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Abstract We introduce a specialization technique in order to study monomial ideals
that are generated in degree two by using our earlier results about Ferrers ideals.
It allows us to describe explicitly a cellular minimal free resolution of various ideals
including any strongly stable and any squarefree strongly stable ideal whose minimal
generators have degree two. In particular, this shows that threshold graphs can be
obtained as specializations of Ferrers graphs, which explains their similar properties.

Keywords Ferrers graphs · Threshold graphs · Monomial (edge) ideals · Cellular
minimal free resolution

1 Introduction

One of the starting points of this note has been the observation that two very common
classes of graphs, namely Ferrers graphs and threshold graphs, have similar proper-
ties (see, e.g., [9]). This is remarkable as Ferrers graphs are particular bipartite graphs
on vertex sets {x1, . . . , xn} and {y1, . . . , ym}, whereas threshold graphs are typically
not bipartite. One of the goals of this article is to show that the similarity between
these graphs extends to algebraic properties of their edge ideals and that it has a
natural interpretation. In fact, in [4] we have described a cellular minimal free resolu-
tion of Ferrers ideals, the edge ideals of Ferrers graphs. The polyhedral cell complex
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that governs this cellular resolution has a very nice geometric description as a cer-
tain subcomplex of the face complex of the product of two simplices. This allows us
to compute various invariants of Ferrers ideals such as, for example, their Z-graded
Betti numbers and their height. The main idea of this paper is that this information
can be used to gain insight about graphs that are often not bipartite by using a ‘spe-
cialization’ process (see Section 3). Roughly speaking, specializing simply means to
identify each y-vertex with an x-vertex. Extending this specialization to the polyhe-
dral cell complex that resolves the Ferrers ideal provides, under suitable hypotheses,
a cellular minimal free resolution of the specialized Ferrers ideal that is not neces-
sarily a squarefree monomial ideal. After some preliminaries this program is carried
out in Section 3. In Section 4 we discuss the class of ideals and graphs that can be
described by using specializations of Ferrers ideals. In particular, we show that all
threshold graphs can be obtained as specializations of Ferrers graphs. Furthermore,
every strongly stable ideal that is generated in degree two can be obtained as such a
specialization.

Horwitz shows in [7] that each squarefree monomial ideal I that has a 2-linear
free resolution admits a cellular minimal free resolution that is given by a regular cell
complex, provided the graph to which I corresponds does not contain a certain sub-
graph G′. Though we consider only a subset of the monomial ideals with regularity
two, our results for these are more explicit. In particular, we give a geometric descrip-
tion of the underlying polyhedral cell complexes. We also show that our results apply
to the exceptional graph G′ (see Example 4.3).

2 Preliminaries

A Ferrers graph is a bipartite graph on two distinct vertex sets X = {x1, . . . , xn}
and Y = {y1, . . . , ym} such that if (xi, yj ) is an edge of G, then so is (xp, yq) for
1 ≤ p ≤ i and 1 ≤ q ≤ j . In addition, (x1, ym) and (xn, y1) are required to be edges
of G. For any Ferrers graph G there is an associated sequence of non-negative in-
tegers λ = (λ1, λ2, . . . , λn), where λi is the degree of the vertex xi . Notice that the
defining properties of a Ferrers graph imply that λ1 = m ≥ λ2 ≥ · · · ≥ λn ≥ 1; thus λ

is a partition. Alternatively, we can associate to a Ferrers graph a diagram Tλ, dubbed
a Ferrers tableau, consisting of an array of n rows of cells with λi adjacent cells, left
justified, in the i-th row. A Ferrers ideal is the edge ideal associated with a Ferrers
graph. Throughout this article λ = (λ1, λ2, . . . , λn) will always denote a fixed parti-
tion associated to a Ferrers graph Gλ with corresponding Ferrers ideal Iλ. See [4] and
[12] for additional details.

In this paper we study ideals that are closely related to Ferrers ideals. In order
to explicitly describe their minimal free resolutions, we use the theory of cellular
resolutions and polyhedral cell complexes as developed in [3] and [2]. We briefly
recall some basic notions. However, we refer to [2] (or [11]) for a more detailed
introduction.

A polyhedral cell complex X is a finite collection of convex polytopes (in some
R

N) called faces (or cells) of X such that:

(1) if P ∈ X and F is a face of P , then F ∈ X;
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(2) if P,Q ∈ X then P ∩ Q is a face of both P and Q.

Let Fk(X) be the set of k-dimensional faces. Each cell complex admits an incidence
function ε on X, where ε(Q,P ) ∈ {1,−1} if Q is a facet of P ∈ X. X is called a
labeled cell complex if each vertex i has a vector ai ∈ N

N (or the monomial zai ,
where zai denotes a monomial in the variables z1, . . . , zN) as label. The label of an
arbitrary face Q of X is the exponent aQ, where zaQ := lcm (zai | i ∈ Q). Each labeled
cell complex determines a complex of free R-modules, where R is the polynomial
ring K[z1, . . . , zN ]. The cellular complex FX supported on X is the complex of free
Z

N -graded R-modules

FX : 0 → RFd(X) ∂d−→ RFd−1(X) ∂d−1−→ · · · ∂2−→ RF1(X) ∂1−→ RF0(X) ∂0−→ R → 0,

where d = dimX and RFk(X) :=
⊕

P∈Fk(X)

R[−aP ]. The map ∂k is defined by

∂k(eP ) :=
∑

Q facet of P

ε(P,Q) · zaP −aQ · eQ,

where {eP |P ∈ Fk(X)} is a basis of RFk(X), e∅ := 1, and a∅ := 0. If FX is acyclic,
then it provides a free Z

N -graded resolution of the image I of ∂0, that is, the ideal
generated by the labels of the vertices of X. In this case, FX is called a cellular
resolution of I .

Example 2.1 Consider the ideal I := (x1, . . . , xn)(y1, . . . , ym) ⊂ R = K[x1, . . . , xn,
y1, . . . , ym]. Let Xn,m be the face complex of the polytope �n−1 × �m−1 obtained
by taking the Cartesian product of the (n − 1)-simplex �n−1 and the (m − 1)-
simplex �m−1. Labeling the vertices of �n−1 by x1, . . . , xn and the ones of �m−1 by
y1, . . . , ym, the vertices of the cell complex Xn,m are naturally labeled by the mono-
mials xiyj with 1 ≤ i ≤ n and 1 ≤ j ≤ m. This turns Xn,m into a labeled polyhedral
cell complex. The picture below illustrates the case where n = 2 and m = 3. It is
shown in [4] that the complex FXn,m is a minimal free resolution of I . We remark
that this is nothing but the tensor product of two Koszul complexes.

The acyclicity of FX is merely determined by the geometry of the polyhedral cell
complex X. Recall that X is called acyclic if it is either empty or has zero reduced
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homology. Moreover, consider the partial order on N
N
0 defined by a � c if c−a ∈ N

N
0 .

For any c ∈ Z
N , we define the subcomplex X�c of X as the labeled complex that

consists of the faces of X whose labeling monomials za satisfy a � c.
Bayer and Sturmfels have established the following criterion [2, Proposition 1.2]

that we will use in the following section.

Lemma 2.2 The complex FX is a cellular resolution if and only if, for each c ∈ N
N
0 ,

the complex X�c is acyclic over the field K .

3 Specializations

There are relatively few monomial ideals for which the minimal free resolution is
explicitly known. These include the edge ideals of bipartite graphs that are 2-regular.
Up to isomorphisms these are exactly the Ferrers ideals whose minimal free resolu-
tions have been described in [4]. Here we want to show that this information can be
used to obtain the minimal free resolution of other monomial ideals by a process that
we call specialization. This resolution will be again cellular.

Definition 3.1 Let I be a monomial ideal contained in R = K[x1, . . . , xn, y1, . . . , ym].
Let σ : {y1, . . . , ym} −→ {x1, . . . , xk} be any map, where k = max{m,n} and
xn+1, . . . , xk are (possibly) additional variables. By abuse of notation we use the
same symbol to denote the substitution homomorphism σ : R −→ S, where S :=
K[x1, . . . , xk], given by xi 
→ xi and yi 
→ σ(xi). We call σ the specialization map
and the monomial ideal I := σ(I) ⊂ S the specialization of I .

In general, the ideals I and I have quite different properties.

Example 3.2 (i) Let λ := (2,2) and consider the specialization σ defined by yi 
→ xi .
Then the Ferrers ideal Iλ has 4 minimal generators while Iλ has only 3 minimal
generators.

(ii) Consider the ideal I = (x1y1, x1y3, x2y1) and the specialization σ(yi) = xi .
Then I and its specialization I have the same number of minimal generators, but
I has height two whereas I has height one. However, if we use the specialization
defined by yi 
→ x4−i , then I and the specialized ideal have the same Z-graded Betti
numbers.

These examples illustrate that we need some assumptions and a careful choice of
the specialization in order to study the specialized ideal by means of the original one.
Throughout the remainder of this article we make the following assumption:

Assumption 3.3 Let us assume that m ≥ n and that σ : R −→ S := K[x1, . . . , xm]
is the specialization map defined by

σ(yi) = xi.
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In order to increase the range of graphs obtained as a specialization of Ferrers
graphs, we introduce some notation for ideals that are isomorphic to Ferrers ideals.

Definition 3.4 Let λ = (λ1, . . . , λn) be a partition and let μ = (μ1, . . . ,μn) ∈ Z
n be

a vector such that

0 ≤ μ1 ≤ · · · ≤ μn < λn.

Then we define the ideal

Iλ−μ := (xiyj | 1 ≤ i ≤ n,μi < j ≤ λi) ⊂ Iλ

and call it a generalized Ferrers ideal.

Note that the assumption μn < λn is essentially not a restriction. It just ensures
that the variable xn divides one of the minimal generators of Iλ−μ.

As in the case of Ferrers ideals, generalized Ferrers ideals correspond to a shape
Tλ−μ that is obtained from the Ferrers diagram Tλ by removing the first μi boxes
in row i beginning on the left-hand side. We use the notation λ − μ in order to dis-
tinguish it from the common notation for skew shapes. Two examples are illustrated
below:

By reordering the columns of Tλ−μ according to their length we see that Iλ−μ is iso-
morphic to the Ferrers ideal associated to the partition (λ1 −μ1, . . . , λn −μn). Note,
however, that isomorphic generalized Ferrers ideals have in general non-isomorphic
specializations.

Example 3.5 Let λ := (5,4,4), μ := (1,2,3) and λ′ := (5,5,5), μ′ := (1,3,4).
Then the generalized Ferrers ideals

Iλ−μ = (x1y2, x1y3, x1y4, x1y5, x2y3, x2y4, x3y4),

Iλ′−μ′ = (x1y2, x1y3, x1y4, x1y5, x2y4, x2y5, x3y5)

are isomorphic, while their specializations

I λ−μ = (x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x3x4),

Iλ′−μ′ = (x1x2, x1x3, x1x4, x1x5, x2x4, x2x5, x3x5)

are not isomorphic. Indeed, the graph Gλ′−μ′ corresponding to Iλ′−μ′ has two ver-
tices of degree two whereas the graph Gλ−μ corresponding to I λ−μ does not have any
vertex of degree two.
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We want to show that the specialization of a generalized Ferrers ideal has a mini-
mal free cellular resolution. This requires some preparation. We begin by describing
the minimal free resolution of a generalized Ferrers ideal. The complex Xn,m has
been introduced in Example 2.1.

Definition 3.6 The labeled polyhedral cell complex Xλ−μ associated to λ and μ is
the labeled subcomplex of Xn,m consisting of all the faces of Xn,m whose vertices are
labeled by monomials in the generalized Ferrers ideal Iλ−μ .

This complex captures the information about the resolution of Iλ−μ . In fact, we
have:

Lemma 3.7 The complex FX
λ−μ

of free R-modules provides the minimal free Z
m+n-

graded resolution of Iλ−μ .

Proof Since the generalized Ferrers ideal is isomorphic to a Ferrers ideal, we may re-
strict ourselves to this case, i.e. μ = 0, by permuting the variables y1, . . . , ym suitably.
For Ferrers ideals, the claim is shown as in [4, Theorem 3.2]. �

Corollary 3.8 The minimal Z-graded free resolution of Iλ−μ is 2-linear, and, for
i > 0, the i-th Betti number of R/Iλ−μ is given by

βi(R/Iλ−μ) =
(

λ1 − μ1

i

)
+

(
λ2 − μ2 + 1

i

)
+· · ·+

(
λn − μn + n − 1

i

)
−

(
n

i + 1

)
.

Proof This follows as in [4] because each i-dimensional face of Xλ−μ has a label of
total degree i + 2. �

Now we want to specialize. Notice that if μi ≤ i − 2 for some i ≥ 2 and λi−1 ≥ i,
the two monomials xi−1yi and xiyi−1 in Iλ−μ specialize to the same monomial. Ex-
cluding this case, we get:

Lemma 3.9 Suppose in addition that μi ≥ i − 1, i = 1, . . . , n. Then the ideals Iλ−μ

and I λ−μ have the same number of minimal generators, namely |λ|− |μ| = λ1 +· · ·+
λn − (μ1 + · · · + μn).

Proof The assumption guarantees that the specialization map is injective on the set
of minimal generators of Iλ−μ . �
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This observation shows that the labels of the following complex are pairwise dis-
tinct.

Definition 3.10 The labeled polyhedral cell complex Xλ−μ associated to λ and μ is
the complex obtained from Xλ−μ by specializing its labels. In particular, both com-
plexes have the same supporting cell complex.

Example 3.11 Let λ := (4,4,4) and μ := (1,2,3). Below we depict the complex
Xλ−μ on the left-hand side and its specialization Xλ−μ on the right-hand side.

The facets of both complexes are two triangles and one rectangle.

The main result of this note is:

Theorem 3.12 If μi ≥ i − 1 (i = 1, . . . , n), then the complex FX
λ−μ

of free

S-modules provides the minimal free Z
m-graded resolution of the specialization of

the generalized Ferrers ideal I λ−μ .

Proof Our strategy is to reduce the claim to the corresponding statement for general-
ized Ferrers ideals by applying the criterion of Bayer and Sturmfels (see Lemma 2.2)
twice.

We begin with a general observation. Each face F of Xλ−μ is the product of the
convex hull of a set {xi1, . . . , xip } and of a set {yj1, . . . , yjq }, where 1 ≤ i1 < · · · <

ip ≤ n and 1 ≤ j1 < · · · < jq ≤ m. The face F has pq vertices with labels xikyjl
.

In particular, xipyj1 is a generator of Iλ−μ . Thus, the assumption μi ≥ i − 1 implies
that ip ≤ j1. It follows that the label mF = xi1 · · ·xipyj1 · · ·yjq of F specializes to
xi1 · · ·xipxj1 · · ·xjq , which is equal to the least common multiple of the specializa-
tions xikxjl

of the monomials labeling the vertices of F .
Now let c ∈ N

m
0 and consider the vertices in (Xλ−μ)�c. By Lemma 3.9, each such

vertex corresponds to a vertex in Xλ−μ though the labels are different. Define c =
(a1, . . . , an, b1, . . . , bm) ∈ Z

n+m to be the unique (n + m)-tuple such that xayb is the
least common multiple of the labels of the vertices in Xλ−μ that correspond to vertices
in (Xλ−μ)�c. The crucial observation is:

Claim: (Xλ−μ)�c is the labeled cell complex obtained from (Xλ−μ)�c by specializing
its labels.

To see this, let us write xe � xf if e � f.
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Now let F be a face of (Xλ−μ)�c. By the definition of c, the labels of the vertices
of F specialize to monomials xik xjl

� xc. The least common multiple of these mono-
mials, say xa, also satisfies xa � xc. By the above observation xa is the specialization
of the label mF . Hence, F corresponds to a face of (Xλ−μ)�c.

Conversely, let F be a face of (Xλ−μ)�c. By the definition of c, the vertices of F

correspond to vertices of (Xλ−μ)�c. Let xayb be the least common multiple of the
monomials xikyjl

labeling these vertices. Then the (n + m)-tuple (a,b) obtained by
concatenating satisfies (a,b) � c. Hence F corresponds to a face of (Xλ−μ)�c, and
the proof of the claim is complete.

According to Lemma 3.7, the complex FX
λ−μ

is exact. Thus Lemma 2.2 yields
that the complex (Xλ−μ)�c is acyclic over K . Hence, the above claim shows that
(Xλ−μ)�c is also acyclic. Now apply the Bayer-Sturmfels criterion (Lemma 2.2) to
FX

λ−μ
and the proof is complete. �

Corollary 3.13 If μi ≥ i − 1 (i = 1, . . . , n), then the ideal I λ−μ has a 2-linear Z-
graded free resolution, i.e. its Castelnuovo-Mumford regularity is two.

Proof This follows by combining Corollary 3.8 and the claim in the above proof. �

Using [5, Proposition 0.3], the last result implies in particular that Iλ−μ is the
homogeneous ideal of a small subscheme in P

m−1 that is not necessarily reduced. In
[5, Theorem 6.1], Eisenbud, Green, Hulek, and Popescu construct a free resolution
for every reduced subscheme X that is the union of linear subspaces and that has a
2-linear free resolution. However, in general this resolution is not minimal though it
gives the exact number of minimal generators of the homogeneous ideal IX of X. Our
Theorem 3.12 treats cases where IX is a not necessarily reduced monomial ideal, and
it has a stronger conclusion.

We can also interpret the above results using the concept of lifting. Indeed, let
I be an ideal in the commutative ring A and let u1, . . . , ut be elements in A. Set
B := A/(u1, . . . , ut )A and let J ⊂ B be an ideal. Then I is said to be a t-lifting of J

if {u1, . . . , ut } is an A/I -regular sequence and (I, u1, . . . , ut )/(u1, . . . , ut ) ∼= J (see
[10, Definitions 2.1 and 2.3]).

Recall our assumption m ≥ n. Hence R is a subring of the polynomial ring R′ :=
K[x1, . . . , xm, y1, . . . , ym].

Corollary 3.14 If μi ≥ i − 1 (i = 1, . . . , n), then the ideal Iλ−μR′ is an m-lifting of

the ideal I λ−μ ⊂ S.

Proof Obviously, we have (Iλ−μR′ + (y1 − x1, . . . , ym − xm))/(y1 − x1, . . . , ym −
xm) ∼= I λ−μ . It remains to show that {y1 − x1, . . . , ym − xm} is an R′/Iλ−μR′-
regular sequence. The minimal free resolution of Iλ−μ over R has the same length
as the minimal free resolution of Iλ−μR′ over R′. Moreover, Theorem 3.12 shows
that both resolutions have the same length as the minimal free resolution of I λ−μ

over S. Hence, the Auslander-Buchsbaum formula provides that depthR′/Iλ−μR′ =
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m+ depthS/I λ−μ = m+ depthR′/(Iλ−μR′ + (y1 −x1, . . . , ym −xm)). It follows that
{y1 − x1, . . . , ym − xm} is an R′/Iλ−μR′-regular sequence. �

Probably, the last result could be shown directly by brute force, thus giving an al-
ternative approach to the results about the resolutions of the specializations. However,
our above approach seems more elegant and transparent.

4 Threshold graphs and stable ideals

We are going to discuss the graphs and ideals, respectively, that we obtain as special-
izations of Ferrers graphs and ideals. Allowing loops, each graph G on the vertex set
[m] = {1, . . . ,m} defines the edge ideal IG ⊂ S that is generated by the monomials
xixj such that (i, j) is an edge of G. This provides a one-to-one correspondence be-
tween graphs on [m] and monomial ideals in S whose minimal generators all have
degree two.

Consider now a graph G on [m] without isolated vertices. This assumption is
harmless as far as the edge ideal is concerned. Order the vertices of G as follows.
Let 1 denote one of the vertices of highest degree. Assume we have chosen vertices
1, . . . , i − 1 where 2 ≤ i ≤ m. Then let i denote one of the vertices of highest degree
of the subgraph of G on the vertex set {i, . . . ,m}. Now we define

n := max{i | There is a vertex j ≥ i such that (i, j) is an edge of G}.

Furthermore, we set λ := (λ1, . . . , λn) where

λi := max{j | (i, j) is an edge of G}.

Note that λn ≥ n by the definition of n. Assume that λ1 = m and that λ1 ≥ λ2 ≥ · · ·
≥ λn. Then we can define μ := (μ1, . . . ,μn) where

μi := −1 + min{j ≥ i | (i, j) is an edge of G}.

Example 4.1 Let G be the graph obtained from the complete graph on 4 vertices
by taking away one edge. Then the above procedure gives IG = Iλ−μ, where λ =
(4,4), μ = (1,2).
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Proposition 4.2 Adopt the above notation and assume that the graph G satisfies

μ1 ≤ μ2 ≤ · · · ≤ μn

and

(i, j) is an edge of G whenever 1 ≤ i ≤ n and μi < j ≤ λi. (∗)

Then its edge ideal is IG = I λ−μ and FX
λ−μ

is the minimal free cellular Z
m-graded

resolution of IG. In particular,

reg(IG) = 2,

ht IG = min{min
j

{λj − μj + j − 1}, n},

depthS/IG = m − max
j

{λj − μj + j − 1}

and the i-th Betti number of S/IG is given by

βi(S/IG) =
(

λ1 − μ1

i

)
+

(
λ2 − μ2 + 1

i

)
+ · · · +

(
λn − μn + n − 1

i

)
−

(
n

i + 1

)
.

Proof This follows by Theorem 3.12 and Corollary 3.14 from the corresponding re-
sults for Ferrers ideals in [4]. �

Example 4.3 Let G′ be the graph obtained from the complete graph on 4 vertices by
taking away two edges that share a common vertex. Then the above procedure shows
that Proposition 4.2 applies to G′ with n = 2 and λ = (4,3), μ = (1,2).

Notice that G′ with a particular labeling is the graph that is excluded as a pattern of
the graphs considered in [7].

Corollary 4.4 Adopt the notation and assumptions of Proposition 4.2. Then S/IG is
a Cohen-Macaulay ring if and only if

min
j

{λj − μj + j − 1} = max
j

{λj − μj + j − 1} ≤ n.

Proof S/IG is Cohen-Macaulay if and only dimS/IG = depthS/IG. Hence Propo-
sition 4.2 provides the claim. �
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We now discuss classes of graphs or ideals to which Proposition 4.2 applies. Recall

that a monomial ideal I ⊂ S is called strongly stable if xi

xa

xj

∈ I whenever xa ∈ I ,

xj divides xa, and 1 ≤ i < j . A squarefree monomial ideal I is said to be squarefree

strongly stable if xi

xa

xj

∈ I whenever xa is a minimal generator of I , xj divides xa, xi

does not divide xa, and 1 ≤ i < j . Note that in general there are the weaker conditions
of being stable or squarefree stable. However, for ideals generated in degree two,
the corresponding concepts are equivalent. Eliahou and Kervaire describe in [6] the
minimal free resolution of an arbitrary strongly stable ideal I . If I is generated in
degree two, our results show that I admits a cellular resolution. More precisely:

Example 4.5 Let I ⊂ S be a strongly stable ideal whose minimal generators have de-
gree two and such that x1xm ∈ I . Let G be the corresponding graph. Then the stability
property guarantees that G satisfies condition (∗) where μi = i − 1 for i = 1, . . . , n.
In particular, Corollary 4.4 immediately implies the well-known fact that S/I is
Cohen-Macaulay if and only if m = λ1 = · · · = λn = n, that is I = (x1, . . . , xm)2.

Recall that a graph G on [m] is called a threshold graph if there is a vector
w = (w1, . . . ,wm) ∈ R

m such that (i, j) is an edge of G if and only if wi + wj > 0.
We refer to the book by Mahadev and Peled [9] for a wealth of information on thresh-
old graphs and to the work of Klivans and Reiner [8] for many alternative characteri-
zations of threshold graphs.

Corollary 4.6 Let G be a threshold graph on [m] and denote by λ′
i the degree of the

vertex i. Order the vertices such that λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
m ≥ 1. Define

n := max{i | λ′
i ≥ i},

λ = (λ1, . . . , λn) := (λ′
1 + 1, . . . , λ′

n + 1),

and

μ = (μ1, . . . ,μn) := (1,2, . . . , n).

Then the edge ideal of G is IG = I λ−μ and FX
λ−μ

is the minimal free cellular Z
m-

graded resolution of IG. In particular, reg(IG) = 2, ht IG = n, depthS/IG = 1 and
the i-th Betti number of S/IG is given by

βi(S/IG) =
(

λ1 − 1

i

)
+

(
λ2 − 1

i

)
+ · · · +

(
λn − 1

i

)
−

(
n

i + 1

)
.

Proof It is known (see [8]) that a graph without loops is threshold if and only if it is
shifted. Equivalently, the edge ideals of threshold graphs are precisely the squarefree
strongly stable ideals that are generated in degree two. It follows that each threshold
graph G satisfies the conditions in Proposition 4.2 with μi = i for i = 1, . . . , n. The
tableaux Tλ−μ corresponds to the so-called up-degree sequence of G. It is determined
by the degrees of the vertices of G as stated. �
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We illustrate this proof with the following example.

Example 4.7 Consider the graph G′ as depicted in Example 4.3. It is a threshold
graph on 4 vertices whose degree sequence is (3,2,2,1). Hence, using the notation
of Corollary 4.6, we get n = 2, λ = (4,3), and μ = (1,2). Thus, we see again that
the edge ideal of G′ equals I λ−μ .

Remark 4.8 (i) Corollary 4.6 shows explicitly how each threshold graph can be ob-
tained as the specialization of a Ferrers graphs. More precisely, using the fact that
edge ideals of threshold graphs are squarefree strongly stable [8], it describes how to
obtain such an ideal as the specialization of the edge ideal of a suitable Ferrers graph.
Thus, Corollary 4.6 explains the similar algebraic properties of Ferrers and threshold
graphs.

(ii) The minimal free resolution of an arbitrary squarefree stable monomial ideal
has been described by Aramova, Herzog and Hibi in [1]. However, it is not given as
a cellular resolution.

We end our note by remarking that, by suitably modifying the vertex labels if
necessary, our methods apply to more graphs than discussed so far.

Example 4.9 Consider the graph Gλ′−μ′ that is described in Example 3.5. This is the
same graph as the one studied in [7, Example 4.3], but with a different labeling. As
remarked earlier, its edge ideal is the specialization of Iλ′−μ′ with λ′ = (5,5,5) and
μ′ = (1,3,4). Hence the cellular resolution of Gλ′−μ′ is given by the polyhedral cell
complex pictured below

This cell complex has a 2-simplex as a facet, whereas Horwitz’s cell complex does
not have such a facet. This shows in particular that the maps in the free resolutions
constructed by Horwitz and by our methods are in general different.

After completing the first version of this note, Horwitz informed us that by apply-
ing his methods to the graph Gλ′−μ′ with the above labeling, he gets the same abstract
cell complex, but with a different labeling of its vertices, so again his resulting maps
in the free resolution are different from ours.
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