chirality arises when the chirality group coincides with the
monodromy group. Such hypermaps are called totally chiral. Examples of these are
constructed by considering appropriate “asymmetric” pairs of generators of certain
non-abelian simple groups. We also show that every finite abelian group is the chiral-
ity group of some hypermap, whereas many non-abelian groups, including symmetric
and dihedral groups, cannot arise as chirality groups.
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1 Introduction

The word chirality (meaning handedness) was introduced by William Thomson, bet-
ter known as Lord Kelvin [22], as a property of a geometrical figure which occurs
when “its image in a plane mirror, ideally realized, cannot be brought into coin-
cidence with itself”. There are many scientific examples of this phenomenon. For
instance, chemists and biologists have discovered molecules which exist in two dis-
tinguishable enantiomers, which are mirror images of each other; in some cases, one
form is beneficial whereas the other is poisonous. The phenomenon of chirality also
appears in quantum mechanics, and more generally in theoretical physics.

These facts (see also [1, 5, 15, 19, 24]) provide a strong motivation for the study
of chirality in mathematical models of physical structures. Many of these models are
graphs embedded in the plane or 3-dimensional Euclidean space, or in more complex
spaces endowed with a non-Euclidean geometry. For instance, fullerenes (recently-
discovered positively-curved carbon structures) are modelled by 3-valent polyhedra
with pentagonal and hexagonal faces, the pentagons being separated by hexagons;
negatively-curved schwarzites arise if the pentagons are replaced with heptagons.
These are special examples of maps.

Let us be more precise. A map on a surface is a cellular decomposition of a closed
connected surface into 0-cells called vertices, 1-cells called edges and 2-cells called
faces. The vertices and edges of a map form its underlying graph, which is also
connected. A map is said to be orientable if the supporting surface is orientable,
and is oriented if one of two possible orientations of the surface has been specified.
An automorphism of a map is an automorphism of the underlying graph which ex-
tends to a self-homeomorphism of the underlying surface. Map automorphisms split
naturally into two classes, orientation-preserving and orientation-reversing automor-
phisms. We say that a map is chiral if it admits no orientation-reversing automor-
phism. These concepts extend naturally to hypermaps, generalisations of maps which
we shall explain later.

Although the phenomenon of chirality appears in many investigations of maps and
hypermaps (see Coxeter and Moser [12] for instance), no detailed study of chirality
seems to have been carried out. A starting-point which led us to such a project was
the observation that chirality of maps and hypermaps is not merely a binary invariant
but can be quantified. Even more surprising was the fact that different approaches to
measuring chirality lead to equivalent definitions, giving rise to related new invariants
associated with any (hyper)map — the chirality group and the chirality index, the
latter being the size of the chirality group. A detailed investigation of the chirality
groups of maps and hypermaps will be the main objective of this paper.

In the investigation of maps and hypermaps it is often convenient to replace the
topological objects with their combinatorial counterparts. Indeed, it is well-known
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that a map H on an orientable surface can be described by two permutations R and
L acting on the set of darts (directed edges, or arcs). The permutation R cyclically
permutes the darts based at the same vertex, consistently with a chosen orientation
of the surface, while L interchanges the two oppositely directed darts sharing the
same edge. Thus the orientation of the map can be encoded by the choice of R (the
other possibility being R−1), and our maps are by definition oriented (or “polarized”
using the language of physicists). By connectivity, the action of the group Mon (H) =
〈R,L〉 is transitive on the set of darts of H. A hypermap is obtained if we simply
relax the requirement L2 = 1 by allowing L to be of any order, so maps are particular
examples of hypermaps. With the above notation H is said to be mirror symmetric or
reflexible if the assignment R �→ R−1, L �→ L−1 extends to a group automorphism
of 〈R,L〉; if it does not extend, we say that H is chiral.

Clearly, any hypermap H covers some reflexible hypermap K, because in the worst
case we can take K to be the trivial map consisting of one dart and a vertex attached
to it. For simplicity, let us assume that the actions of Mon (H) and Mon (K) are
both regular. Then the covering H → K arises from factoring out a certain normal
subgroup of Mon (H). The minimal subgroup X(H) � Mon (H) such that H/X(H)

is a reflexible hypermap is called the chirality group of H. It is straightforward that H
is chiral if and only if X(H) is nontrivial. There is a dual approach to the definition of
the chirality group, obtained by considering the smallest reflexible hypermap which
covers H. It is proved in Section 3 that these two approaches are equivalent.

In general, |X(H)| ≤ |Mon (H)|. The most extreme type of chirality arises when
X(H) = Mon (H); such hypermaps, called totally chiral, are studied in Section 5
where we construct examples of them by considering an appropriate “asymmetric”
pair of generators for some non-abelian simple group. In Section 6 we show that
every finite abelian group is the chirality group of some hypermap, whereas it is
shown in Section 7 that many non-abelian groups, including symmetric and dihe-
dral groups, cannot arise as chirality groups. The general problem of characterising
chirality groups remains open.

2 Hypermaps

By an oriented hypermap we mean a triple H = (D,R,L) where D is a set of
darts and R and L are two permutations generating a permutation group Mon (H) =
〈R,L〉, called the monodromy group of H, acting transitively on D. The permutations
R and L will be called the canonical generators of Mon (H). The orbits of R, L and
RL on D will be called the hypervertices, hyperedges, and hyperfaces, respectively.
(We will write actions on the left, and hence we will compose permutations from
right to left.)

In general, the set of darts of a hypermap may be infinite, however, our main inter-
est lies in finite hypermaps, those where the set D (equivalently, the group Mon (H))
is finite. All hypermaps in this paper will be finite unless the immediate context im-
plies otherwise.

If m,n and k are the orders of the permutations R, L and RL, respectively, then
the type of H is the triple (m,n, k), and its Euler characteristic is the number χ(H) =
|D|( 1

m
+ 1

n
+ 1

k
− 1).
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An oriented hypermap H is an oriented map if L is an involution. Since the maps
and hypermaps considered in this paper will all be oriented, the adjective oriented
will often be omitted.

A map is an algebraic abstraction of a topological map, that is, a cellular decom-
position of a closed connected surface. Hypermaps generalize the notion of maps in
a natural way, but their geometric representations are somewhat less natural; they are
described, for example, in [9–11, 30].

An automorphism of a hypermap H = (D,R,L) is a permutation ψ of D com-
muting with both R and L. It is straightforward to see that the automorphism group
Aut (H) of H acts semi-regularly on the set of darts, so that |Aut (H)| divides |D|.
If equality holds, the action is regular, and consequently H is called an orientably
regular hypermap.

If H = (D,R,L) and H′ = (D′,R′,L′) are hypermaps then a covering ψ :
H → H′ is a mapping ψ : D → D′ satisfying ψR = R′ψ and ψL = L′ψ ; note
that a covering is necessarily surjective. We then say that H covers H′, and it fol-
lows that the assignment R �→ R′ and L �→ L′ extends to a canonical epimorphism
Mon (H) → Mon (H′) of the monodromy groups. If ψ is an injective covering, we
have an isomorphism H ∼= H′. A covering H → H′ is smooth if both hypermaps have
the same type.

Let � denote the free product

� = 〈r0, r1, r2 | r0
2 = r1

2 = r2
2 = 1〉

and let �+ = 〈r1r2, r2r0〉 be its “even word subgroup”, the subgroup consisting of
the words of even length in the generators. The canonical generators of �+ will be
denoted by ρ = r1r2 and λ = r2r0. Observe that the triple U = (�+, ρ,λ), with ρ and
λ acting on �+ by left translation, is a hypermap (clearly, an infinite one) which we
will call the universal hypermap.

For any hypermap H = (D,R,L), finite or infinite, there is an epimorphism
μ : �+ → Mon (H) sending ρ to R and λ to L. Consequently, H can be identi-
fied with the hypermap (�+/H, ρ̄, λ̄ ) whose darts are the left cosets of the sub-
group H ≤ �+, H (which may or may not be normal in �+) being the preimage
of the stabiliser of a dart in H under the action of Mon (H), and ρ̄(xH) = ρxH

and λ̄(xH) = λxH . With some abuse of notation, μ : U → (�+/H, ρ̄, λ̄ ) ∼= H is a
hypermap covering. Thus the monodromy group of any oriented hypermap is a quo-
tient of �+, and oriented hypermaps correspond to subgroups of �+. Any subgroup
H ≤ �+ for which (�+/H, ρ̄, λ̄) ∼= H will be called a hypermap subgroup for H.

In the following statement we summarize some well-known facts on representa-
tions of hypermaps by hypermap subgroups (see [13]).

Lemma 1 Let H, H1 and H2 be oriented hypermaps (not necessarily finite). Then
the following statements hold:

(i) H1 covers H2 if and only if there are subgroups H1 ≤ H2 ≤ �+ such that
H1 ∼= (�+/H1,R1,L1) and H2 ∼= (�+/H2,R2,L2) where Ri(xHi) = ρxHi

and Li(xHi) = λxHi for i = 1,2;
(ii) H1 ∼= H2 if and only if the corresponding hypermap subgroups are conjugate in

�+;
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(iii) H is orientably regular if and only if there exists a normal subgroup N � �+
such that H ∼= (�+/N,ρN,λN). Thus orientably regular hypermaps corre-
spond to normal subgroups of �+.

While automorphisms of oriented hypermaps give rise to orientation-preserving
self-homeomorphisms of the underlying surface, a hypermap may admit external
symmetries coming from self-homeomorphisms which change the orientation of the
surface. Such symmetries are called mirror symmetries (or reflections, or inversions).
More precisely, a permutation ψ of D will be called a mirror symmetry of an oriented
hypermap H = (D,R,L) if ψR = R−1ψ and ψL = L−1ψ . An orientably regular
hypermap admitting mirror symmetries is said to be reflexible or regular, since the
automorphism group acts regularly on flags (triples formed by a mutually incident
hypervertex, hyperedge and hyperface). On the other hand, an orientably regular hy-
permap with no mirror symmetries will be called a chiral hypermap. Observe that
conjugation by r2 induces an automorphism of �+ inverting its generators ρ and λ.
Since a hypermap subgroup H of an orientably regular hypermap H is normal in �+,
its conjugates in � are H and Hr0 = Hr1 = Hr2 . Let Hr denote this common con-
jugate Hri . It is straightforward to see that Hr is a hypermap subgroup of the mirror
image Hr = (D,R−1,L−1), so H is reflexible if and only if Hr = H , or equivalently
H is a normal subgroup of �.

3 The chirality group and chirality index of a hypermap

The aim of this section is to introduce invariants which in some sense measure the
mirror asymmetry of a hypermap.

Let H be an orientably regular hypermap with hypermap subgroup H , a normal
subgroup of �+. Then the largest normal subgroup of � contained in H is the group
H� = H ∩ Hr , and the smallest normal subgroup of � containing H is the group

H
� = HHr . The corresponding hypermaps H� and H�

are respectively the smallest
reflexible hypermap that covers H, and the largest reflexible hypermap that is covered
by H. In particular, if H is finite, so is H� , since the intersection of two subgroups
of finite index also has finite index.

Proposition 2 The four groups H�/H, H/H�, H�/Hr and Hr/H� are all iso-
morphic to each other.

Proof The third isomorphism theorem gives

H�/H = HHr/H ∼= Hr/(H ∩ Hr) = Hr/H�,

and similarly H�/Hr ∼= H/H�. Conjugation by a generator ri of � induces isomor-
phisms H�/H ∼= H�/Hr and H/H�

∼= Hr/H�. �

We will call this common group the chirality group X(H) of H, and its order the
chirality index κ = κ(H) of H. Thus H is reflexible if and only if κ = 1, and in gen-
eral X(H) and κ(H) can be regarded as algebraic and numerical measures of how far
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H deviates from being reflexible. We will restrict our attention to orientably regular
hypermaps, since in the general case of an orientable hypermap one has to consider
two conjugacy classes of subgroups H and Hr of �+, rather than two normal sub-
groups, so it is less clear how to define κ(H) and X(H).

Theorem 3 Let H be an orientably regular hypermap with chirality index κ . Then
H� → H and H → H� are both κ-sheeted regular coverings with covering trans-
formation group isomorphic to the chirality group X(H). Moreover, the covering
H� → H is smooth.

Proof Let H be the hypermap subgroup for H. Since H� is normal in H and H is

normal in H
�

, these coverings are both regular, being induced by the groups H/H�

and H�/H of automorphisms of H� and H. By Proposition 2 the corresponding
covering transformation groups H/H� and H�/H are isomorphic, and they coincide
with X(H). The number of sheets of the covering is the index |H : H�| or |H� : H |,
equal in each case to |X(H)| = κ .

Since r−1
2 ρr2 = ρ−1, r−1

2 λr2 = λ−1, and r−1
2 (ρλ)r2 = λ(ρλ)−1λ−1, the same

powers of ρ,λ or ρλ lie in H as in Hr , and hence as in H ∩ Hr = H� . Thus H�

has the same type as H, and is therefore a smooth covering of H, since in any cov-
ering of hypermaps, branching can occur only at the hypervertices, hyperedges or
hyperfaces. �

In general, the covering H → H� need not be smooth, since H� may contain
powers of ρ,λ or ρλ which do not lie in H or Hr ; indeed, we shall see in Section 5
that there are nontrivial hypermaps H for which H� is the trivial hypermap, of type
(1,1,1).

Corollary 4 If H is an orientably regular hypermap with chirality index κ , then
χ(H�) = κχ(H).

Proposition 5 The chirality group X(H) of each orientably regular hypermap H is
isomorphic to a normal subgroup of the monodromy group Mon (H).

Proof X(H) ∼= H�/H ≤ �+/H ∼= Mon (H). By Theorem 3, X(H) is normal in
Mon (H). �

Since the number of darts in an orientably regular hypermap coincides with the
order of the monodromy group, Proposition 5 and Lagrange’s Theorem now imply:

Corollary 6 The chirality index of any orientably regular hypermap divides the num-
ber of darts.

The following example shows that the chirality index of a hypermap can be arbi-
trarily large.
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Example 1 (see [4]) Consider the metacyclic group

G = 〈a, b | an = 1, bm = as, bab−1 = ar 〉
of order mn, where rs ≡ s (mod n) and rm ≡ 1 (mod n) for some m > 2. If
we regard a and b as the canonical generators for an orientably regular hypermap
H = (G,a, b) with monodromy group G, then it follows from the definition of the
chirality group X(H) as H�/H that X(H) can be interpreted as the smallest nor-
mal subgroup N of G such that the assignment a �→ a−1 and b �→ b−1 induces
an automorphism of G/N . We obtain this quotient from G by adding the extra re-
lations formed from those of G by replacing a and b with their inverses. In this
case, it is sufficient to add b−1a−1b = a−r , or equivalently, b−1ab = ar , so that
a = b(b−1ab)b−1 = (ar )r = ar2

in G/N . Thus ar2−1 = 1 in G/N , so in G it fol-
lows that K = 〈ar2−1〉 is a subgroup of N . On the other hand, it is easy to see
that K is a normal subgroup of G such that G/K is invariant under replacement
of the generators with their inverses. By minimality N = K , so X(H) ∼= 〈ar2−1〉 and
κ(H) = n/gcd(n, r2 − 1); since m > 2, this can be arbitrarily large. For instance,
given any m > 2 we could choose a prime n ≡ 1 (mod m) (there are infinitely many,
by Dirichlet’s Theorem on primes in arithmetic progression), so that there is an inte-
ger r of multiplicative order m mod n; if we put s = 0 then G is a semidirect product
of 〈a〉 ∼= Cn by 〈b〉 ∼= Cm, and κ(H) = n since gcd(n, r2 − 1) = 1.

4 Normal subgroups of � and �+

In order to study chirality groups further we need some elementary results telling us
which normal subgroups of �+ are also normal in �.

The following result is obvious.

Lemma 7 Let N be a normal subgroup of �+, and let G = �+/N . Then the follow-
ing are equivalent:

(i) N is normal in �;
(ii) Nr = N ;

(iii) G has an automorphism inverting both of its canonical generators;
(iv) the hypermap corresponding to N is reflexible.

Let us call a generating pair x, y for a group G symmetric if there is an auto-
morphism of G inverting both x and y, and asymmetric otherwise. Let us call a
2-generator group G strongly symmetric if all its generating pairs are symmetric. By
Lemma 7, this condition means that every normal subgroup of �+ with quotient
group G is normal in �, or equivalently, every orientably regular hypermap with
monodromy group G is reflexible.

Proposition 8 The following groups are all strongly symmetric: 2-generator abelian
groups, dihedral groups, PSL2(q) for any prime power q , and the symmetric groups
S2, S3, S4 and S5.
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Proof Every abelian group has an automorphism inverting all its elements. If two
elements generate a dihedral group, they are either two reflections or a reflection and
a rotation; in the first case they are both inverted by the identity automorphism, and
in the second case they are inverted by conjugation by the reflection. It follows easily
from [23, Theorem 3] that if x, y and x′, y′ are two generating pairs for PSL2(q)

with trx = trx′, try = try′ and trxy = trx′y′, then there is an automorphism sending
x to x′ and y to y′; now trx = trx−1, try = try−1 and trxy = tryx = tr (yx)−1 =
trx−1y−1, so x, y form a symmetric pair (see [27] for this and related arguments).
The small symmetric groups are dealt with by a routine inspection of their generating
pairs. �

Note that this shows that the alternating groups An are strongly symmetric for
n ≤ 6 since A1 and A2 are trivial, A3 ∼= C3, A4 ∼= PSL2(3), A5 ∼= PSL2(4) and
A6 ∼= PSL2(9). If n ≥ 6 then Sn is not strongly symmetric, since x = (1 2)(3 4 5)

and y = (1 2 . . . n) form an asymmetric pair of generators; see also Theorem 13 for
An, n ≥ 7.

An immediate consequence of Proposition 8 and Lemma 7 is the following:

Corollary 9 If N is a normal subgroup of �+ such that �+/N is abelian or dihedral
or isomorphic to PSL2(q) or Sn for some n ≤ 5, then N is normal in �.

Example 2 As an application of Corollary 9, the following simple example shows
that every elementary abelian group of prime power order q = pe > 4 can arise as a
chirality group. (We will extend this result later to all finite abelian groups, but for
this we need a more complicated construction.) Let G be the 1-dimensional affine
group AGL1(q) over the field Fq of order q , consisting of the transformations t �→
at + b where a, b ∈ Fq and a = 0. This is a split extension of the translation group
B = {t �→ t + b | b ∈ Fq}, an elementary abelian group of order q isomorphic to
the additive group of Fq , by the group A = {t �→ at | a ∈ F ∗

q }, isomorphic to the
multiplicative group F ∗

q = Fq \ {0} of Fq . Let x and y be the elements t �→ ct and
t �→ t +1 of G, where c generates the (cyclic) group F ∗

q . Then x and y generate G, so
the epimorphism θ : �+ → G, R �→ x,L �→ y realises G as the monodromy group
of an orientably regular hypermap H, with hypermap subgroup H = ker θ ≤ �+.

If 	 denotes the Galois group of Fq (over its prime field Fp), then AutG can be
identified with A	L1(q), the group of transformations t �→ atγ + b where a = 0 and
γ ∈ 	; this contains G as a normal subgroup, and induces automorphisms of G by
acting by conjugation. It follows that x is inverted by an automorphism of G if and
only if c is equivalent to c−1 under 	. Now 	 is a cyclic group of order e, generated
by the Frobenius automorphism t �→ tp of Fq , so the images of c under 	 are the

powers cpi
for i = 1, . . . , e. Thus c is equivalent to c−1 if and only if cpi+1 = 1 for

some i, or equivalently (since c has order pe − 1) if pe − 1 divides pi + 1, which is
impossible if pe > 4. Thus H is chiral for all q > 4, so H� > H .

If N denotes θ−1(B) then �+/N ∼= G/B ∼= A, which is abelian, so N is normal
in � by Corollary 9, and hence H� ≤ N . Now B is a minimal normal subgroup of
G, so N/H is a minimal normal subgroup of �+/H . Since N ≥ H� > H it follows
that H� = N , so H has chirality group X(H) ∼= N/H ∼= B .



J Algebr Comb (2009) 29: 337–355 345

5 Totally chiral hypermaps

The most extreme type of chirality, and often the easiest to study, occurs when an
orientably regular hypermap H is totally chiral, meaning that the chirality group of H
coincides with its monodromy group. If H is the map subgroup of �+ corresponding
to H, then H is totally chiral if and only if H� = �+, so a totally chiral hypermap is
one which covers no nontrivial reflexible hypermaps.

In this section we will study some examples of this phenomenon, before consider-
ing more general forms of chirality in the next section.

The next result implies that totally chiral hypermaps are rather rare, though we
will give some infinite families of examples in Theorems 12, 13 and 14. A perfect
group is one with no nontrivial abelian epimorphic images.

Corollary 10 The monodromy group of a totally chiral hypermap cannot have any
nontrivial strongly symmetric group as an epimorphic image; in particular, it must be
perfect.

Proof Let H be a totally chiral hypermap with monodromy group Mon (H) = �+/H

for some H � �+. Assume, for a contradiction, that Mon (H) has a nontrivial
strongly symmetric epimorphic image G. Then there exists a subgroup N of �+
such that H ≤ N < � and G = �+/N . Since �+/N is strongly symmetric, we have
N � � and hence NNr = N . Therefore

�+ = HHr ≤ NNr = N < �+

which is a contradiction. In particular, since abelian groups are strongly symmetric,
they cannot occur as nontrivial epimorphic images. �

The most obvious examples of perfect groups are the nonabelian simple groups,
so it makes sense to inspect these for examples of totally chiral hypermaps.

Lemma 11 If X is a simple group with an asymmetric generating pair, then X is the
monodromy group of a totally chiral hypermap.

Proof Let x and y be an asymmetric generating pair for X, and let H be the ker-
nel of the epimorphism �+ → X given by ρ �→ x,λ �→ y, so X ∼= �+/H is the
monodromy group of the orientably regular hypermap H corresponding to H . By
Lemma 7 we have Hr = H , so H� is a normal subgroup of �+ properly containing
H . The simplicity of X gives H� = �+, so H is totally chiral. �

Some simple groups X have an element x which is not inverted by any automor-
phism; if there is a second element y such that x and y generate X, then Lemma 11
implies that X is the monodromy group of a totally chiral hypermap. Here we give
two families of groups which illustrate this principle.

The Ree groups Re(3f ) = 2G2(3f ) and the Suzuki groups Sz(2f ) = 2B2(2f ) are
defined for all odd f ≥ 1, and are simple for f > 1. They were first described in [25,
26] and [29] respectively, and a good account of their properties can also be found in
Chapter XI of [18].
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Theorem 12 For each odd f > 1 there are totally chiral hypermaps with monodromy
groups Re(3f ) and Sz(2f ).

Proof The Ree group X = Re(3f ), for odd f > 1, is a simple epimorphic image of
the triangle group �(2,3,7), and hence of �+, with generators x and y of orders 2
and 3. As shown in [26], y is not inverted by any automorphism of X, so Lemma 11
applies. Similarly Sz(2f ) is a simple epimorphic image of �(2,4,5) for odd f > 1,
and the generator of order 4 is not inverted by any automorphism [29]. (See [20,
Section 6] and [21, Section 6] for further details and for descriptions of the chiral
hypermaps associated with these groups.) �

Other simple examples of this phenomenon include the Mathieu groups Mp for
p = 11 and 23: in each case an element of order p is a member of a generating pair,
but is not inverted by any automorphism (see [8] for details).

A more common phenomenon among simple groups is that both members x and y

of a generating pair may be inverted by automorphisms, but no single automorphism
inverts them both. To illustrate this we consider the alternating groups An, which
are simple for all n ≥ 5; here every element, having the same cycle structure as its
inverse, is inverted by conjugation in Sn.

Theorem 13 For each n ≥ 7 there is a totally chiral hypermap with monodromy
group An.

Proof If n is odd, let X be the subgroup of the symmetric group Sn generated by the
permutations x = (1 2 . . . n) and y = (1 2 4). These are both even, so X ≤ An. Any
x-invariant relation on {1,2, . . . , n} must be congruence mod m for some m dividing
n, and y preserves this only for m = 1 and n, so X is primitive. A primitive group
containing a 3-cycle must contain An [31, Theorem 13.3], so X = An. For n ≥ 7 one
can identify AutAn with Sn, acting by conjugation on its normal subgroup An; the
only permutations inverting x are the reflections in the obvious dihedral group Dn

containing x, and these do not invert y, so Lemma 11 gives the required result.
If n is even, one can take x = (1 2 . . . n − 1) and y = (1n)(2 3) in An. The group

X = 〈x, y〉 is clearly transitive; since x fixes n and has a single cycle on the remaining
points, X is doubly transitive and hence primitive. Now X contains a 5-cycle [x, y] =
x−1y−1xy = (1n3 4 2), and a theorem of Jordan [31, Theorem 13.9] states that a
primitive group of degree n, containing a p-cycle for some prime p ≤ n − 3, must
contain An. It follows that X = An provided n ≥ 8. Again there is no permutation in
Sn which inverts x and y, so Lemma 11 completes the proof. �

By the comment after Proposition 8, this result does not extend to An for n ≤ 6.
For a similar class of examples, we use the simple groups PSLd(q) and their

covering groups SLd(q). Note that the case d = 2 is excluded by Proposition 8 and
Corollary 10, and similarly PSL3(2) = SL3(2) is excluded since it is isomorphic to
PSL2(7).

Each a ∈ GLd(q) induces an inner automorphism ιa : g �→ ga = a−1ga of
GLd(q), each γ ∈ 	 = GalFq induces an automorphism by acting on matrix en-
tries, and the adjoint mapping g �→ g∗ = (gT )−1 is also an automorphism of GLd(q)
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(the graph automorphism in Lie algebra terminology). Every automorphism of
GLd(q) is a composition of these, having the form αa,γ : g �→ (ga)γ or βa,γ : g �→
((g∗)a)γ . These automorphisms all induce automorphisms of PGLd(q), SLd(q) and
PSLd(q), and conversely all automorphisms of these groups arise in this way [14,
Ch. IV]. Since every matrix is similar (that is, conjugate) to its transpose, every ele-
ment of these groups is inverted by some automorphism. Nevertheless, it is usually
possible to find an asymmetric generating pair in these groups.

Theorem 14 If d ≥ 3 and if the prime power q is sufficiently large (in terms of d) then
there are totally chiral hypermaps with monodromy groups SLd(q) and PSLd(q).

Proof Let x be a diagonal matrix in X = SLd(q), with spectrum � ⊂ Fq consisting
of d distinct eigenvalues, so the centraliser of x in GLd(q) consists of the diagonal
matrices. We will show that if q is sufficiently large then one can choose � so that
x is a member of an asymmetric generating pair x, y for X, with a similar result for
their images x, y in X = PSLd(q).

The automorphisms ιa preserve eigenvalues, the field-automorphisms act naturally
on them, and the adjoint automorphism inverts them. The image x of x in X is rep-
resented by the matrices ωx where ωd = 1, and these have spectrum ω�. For any
fixed d ≥ 3, if q is sufficiently large one can choose � to be distinct from the sets
ω(�−1)γ where ωd = 1 and γ ∈ 	, and also from the sets ω�γ except where ω = 1
and γ = 1. (For example, one can take � = {ζ, ζ 2, . . . , ζ d−1, ζ−d(d−1)/2} for suffi-
ciently large q , where ζ generates F ∗

q , noting that inversion and multiplication by ω

preserve the multiset of ratios λ/μ for λ,μ ∈ �; no such choice is possible for d = 2
since the condition detx = 1 forces � = �−1.) Our conditions on � then ensure that
the only automorphisms inverting x (and hence the only automorphisms inverting x)
are the automorphisms βa,1 : g �→ (g∗)a where a commutes with x and is therefore
a diagonal matrix. A simple calculation shows that the proportion of elements y ∈ X

(or y ∈ X) inverted by any such βa,1 approaches 0 as q → ∞, whereas recent results
on random generation of simple groups [17] imply that the proportion of y such that
〈x, y〉 = X approaches 1. This means that for all sufficiently large q , X has an asym-
metric generating pair x, y, so Lemma 11 shows that X is the monodromy group of a
totally chiral hypermap, corresponding to the kernel H of the obvious epimorphism
�+ → X.

Clearly x, y form an asymmetric pair, since any automorphism of X inverting
them would induce an automorphism of X inverting x and y; we now show that they
generate X. The subgroup S = 〈x, y〉 maps onto X, so SZ = X where Z = ker(X →
X) is the centre of X, and hence S is normal in X (since it commutes with Z); now
X/S = SZ/S ∼= Z/(S ∩Z), which is abelian, and X is perfect, so S = X as required.
This gives an epimorphism �+ → X with kernel K contained in H . Now K� is a
normal subgroup of �+, properly containing K , so because every proper normal
subgroup of X = SLd(q) is contained in Z we have K� ≤ H or K� = �+. The first
case implies that H/K� is the centre of �+/K�, so H is normal in �, which is
false. Hence K� = �+, so the hypermap corresponding to K is totally chiral, with
monodromy group X. �
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No doubt, a more careful examination of the families of finite simple groups would
reveal further examples of totally chiral hypermaps.

Remark. The chiral maps up to genus 15 have abelian chirality groups (see [2]) and
therefore they cannot be totally chiral. Among these is the Edmonds map (that is, the
map C7.2 in [7]), a chiral map of genus 7 and size 56, for which the chirality group
is elementary abelian of order 8; this is our Example 2 with q = 8. Totally chiral
hypermaps do not appear for small genera: the smallest genus given by our proof
of Theorem 13 is 481 (with n = 7) and by examining the computer classification of
chiral maps and hypermaps of small genus recently released by Conder [6] we find
that none of the chiral maps and hypermaps up to genus 101 is totally chiral.

6 Chirality groups and direct products

In this section we define a form of direct product of hypermaps, and we investigate
how the chirality group of the product can be expressed in terms of the chirality
groups of the factors. As an application of our general results we show that every
finite abelian group is the chirality group of some hypermap.

Let H and K be orientably regular hypermaps with hypermap subgroups H,K ≤
�+. We define the least common cover H ∨ K and the greatest common quotient
H ∧ K of H and K to be the orientably regular hypermaps with hypermap subgroups
H ∩ K and 〈H,K〉 = HK respectively. For example, we have H� = H ∨ Hr and
H� = H ∧ Hr . Clearly, every common cover of H and K also covers H ∨ K, and
any common quotient of them is also a quotient of H ∧ K. The coverings H ∨ K →
H and K → H ∧ K are regular with covering transformation group H/(H ∩ K) ∼=
HK/K , and the coverings H ∨ K → K and H → H ∧ K are regular with covering
transformation group K/(H ∩ K) ∼= HK/H .

We can write H = (D1,R1,L1) and K = (D2,R2,L2) for sets Di of darts, so
that the actions ρ �→ Ri, λ �→ Li of �+ on D1 and D2 induce a product action
ρ �→ R, λ �→ L of �+ on the set D = D1 × D2, given by R(x, y) = (R1x,R2y)

and L(x, y) = (L1x,L2y). If this action is transitive then it determines an orientably
regular hypermap H × K = (D,R,L) called the oriented direct product of H and K,
with hypermap subgroup H ∩K . The following straightforward lemma tells us when
this construction is possible (see [3]):

Lemma 15 If H and K are orientably regular hypermaps, then the following three
conditions are equivalent:

(a) �+ acts transitively on D;
(b) H ∧ K is the trivial orientable hypermap, with one dart;
(c) HK = �+.

When these conditions are satisfied, we say that H and K are orientably or-
thogonal, and write H ⊥ K; then H × K exists, and is isomorphic to H ∨ K, with
monodromy group Mon (H × K) = Mon (H) × Mon (K). For example, H is to-
tally chiral if and only if H ⊥ Hr , in which case H� = H × Hr with Mon (H�) =
Mon (H) × Mon (Hr ) ∼= (Mon (H))2.
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Proposition 16 Let H and K be orientably regular hypermaps, with hypermap sub-
groups H and K , such that K is totally chiral and covers H. Then the product
L = K × Hr is an orientably regular hypermap with chirality group X(L) ∼= H/K .

Proof Since K is totally chiral and K ≤ H , we have KHr ≥ KKr = �+, so KHr =
�+ and hence K ⊥ Hr . Consequently, the product L = K × Hr is a well-defined
orientably regular hypermap with hypermap subgroup L = K ∩ Hr . Using L� =
K ∩ Lr , the third isomorphism theorem, and KLr = H , we have X(L) ∼= Lr/L� =
Lr/(K ∩ Lr) ∼= KLr/K = H/K . �

We define two groups A and B to be mutually orthogonal, and write A ⊥ B , if
they have no non-trivial common epimorphic images.

Lemma 17 Let H and K be orientably regular hypermaps.

(a) If Mon (H) ⊥ Mon (K), then H ⊥ K.
(b) If, in addition, H and K are totally chiral, so is H ∨ K.

Proof (a) Let H and K be the hypermap subgroups of �+ corresponding to H and K.
If HK = �+, then �+/HK is a non-trivial epimorphic image of �+/H ∼= Mon (H)

and of �+/K ∼= Mon (K), against our assumption.
(b) Since H ⊥ Hr , we have H� = H × Hr , and similarly for K�. The groups

Mon (H�) = Mon (H) × Mon (Hr ) ∼= (Mon (H))2 and Mon (K�) = Mon (K) ×
Mon (Kr ) ∼= (Mon (K))2 are mutually orthogonal (since Mon (H) and Mon (K) are),
so H� ⊥ K� by (a). Now (H ∩ K)� = H� ∩ K�, so

Mon (H ∨ K)� = Mon (H�) × Mon (K�)

= (Mon (H) × Mon (Hr )) × (Mon (K) × Mon (Kr ))

= (Mon (H) × Mon (K)) × (Mon (Hr ) × Mon (Kr ))

= Mon (H ∨ K) × Mon ((H ∨ K)r )

as required. �

The converse of (a) is false: for instance, for each prime p there are p+1 mutually
orthogonal orientably regular hypermaps H with Mon (H) ∼= Cp .

Corollary 18 Let H1, . . . , Hk be orientably regular hypermaps.

(a) If the groups Mon (Hi ) are pairwise orthogonal, then

H1 ∨ · · · ∨ Hk = H1 × · · · × Hk.

(b) If, in addition, each hypermap Hi is totally chiral, then so is H1 ∨ · · · ∨ Hk .

Proof This follows by induction on k: since Mon (Hi ) ⊥ Mon (Hk) for all i < k we
have Mon (H1)×· · ·× Mon (Hk−1) ⊥ Mon (Hk), so the previous Lemma applies. �
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We are now ready to prove that every finite abelian group appears as the chirality
group of some hypermap. First we deal with cyclic groups:

Proposition 19 For each integer n ≥ 1 there is an orientably regular hypermap with
chirality group Cn.

Proof We have seen in the proof of Theorem 14 that if d ≥ 3 and q is sufficiently
large, then there are totally chiral hypermaps K and H with normal hypermap sub-
groups K ≤ H in �+ satisfying �+/K ∼= X = SLd(q), �+/H ∼= X = PSLd(q),
and H/K ∼= Z = Z(X). By Proposition 16, Z ∼= X(L) where L = K × Hr . Now Z is
a cyclic group of order gcd(q − 1, d), and we can choose d (≥ 3) and q (sufficiently
large) so that this takes any prescribed value n ≥ 1: if n ≥ 3 we can take d = n and
q ≡ 1 (mod n) (recall that Euler’s Theorem gives pφ(n) ≡ 1 (mod n) for each prime
p not dividing n), and if n = 1 or 2 we can take d = 4 and q ≡ 0 or 3 (mod 4),
respectively. �

We now extend this method of proof to all abelian groups:

Theorem 20 Every finite abelian group is the chirality group of some orientably
regular hypermap.

Proof Every finite abelian group can be written in the form A = Cn1 × · · · × Cnk
for

some positive integers n1, . . . , nk . By the proof of Theorem 14, we can choose normal
subgroups Ki ≤ Hi of �+ for i = 1, . . . , k such that �+/Ki

∼= SLdi
(qi), �+/Hi

∼=
PSLdi

(qi) and Hi/Ki = Z(�+/Ki) ∼= Cni
with di ≥ 3, and the corresponding ori-

entably regular hypermaps Ki and Hi are totally chiral; moreover, if ni = nj for some
i = j then we can take qi = qj . Now every proper normal subgroup of SLdi

(qi) is
central, so every non-trivial epimorphic image of SLdi

(qi) maps onto PSLdi
(qi); for

distinct pairs di (≥ 3) and qi the simple groups PSLdi
(qi) are non-isomorphic, so

they are mutually orthogonal, and hence so are the groups SLdi
(qi).

By Corollary 18, the hypermaps H = H1 ∨ · · · ∨ Hk = H1 × · · · × Hk and
K = K1 ∨ · · · ∨ Kk = K1 × · · · × Kk are both totally chiral, corresponding to nor-
mal subgroups H = H1 ∩ · · · ∩ Hk and K = K1 ∩ · · · ∩ Kk of �+ with H/K ∼=
(H1/K1) × · · · × (Hk/Kk) ∼= A. By Proposition 16 the hypermap L = K × Hr cor-
responding to L = K ∩ Hr has X(L) ∼= H/K ∼= A. �

7 Nonabelian chirality groups

The preceding results make it tempting to conjecture that every finite group is the
chirality group of some orientably regular hypermap; for instance, Lemma 11 shows
that every simple group with an asymmetric generating pair arises in this way. How-
ever, the next result shows that such a conjecture is false. For any group S, let Z,I

and A denote the centre Z(S), the inner automorphism group InnS ∼= S/Z, and the
automorphism group AutS. The action of S by conjugation on itself induces a ho-
momorphism S → I ≤ A with kernel Z; for each subgroup T ≤ S let T denote the
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image T Z/Z of T in I . A subgroup T ≤ S is characteristic in S if it is invariant
under A; this implies that T is a normal subgroup of A.

Theorem 21 If a group S has a characteristic subgroup T such that T < S and A/T

is abelian, then S cannot be a chirality group.

Before proving this result, let us examine some of its consequences. Recall that a
group S is complete if S has trivial centre and all its automorphisms are inner, so that
S ∼= AutS.

Corollary 22 If S is a complete group and S is not perfect, then S cannot be a
chirality group.

Proof Let T be the commutator subgroup S′, so T < S since S is not perfect. Since
Z = 1 we have S = S and T = T , so T < S. Since A = S we have A/T = S/S′,
which is abelian, so Theorem 21 gives the result. �

Corollary 23 The symmetric group Sn is a chirality group if and only if n ≤ 2.

Proof Let S = Sn for any n > 2, and take T to be the alternating group An, a proper
subgroup of S which is characteristic since T = S′. We have Z = 1, and if n = 6
then A = S, so Corollary 22 implies that S cannot be a chirality group. If n = 6
then |A : S| = 2, so A/T = A/T is abelian (of order 4) and Theorem 21 gives the
required result. However, Sn

∼= Cn for n = 1 and 2, and these are chirality groups by
Proposition 19. �

More generally, the automorphism group S of a nonabelian finite simple group F

is always complete, by a theorem of Burnside [28, Theorem 13.5.9]. In many cases F

has outer automorphisms, so S > F ; by the Schreier Conjecture, the proof of which
follows from the classification of finite simple groups [16, Theorem 1.46], S/F is
solvable, so S is not perfect and hence cannot be a chirality group.

Corollary 24 The dihedral group Dn is a chirality group if and only if n ≤ 2.

Proof Let S be the dihedral group Dn = 〈a, b | an = b2 = (ab)2 = 1〉, with n > 2,
and take T = 〈a〉 ∼= Cn. Since T is generated by the elements of order n in S, it is
a characteristic subgroup of S. Now A = AutS is isomorphic to the holomorph of
Cn, a split extension of Cn by AutCn = Un, the group of units mod (n): the normal
subgroup Cn is generated by the automorphism fixing a and sending b to ab, while
the complement Un is the automorphism group of T , fixing b. If n is odd, then Z = 1,
so S = S and T = T ; since A/T is isomorphic to Un it is abelian, so Theorem 21
implies that S cannot be a chirality group. If n = 2m is even, then Z = 〈am〉 ∼= C2,
so S ∼= Dm and T ∼= Cm; in this case, A/T ∼= Un × C2 which is again abelian, so we
have the same result. �

The above proof fails for n = 2 since C2 is not characteristic in D2; indeed, Dn is
abelian for n ≤ 2, and is therefore a chirality group by Theorem 20.
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Corollary 25 If q = pe where p is prime, and d divides p − 1, then PGLd(q) and
GLd(q) are not chirality groups.

Proof Take S = PGLd(q) and T = PSLd(q), so Z = 1 and S/T = S/T ∼=
F ∗

q /(F ∗
q )d ∼= C(d,q−1). We have A = P	Ld(q) with A/T abelian (isomorphic to

C(d,q−1) × Ce = Cd × Ce) if d divides p − 1, in which case PGLd(q) cannot be a
chirality group by Theorem 21. The same applies to S = GLd(q), with T = SLd(q)

and Z the group of scalar matrices, so that S = PGLd(q) and T = PSLd(q). �

In particular, if q is odd then PGL2(q) and GL2(q) are not chirality groups.

Proof of Theorem 21 Suppose that S is a chirality group, so �+ has a normal sub-
group H with H/H�

∼= Hr/H�
∼= H�/H ∼= H�/Hr ∼= S, in the usual notation. Let

Q = �+/H�, so Q has normal subgroups N1 = H/H� and N2 = Hr/H�, both iso-
morphic to S, generating their direct product N1 × N2 ∼= S × S as a normal subgroup
N = H�/H� of Q. Now let C be the centraliser CQ(N), a normal subgroup of Q,
and for each subgroup X ≤ Q let X = XC/C ∼= X/(X ∩C), the image of X in Q/C.
We have N ∩C = Z(N1)×Z(N2) ∼= Z(S)2, so N = N1 ×N2 ∼= (S/Z(S))2, with N

and each Ni normal in Q. The action of Q by conjugation on N , preserving each Ni ,
induces a faithful action of Q; this gives an embedding Q ≤ AutN1 × AutN2 ∼= A2,
where A denotes AutS.

In the natural homomorphism S → S = S/Z(S) = InnS ≤ A, where S acts on
itself by conjugation, any characteristic subgroup T of S maps to a normal subgroup
T of A, contained in S. Suppose that T < S and A/T is abelian. If T i is the subgroup
of Ni corresponding to T , then T 1 × N2 is a normal subgroup of Q, with

Q/(T 1 × N2) ≤ A2/(T 1 × N2) ∼= A/T 1 × A/N2.

Now A/T 1 is abelian, as is its quotient A/N2, and hence so is Q/(T 1 × N2). The
automorphism α of �+ acts on Q, preserving N and hence C, so it induces an au-
tomorphism of Q, inverting its two generators; since Q/(T 1 × N2) is abelian, it has
an automorphism inverting its two generators, so α preserves T 1 × N2. However, it
transposes N1 and N2 and hence transposes T 1 ×N2 and N1 ×T 2, which are distinct
since T i < Ni . This contradiction shows that S cannot be a chirality group. �

A similar argument shows that A5 cannot be a chirality group. For otherwise,
putting S = A5 we have Z(S) = 1 and A = S5, so A5 × A5 ≤ Q ≤ S5 × S5 with α

inducing an automorphism of Q which transposes the two copies of A5. This implies
that �+ has a normal subgroup, with quotient group A5 or S5, which is not normal
in �, contradicting Corollary 9.

In contrast with the rather simple criteria in Theorem 20 and Corollaries 23 and
24 the next result suggests that a complete characterisation of chirality groups will be
a difficult task.

Theorem 26 The 1-dimensional affine group AGL1(q) is a chirality group if and
only if q is an odd power of 2.
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Proof If S = AGL1(q) then Z = Z(S) = 1, and we can identify A = AutS with
A	L1(q). This group consists of the transformations t �→ atγ + b of Fq , where
a, b ∈ Fq, a = 0 and γ ∈ 	 = GalFq ; this Galois group is a cyclic group of order
e generated by the Frobenius automorphism t �→ tp of Fq , where q = pe and p is
prime. The transformations with γ = 1 form the group S, a normal subgroup of index
e in A on which A acts by conjugation.

In the proof we will use the following subgroups of S: for each divisor d of q − 1
let Td be the group of transformations t �→ at + b where a is a d-th power in F ∗

q .
This is the unique subgroup of index d in S, so it is characteristic in S; A/Td is a
split extension of S/Td

∼= Cd by A/S ∼= 	 ∼= Ce.
If q is odd, we can apply Theorem 21 with T = T2. We have S = S and T = T , so

T < S. Since A/T = A/T ∼= C2 × Ce, which is abelian, Theorem 21 implies that S

cannot be a chirality group.
Now let q = 2e . First we show that if e is odd then S is a chirality group. Since

AGL1(2) ∼= C2, we may assume that e > 1. Let x ∈ A be given by t �→ t2, and
let y ∈ S be given by t �→ u(t − v) + v = ut + (1 − u)v, where u generates F ∗

q

and v ∈ Fq \ F2. Then y generates the stabiliser Sv in S of v, a cyclic group of
order q − 1 consisting of the transformations t �→ ui(t − v) + v, and its conjugate
yx = x−1yx : t �→ (u

√
t + (1 − u)v)2 = u2t + (1 − u)2v2 generates the stabiliser

Sv2 of v2. Since v = 0,1 we have v = v2, so Sv = Sv2 . Since S acts primitively (in
fact, doubly transitively) on Fq , the stabilisers of points are maximal subgroups of S,
so S = 〈Sv,Sv2〉 = 〈y, yx〉; since xS generates A/S it follows that A = 〈x, y, yx〉 =
〈x, y〉. This gives an epimorphism θ : �+ → A, so that A is the monodromy group
of a regular orientable hypermap, corresponding to the normal subgroup H = ker θ
of �+.

The normal subgroup K = θ−1(S) of �+ satisfies �+/K ∼= A/S ∼= GalFq
∼= Ce,

so �+/K is abelian; it follows from Corollary 9 that K is normal in � and
hence H� ≤ K . If we can show that H� = K then we have a chirality group
H�/H = K/H ∼= S, as required, so suppose that H� < K . Since H� ≥ H we have
H� = θ−1(N) for some normal subgroup N of A, properly contained in S, and hence
contained in a maximal normal subgroup of S. Now the maximal normal subgroups
of S are the subgroups Tp defined earlier, one for each prime p dividing q − 1, so
N ≤ Tp for some p. Since q is even, p is odd. We have

A/Tp = 〈x, y | xe = yp = 1, yx = y2〉,
so in A/Tp we have

(y−1)x
−1 = y−1/2 (= y(p−1)/2).

Now the automorphism α of �+ leaves H� and K invariant, so it induces an auto-
morphism of A/N (∼= �+/H�) leaving S/N (∼= K/H�) invariant; since Tp/N is
the unique normal subgroup of index p in S/N it is invariant under α, which there-
fore induces an automorphism of A/Tp . This automorphism inverts x and y, so by
applying it to the relation yx = y2 of A/Tp we get

(y−1)x
−1 = y−2
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in A/Tp . Comparing these two equations we get y−1/2 = y−2, so y3 = 1 in A/Tp

and hence p = 3. Thus q = 2e ≡ 1 mod (3), so e is even, against our hypothesis. This
contradiction shows that AGL1(2e) is a chirality group for all odd e.

If e = 2f is even then q ≡ 1 mod (3), so S has a characteristic subgroup T = T3

with

A/T = 〈x, y | xe = y3 = 1, yx = y2〉
and S/T = 〈y〉 ∼= C3. The subgroup 〈x2〉, isomorphic to Cf , is normal (in fact, cen-
tral) in A/T , with quotient isomorphic to D3; let U denote its inverse image in A, so
T ≤ U ≤ A with U/T ∼= Cf and A/U ∼= D3. For any subgroup X of A (or of A2),
let X∗ denote its image XU/U ∼= X/(X ∩ U) in A/U (or in A2/U2), so S∗ ∼= C3

and A∗ ∼= D3. We have T 2 < S2 ≤ Q ≤ A2, so C2
3

∼= (S2)∗ ≤ Q
∗ ≤ (A2)∗ ∼= D2

3 and

hence Q
∗

is either C2
3 or D2

3 or an extension of C2
3 by C2. Now α transposes H and

Hr , so it induces an automorphism of Q
∗
, inverting its generators and transposing the

corresponding two normal subgroups C3. However, these two normal subgroups of
Q

∗
have quotient group C3 or D3 or D3 ×C2 ∼= D6, which are abelian or dihedral, so

in each case Proposition 8 implies that they are invariant under α. This contradiction
shows that AGL1(2e) is not a chirality group when e is even. �
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