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Abstract Let Rd be the Z-module generated by the irreducible characters of the
symmetric group Sd . We determine bases for the kernel of the decomposition map.
It is known that Rd ⊗Z F is isomorphic to the radical quotient of the Solomon de-
scent algebra when F is a field of characteristic zero. We show that when F has
prime characteristic and I d

br is the kernel of the decomposition map for prime p then
Rd/Id

br ⊗Z F is isomorphic to the radical quotient of the p-modular Solomon descent
algebra.
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1 Introduction

A basic problem in representation theory of symmetric groups is to express irre-
ducible characters in terms of irreducible Brauer characters on p-regular elements for
p a prime number, that is to find the decomposition numbers.

If G is the symmetric group Sd let Rd be the Z-module generated by the ir-
reducible characters of G, and let Rd

br be the Z-module generated by the irre-
ducible Brauer characters of G. Restriction of functions to p-regular elements in-
duces a Z-homomorphism ξ : Rd → Rd

br ; and this is known to be surjective. The
decomposition numbers describe the kernel of this map, in terms of the bases of ir-
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reducible characters and the irreducible Brauer characters. However, although the
irreducible Brauer characters have nice parametrizations, they are not known in gen-
eral (and finding all decomposition numbers is known to be as hard as the Lusztig
conjecture for type A, [8]).

Therefore one asks whether there are different ways to describe the kernel of the
decomposition map, for which explicit answers can be given. The aim of this paper
is to give such a description. As an application, it gives a new characterisation of the
radical quotient for the Solomon descent algebra.

Finding bases for the kernel of the decomposition map is done via symmetric
functions. In this setup, it is equally good to replace the prime p by any positive in-
teger r > 1. Let R = ⊕d≥0R

d , this is a ring which is identified with the ring � of
symmetric functions via the characteristic map [10, I.7]. Define ξ by restricting class
functions to the set of r-regular elements; we are interested in the kernel of ξ which
we denote by Ibr (R

d), or rather in the corresponding subgroup of �d, denoted by
Ibr (�

d). Let ψr : � → � be the ring homomorphism which takes the variable xi ∈ �

to xr
i . Any product ψr(f ) · g of degree d where f has zero constant term belongs

to Ibr (�
d); and we obtain Z-bases consisting of functions of this form. This uses

results by J. Nuttall [11] and G. Walker [17]. In particular this gives presentations
for the Abelian groups Rd

br . These are given in terms of characteristic zero informa-
tion, so we conclude that the problem of describing the kernel of the decomposition
map for symmetric groups is easier than the problem of finding decomposition num-
bers.

The direct sum I := ⊕d≥0Ibr (�
d) is an ideal of �, and this gives a presentation

for the factor ring, and hence of the ring Rbr = ⊕d≥0R
d
br . We obtain that I is the

ideal generated by the image ψr(�+) of symmetric functions �+ with zero constant
term. In case r = p prime, the map ψp may be thought of as a ‘Frobenius twist’; on
the level of symmetric polynomials it takes the formal character of a module for the
general linear group to the formal character of its Frobenius twist. So in this case one
could say, roughly speaking, that the kernel of the decomposition map for symmetric
groups is determined by the Frobenius twist.

For a fixed d , the product of characters induces a ring structure on Rd and also
on Rd

br . We take the integral form of Rd given by Young characters, then for F a field
of characteristic zero, Rd ⊗Z F is isomorphic to the radical quotient of the Solomon
descent algebra Dd , this was proved in [16]. When F is a field of prime characteristic
p > 0, the radical quotient of the p-modular Solomon descent algebra was deter-
mined in [2], and also in [3]. Namely, it is isomorphic to the F -algebra obtained by
reducing the Young characters modulo p. We show that this radical quotient is iso-
morphic to Rd

br ⊗Z F . In particular this also gives information on the algebra structure
of Rd ⊗Z F . Namely, it is the quotient of the descent algebra obtained by base change
from the characteristic zero radical quotient.

Part of this existed as a preprint a while ago. In the meantime, one aspect was
used in [5] 4.4, and extended by supplying a hard calculation. Subsequently I learned
through Manfred Schocker the connection with the Solomon descent algebra, and the
last part of this note is only very recent.
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2 Preliminaries

2.1 Let �+(n, d) be the set of all partitions of d with at most n parts. If λ =
(λ1, λ2, · · · , λn) is a partition then |λ| is the sum of the parts. Moreover, if r is a
positive integer, then rλ is the partition (rλ1, rλ2, · · · , rλn). We also write λr for the
partition whose parts are the λi , each of them r times. If λ,μ are partitions we denote
by λ∪μ the partition whose parts are those of λ and μ (abusing notation). We denote
by ≤ the lexicographic order of partitions. A partition λ is r-regular if it does not
have r or more equal parts. We write λ ∼r ∅ if the r-core of λ is ∅.

2.2 Let R = ⊕d≥0R
d where Rd is the Abelian group of generalized characters of the

symmetric group Sd . Then R is a ring which is isomorphic to the ring � of symmetric
functions. That is, � = lim�(n),where �(n) is the ring of symmetric polynomials in n

variables, and where the limit is taken via the Z-linear maps �(n) → �(m) for n ≥ m

defined by

xi →
{

xi i ≤ m

0 i > m

Let (−,−) be the inner product on R defined from the usual scalar product on Rd

and making Rd ’s for different d orthogonal. Let also (−,−) be the scalar product on
� such that the Schur functions sλ form an orthonormal basis. Then the characteristic
map ch : R → � is an isometric ring isomorphism [10] I(7.3).

2.3 We fix an integer r ≥ 1. There is a ring homomorphism ψr : � → � which takes
xi to xr

i ; and it is compatible with the projections � → �(n); see [17], [7]. Consider
the case r = p where K is an infinite field of characteristic p. If M is a GLn(K)-
module with formal character χ then ψp(χ) is the formal character of MF where F

is the Frobenius map.

2.3.1 By transport of structure, we get a ring homomorphism on R which we also
denote by ψr . Suppose χ is a generalised character of Sd where d ≥ 1; then via
the characteristic isomorphism we obtain the following explicit formula for ψr(χ),
namely we have for g ∈ Sd

ψr(χ)(g) =
{

zrμz−1
μ χ(wμ) if g is conjugate to wrμ

0 otherwise

Here wλ is an element of cycle type λ, and zλ is the order of the centralizer of wλ

in Sd . Following [9], an element g ∈ Sd is said to be r-element if each non-trivial
cycle has length divisible by r , and g is r-singular if at least one cycle of g is divisible
by r . Furthermore, g is r-regular if no cycle of g has length divisible by r . If r = p

is prime, then this is the usual definition of a p-regular element of a group.
With this we have seen that ψr(χ) is supported on fixed point free r-elements of Sd .
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2.3.2 The map ψr has an adjoint with respect to (−,−), denoted by ψr , which is
also a ring homomorphism of � and is compatible with the projections; this is a
result in [17]. The map ψr can be defined as follows, on the complete symmetric
functions hd . Let d ≥ 1, then

ψr(hd) =
{

hs if d = rs

0 otherwise

By transport of structure we get a ring homomorphism of R which we also denote
by ψr .

2.4 The following formula is due to J. Nuttall [11] . Let ω = e2πi/r ∈ C; then we
have for d ≥ 1

(∗) ψrψr(hd) =
∑

α∈�+(r,d)

mα(1,ω, · · · ,ωr−1)hα

where mα is the monomial symmetric function; and hα = ∏r
i=1 hαi

if α = (α1, α2,

· · · , αr). (This can be proved as follows. If H(t) is the generating function for the
complete symmetric functions, then

ψrψr(H(t)) =
∏
i≥0

(1 − xr
i t

r )−1,

see [17] 2.1. Now one observes that (1 − (xi t)
r ) = ∏r−1

k=0(1 − ωk(xi t)), and one uses
[10] I(4.2).) Hence for any integer s ≥ 1 we have

(∗∗) ψr(hs) =
∑

α∈�+(r,rs)

mα(1,ω, · · · ,ωr−1)hα

This can also be expressed in terms of Schur functions. Let sα denote the Schur
function corresponding to the partition α. By [10] I(4.3) and [10] ex. 17 p.50 we have

ψr(hs) =
∑

α∈�+(r,rs),α∼r∅
σr(α)sα

Here σr(α) is the sign of the unique permutation w ∈ Sr such that
α + δr ≡ wδr (mod r), where δr = (r − 1, r − 2, · · · ,1,0).

2.5 Let ω be as above a primitive complex r-th root of unity. We set

z := (1,ω,ω2, · · · ,ωr−1)

The values mα(z) where α ∈ �+(r, d) are calculated explicitly in [5]4.4. Here we
only need a small amount of information which is not hard to obtain directly. The
numbers mα(z) are integers, and if r does not divide d then mα(z) = 0. This follows
for example from 2.4.
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Assume now that r divides d , say d = rs. Let mi be the multiplicity of i as a
part of α so that α = (· · · , imi , · · · ,1m1,0m0), with mi ≥ 0 and

∑
mi = r . Let q be

the greatest common divisor of the mi . Then one shows that mα(z) is divisible by
r/q . (For example, take mα with r variables, then the terms form one orbit under the
action of the symmetric group Sr given by change of variables. Analysing this action
gives the required answer). One deduces:

2.5.1 We have mα(z) = ±1 if and only if α = (sr ).

3 On Z-bases of Ibr

3.1 We fix an integer r > 1. For a character χ ∈ Rd , let ξ(χ) denote the restriction of
χ to the set of r-regular elements of Sd . Let Rd

br be the Z-module generated by the
ξ(χ), a submodule of the Z-valued class functions on r-regular elements (see 2.3.1).
When r = p is prime then Rd

br = ∑
λ Zβλ, here the βλ are the irreducible Brauer

characters, which can be labelled by p-regular partitions of d . For a discussion of the
decomposition map for finite groups in general, we refer to [15].

We have then a surjective Z-homomorphism ξ : Rd → Rd
br . For arbitrary r , it is

proved in [9]4.2 that the set ξ(χλ) for λ r-regular, is a free Z basis for Rd
br . [Here χλ

is the irreducible character of Sd corresponding to partition λ, as usual.]
Let Ibr (R

d) denote the kernel of ξ , and define

Rbr = ⊕d≥0R
d
br , Ibr (R) = ⊕d≥0Ibr (R

d).

We have also a Z-homomorphism R → Rbr which we denote by ξ , extending the
homogeneous restriction maps. Its kernel is Ibr (R) which is an ideal, and Rbr has a
ring structure such that ξ is a ring homomorphism. We are interested in Ibr (R

d) and
Ibr (R); we will study their images under the characteristic isomorphism in �, which
we denote by Ibr (�

d) and Ibr (�).
Let λ = (λ1, · · · , λn) be a partition of d . The symmetric function hλ = ∏n

i=1 hλi

corresponds under the characteristic isomorphism to the character ϕλ of the permuta-
tion module on the cosets of the Young subgroup Sλ1 × · · · ×Sλn [10]I.7; we call the
ϕλ Young characters. Moreover, the Schur function sλ corresponds to the irreducible
character χλ of Sd [10] I(7.5).

3.1.1 The observation in 2.3.1 shows that Ibr (R) contains ψr(Rd) for d ≥ 1, and
then as well ψr(Rd)R. Hence Ibr (�) contains ψr(�d)�, for d ≥ 1.

3.2 First we give a Z-basis of Ibr (�) in terms of the symmetric functions hλ.

Theorem Let r ≥ 1. Then � has Z-basis

Hr := {ψr(hλ) · hμ : λ,μ partitions with μ r-regular }.
Moreover if r > 1 then Ibr (�) has Z-basis H0

r := {ψr(hλ) · hμ ∈Hr : λ = ∅}.
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We remark that H1 is one of the usual bases for � [10] I(2.8). For the proof we will
use the following.

3.3 Suppose γ is a partition such that hγ occurs with non-zero coefficient in ψr(hλ) ·
hμ, then γ ≥ λr ∪ μ.

Proof By the hypothesis there are partitions τ (i) such that hτ(i) occurs in ψr(hλi
) and

γ = τ (1) ∪ τ (2) ∪ · · · ∪ τ (l(λ)) ∪ μ. Then |τ (i)| = r|λi | and τ (i) has at most r parts.
Now, (λr

i ) is the least partition of r|λi | with at most r parts, so τ (i) ≥ (λr
i ) for each i.

So we must show the following.
If τ (i), δ(i) are partitions with τ (i) ≥ δ(i) and |τ (i)| = |δ(i)| for all i then τ (1) ∪

τ (2) ∪ · · · ∪ τ (m) ≥ δ(1) ∪ δ(2) ∪ · · · ∪ δ(m).
Let c1 be the first part of τ (1) ∪ τ (2) ∪ · · · ∪ τ (m). Then c1 ≥ (τ (i))1 for each i, and so
c1 ≥ (δ(i))1 for each i. If c1 is greater than the first part of δ(1) ∪ δ(2) ∪ · · · ∪ δ(m) then
we are done. Otherwise, there is some j with (δ(j))1 = c1, and then (τ (j))1 = c1 as
well. Remove the first part from τ (j) and from δ(j). The induction hypothesis gives
the statement. �

3.4 We will now prove 3.2, by considering Hr ∩ �d for a fixed degree d . We know
that �d has a Z-basis contained in H1; and so it suffices to show that, the coeffi-
cient matrix M(Hr ,H1) is lower triangular, with diagonal entries ±1. To do so, we
label the symmetric function ψr(hλ) · hμ by the partition λr ∪ μ; and we order these
lexicographically.

If hγ occurs in ψr(hλ) · hμ then γ ≥ λr ∪ μ; this follows from 3.3. Hence the
coefficient matrix is lower triangular. Moreover, if γ = λr ∪ μ then τ (i) = (λr

i ) and
it follows that the coefficient of hγ in ψr(hλ)hμ is equal to ±1, by 2.5.1. Note also
that the rank of �d is the same as the number of elements in Hr ∩ �d . Hence we are
done with the first part.

Consider the second part, by 3.1.1 we know that H0
r ∩�d is contained in Ibr (�

d),
and by the first part it is Z-linearly independent. We know that the image of ξ is free
over Z of rank equal to the number of r-regular partitions of d . Hence the kernel of
ξ has rank equal to the size of H0

r ∩ �d , and this implies that H0
r ∩ �d is a Z-basis

for Ibr (�
d).

3.5 Theorem Let r ≥ 1. Then � has Z-basis

�r := {ψr(sλ) · sμ : λ,μ partitions with μ r-regular }.
Moreover if r > 1 then Ibr (�) has Z-basis {ψr(sλ) · sμ ∈ �r : λ = ∅}.

Proof We consider �r ∩ �d for a fixed degree d . For the first part, we will show that
the coefficient matrix M(�r,Hr ) is lower triangular, with diagonal entries ±1. We
label ψr(sλ) · sμ and also ψr(hλ) · hμ by the partition associated to λr ∪ μ, and we
order these lexicographically, as before.

Consider ψr(sλ) · sμ. Express sλ in terms of the hγ ; the transition matrix is
M(s,h) = K∗, in the notation of [10] I(6.3), and it is strictly lower unitriangular. Ex-
press also sμ in terms of the basis Hr , the transition matrix is the product of M(s,h)
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and M(H1,Hr ), so by [10] I(6.3) and 2.4 it is lower triangular, with diagonal entries
±1. We get

(∗) ψr(sλ) · sμ = (
∑
λ≤γ

K∗
λγ ψr(hγ )) · (

∑
bμ,βr∪αψr(hβ) · hα)

the second sum is taken over all α,β such that μ ≤ βr ∪α and α is r-regular. Replac-
ing ψr(hγ ) ·ψr(hβ) by ψr(hγ∪β) and re-arranging gives the expression of ψr(sλ) ·sμ
in terms of the basis Hr . We are done if we show that the coefficient matrix is unitri-
angular with ±1‘s in the diagonal.

We claim that the coefficient of ψr(hλ) · hμ in this expression is ±1. The coeffi-
cient is equal to

∑
K∗

λγ bμ,βr∪μ where the sum is taken over all γ,β such that λ ≤ γ ,
μ ≤ βr ∪ μ and γ ∪ β = λ These conditions imply β = ∅ and λ = γ , so there is only
one term and it is ±1.

Suppose the coefficient of ψr(hσ ) ·hα is non-zero, for α r-regular. We must show
that then λr ∪ μ ≤ σ r ∪ α. The coefficient is equal to

∑
K∗

λγ bμ,βr∪α

where the sum is taken over all γ,β with γ ∪ β = σ , λ ≤ γ and μ ≤ βr ∪ α. Then
λr ≤ γ r , hence we deduce

λr ∪ μ ≤ γ r ∪ μ ≤ γ r ∪ βr ∪ α = (γ ∪ β)r ∪ α = σ r ∪ α.

The rest follows by the same argument as the second part of 3.4. �

3.6 Corollary Let r ≥ 1. Then R has Z-bases

Hr :={ψr(ηλ) · ημ : λ,μ partitions and μ r-regular}
�r :={ψr(χλ) · χμ : λ,μ partitions and μ r-regular }.

Moreover Ibr (R) has Z-bases

H0
r := {ψr(ηλ) · ημ ∈Hr : λ = ∅} and �0

r := {ψr(χλ) · χμ ∈ �r : λ = ∅}

This follows from 3.2 and 3.5.

4 Some presentations and relations

4.1 The basis elements of degree d in Hr , or �r respectively describe a complete
minimal set of relations for Ibr (�

d) or equivalently for Ibr (R
d). The ring Rbr is

isomorphic to �/I where I = Ibr (�). The results 3.2 and 3.5 show that I is generated
by ψr(�+) where �+ = ⊕d≥1�

d . Hence we get from 2.4 the presentation

Rbr
∼= Z[h1, h1, . . .]/〈

∑
α∈�+(r,rs)

mα(z)hα, s = 1,2, . . .〉.
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An explicit description of the ideal I can be found in [5] 4.4.

4.2 Assume now r = p, we consider the ring Rbr modulo p. We deduce the follow-
ing, which is a special case of [6] 4.7, Remark 3.

Corollary Let F be a field of characteristic p. Then the ring Rbr ⊗Z F is isomorphic
to

F [h1, h2, . . .]/〈hp
s , s = 1,2, . . .〉

where the hi are algebraically independent variables.

Proof For each d ≥ 1 we have an exact sequence of Z-modules

0 → Ibr (�
d) → �d → �d

br → 0

By 2.2 this is a split exact sequence of free Z-modules. We deduce that Rd
br ⊗ F ∼=

(�d ⊗ F)/(Ibr (�
d) ⊗ F), (writing ⊗ = ⊗Z) and

Rbr ⊗ F ∼= ⊕d≥0(�
d ⊗ F)/(Ibr (�

d) ⊗ F) ∼= (� ⊗ F)/(Ibr (�) ⊗ F).

Moreover � ⊗ F is the free polynomial ring in the independent variables hs ⊗ 1. We
claim now that Ibr (�) ⊗ F is equal to the ideal of � ⊗ F generated by (hs ⊗ 1)p ,
s = 1,2, . . . . This holds because Ibr (�) is generated by the ψp(hs), and by 2.5 we
have over characteristic p that

ψp(hs) ⊗ 1 = (−1)(p−1)sh(sp) ⊗ 1 = h
p
s ⊗ 1. �

4.3 We can also exploit the basis in 3.5. Since the Schur functions form a Z-basis
of �, there are integers bγ such that ψr(sλ) = ∑

γ bγ sγ . Then we have by 2.3.2 that

bγ = (ψr(sλ), sγ ) = (sλ,ψr(sγ )).

Now, ψr(sγ ) has been determined by G. Walker; he proved the following [17] 2.3.

Theorem Suppose γ has empty r-core. Then we have

ψr(sγ ) = σr(γ ) ·
r−1∏
k=0

sγ (k)

Here γ (0), · · · , γ (r − 1) are the r-quotients of γ . Otherwise ψr(sγ ) = 0.

We deduce bγ = 0 unless γ ∼r ∅. In this case, bγ = σr(γ )LRλ
γ (0),··· ,γ (r−1) where

LRλ
τ(0),··· ,τ (m) is the coefficient of sλ in the product sτ(0) · sτ(1) · · · · sτ(m). It follows
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that

ψr(sλ) · sμ =
∑

|α|=d

( ∑
γ∼r∅

σr(γ )LRλ
γ (0),··· ,γ (r−1) · LRα

γ,μ

)
sα

A similar formula was obtained in [1].

4.4 Assume now that r = p, a prime. Consider the relations ψr(ϕλ) · ϕμ with μ

p-regular, and λ = ∅ for the symmetric groups. Recall that we use the partition
γ = λp ∪ μ as a label, this is p-singular and every p-singular partition has a unique
expression of this form. We deduce from 3.6:

Corollary For every p-singular partition γ , there is a generalized character∑
aβϕβ with aβ ∈ Z, unique up to scalar multiples which vanishes on p-regular

elements such that aγ = 0 and moreover aβ = 0 implies γ ≤ β .

There is also a block version for such class function.

5 Connection with the Solomon descent algebra

5.1 Let d be a positive integer. We recall some properties of the Solomon de-
scent algebra of the symmetric group Sd (details can be found in [12], [4], [13], [2],
[3], [16]). Let μ be a composition of d , and let Sμ be the associated Young subgroup
of Sd . Each right coset of Sμ in Sd contains a unique permutation of minimal length
(see for example [16, Lemma 1]). Define Xμ to be the sum in the integral group ring
ZSd of all these minimal coset representatives. Solomon [16, Theorem 1] proved that
the Z-linear span Dd of the elements Xμ (μ any composition of d), is a subring
of ZSd , which is now called the Solomon descent algebra of Sd . In fact, he showed
that the multiplication constants with respect to the basis of the Xμ are precisely the
multiplication constants for the Young characters. Denote for the moment by Cd the
Z-span of the Young characters, a subring of the ring of Z-valued class functions
of Sd . If ϕμ is the Young character induced from the trivial character of Sμ, then the
Z-linear map cd :Dd → Cd which takes

Xμ �−→ ϕμ

for compositions μ of d , is a surjective ring homomorphism.
Let F be a field, then the F -linear span Dd,F of the elements Xμ is a subalge-

bra of the group algebra FSd , while the F -linear span Cd,F of the F -valued Young
characters

ϕμ,F : Sd → F, π �→ ϕμ(π) · 1F

is a subalgebra of the algebra of F -valued class functions of Sd . The F -linear map
cd,F : Dd,F → Cd,F taking Xμ to ϕμ,F for compositions μ of d , is an epimorphism
of algebras. Moreover,
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Theorem The kernel of cd,F is the radical of Dd,F .

This is [16] Theorem 3 for characteristic zero, and it is [2] Theorem 2 for prime
characteristic. Hence Cd,F is isomorphic to the radical quotient Dd,F /radDd,F .

5.2 We will relate this to the decomposition map. First, we give a different basis
for Rd

br . We know that Rd
br has free Z-basis the ξ(χλ) for λ p-regular. Let ϕλ be the

Young character associated to λ and let ϕλ
0 be its restriction to p-regular elements

(that is the image of ϕλ under the decomposition map).

Lemma The set B := {ϕλ
0 : λa p-regular partition of d} is a Z-basis for Rd

br .

This holds because the coefficient matrix obtained by expressing ϕλ in terms of χμ

is lower unitriangular.

We work now with the Z-bases of Rd and Rd
br given by ϕλ and the ϕλ

0 respectively.
We view Rd as a ring with respect to the multiplication of characters. The decompo-
sition map ξ is then a ring homomorphism and hence I d

br is an ideal of Rd .

Theorem 1 Assume F has characteristic p. Then Rd
br ⊗Z F is isomorphic to the

radical quotient Cd,F of the Solomon descent algebra Dd,F .

Proof The ring Rd is the same as Cd . We have therefore two surjective F -algebra
maps starting at Cd ⊗ F . One is the map which takes ϕλ ⊗ 1 to ϕλ,F , call the map ρ.
The other is ξ ⊗ 1. Furthermore, the images of these, that is Cd,F and Rd

br ⊗F are F -
vector spaces of the same dimension. So it is enough to show that ρ maps the Ibr ⊗F ,
that is the kernel of ξ ⊗ 1, to zero. This will induce a surjection from Rd

br ⊗ F onto
Cd,F , which must be an isomorphism, by dimensions.

We use the basis from 3.6. It suffices to show that any ψp(ϕλ)ϕμ with λ = ∅ (and
of the right degree d = p|λ| + |μ|) lies in the kernel of ρ, that is, all its values are
divisible by p.

We have seen in 2.3.1 that the class function χ1 := ψp(ϕλ) is supported on fixed
point free elements for which all cycles have lengths divisible by p. Let χ2 = φμ,
then

χ1χ2 = IndG
H (χ1 ⊗ χ2)

where H = Smp ×St with m = |λ| and t = |μ|. Let η = χ1 ⊗ χ2; then IndG
H (η)(g) =∑m

i=1 η̇(gigg−1
i ) where {g1, . . . , gm} are coset representatives of H in G and where

η̇(g) =
{

η(g) g ∈ H

0 otherwise

Suppose η̇(y−1gy) is non-zero. Then y−1gy = g1g2 with g1 ∈ Smp and g2 ∈ St .
Furthermore, g1 has cycle type pγ = ∅, and we have η̇(g1g2) = χ1(g1)χ2(g2). By
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2.3.1, the character value χ1(g1) is divisible by p, and since χ2(g2) is an integer we
deduce that IndG

H (η)(g) is divisible by p as required. �

Corollary The radical quotient of the F -algebra Rd ⊗Z F is isomorphic to the rad-
ical quotient of the Solomon descent algebra Dd,F .

Given an algebra which is not semisimple, then it is a basic problem to understand
the algebra modulo the square of its radical, that is to understand its Ext quiver.

Manfred Schocker worked on finding the Ext quiver of descent algebras. Some
examples are given in [13]. When F has characteristic zero, he gives a complete
answer in [14] and in fact the algebras he studies there are more general. He writes
that the quiver for non-zero characteristic is not yet understood. The connection with
the decomposition map should be an additional reason why the quiver is interesting,
and also perhaps give a different kind of information.
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