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Abstract In 1973 Paul Erdős conjectured that there is an integer v0(r) such that, for
every v > v0(r) and v ≡ 1,3 (mod 6), there exists a Steiner triple system of order v,
containing no i blocks on i + 2 points for every 1 < i ≤ r . Such an STS is said to
be r-sparse. In this paper we consider relations of automorphisms of an STS to its
sparseness. We show that for every r ≥ 13 there exists no point-transitive r-sparse
STS over an abelian group. This bound and the classification of transitive groups
give further nonexistence results on block-transitive, flag-transitive, 2-transitive, and
2-homogeneous STSs with high sparseness. We also give stronger bounds on the
sparseness of STSs having some particular automorphisms with small groups. As a
corollary of these results, it is shown that various well-known automorphisms, such
as cyclic, 1-rotational over arbitrary groups, and involutions, prevent an STS from
being high-sparse.
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1 Introduction

A Steiner triple system S of order v, briefly STS(v), is an ordered pair (V ,B), where
V is a finite set of v elements called points, and B is a set of 3-element subsets of
V called blocks, such that each unordered pair of distinct elements of V is contained
in exactly one block of B. Kirkman [25] proved that an STS(v) exists if and only if
v ≡ 1,3 (mod 6); such orders are called admissible.
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Let G(3)(n;m) denote a 3-uniform hypergraph of n vertices and m edges, that is,
3-tuples. Since an STS(v) contains exactly v(v − 1)/6 triples, it can be considered a
special G(3)(v;v(v − 1)/6). In 1973 Erdős [12] conjectured that for r ≥ 4 there is an
integer v0(r) such that for every v > v0(r), v ≡ 1,3 (mod 6), there exists a Steiner
triple system on v elements containing no G(3)(k + 2; k) for every 1 < k ≤ r . Such
an STS is said to be r-sparse. Since the same pair of points appear twice in every
G(3)(k + 2; k) for 1 < k ≤ 3, every STS(v) is 3-sparse. Obviously, every r-sparse
STS(v), r > 2, is also (r − 1)-sparse.

The Erdős r-sparse conjecture and especially the problem of characterizing those
v, for which there exists an r-sparse STS(v), have been studied for a long time. One
direction is regarding the r-sparse conjecture as an extremal problem on hypergraphs.
In fact, Erdős posed the conjecture as a problem closely related to extremal set theory.
Brown, Erdős and Sós [3] proved:

Theorem 1.1 (Brown, Erdős and Sós [3]) Let L(k, l) be the family of all nonisomor-
phic 3-uniform hypergraphs with l edges on k vertices, and let ex(n,L(k, l)) be the
largest positive integer m such that there exists a triple system with m triples on n

vertices containing no member of L(k, l). Then

ex
(
n,L(k + 2, k)

) ≤ 1

3
·
(

n ·
⌊

k

k + 1
· (n − 1)

⌋
+ 1

)
.

Let V(k + 2, k) = ⋃k
j=2 L(j + 2, j). Using probabilistic methods, Lefmann,

Phelps and Rödl [26] showed that for every positive integer k, k ≥ 2, there exists
a ck such that ex(n,V(k + 2, k)) ≥ ck · n2. They also proved the following theorem:

Theorem 1.2 (Lefmann, Phelps and Rödl [26]) There exists a positive constant c >

0, such that every Steiner triple system of order v contains a G(3)(k + 2; k) for some
k ≤ c · logv

log logv
.

On the other hand, a lot of construction techniques for r-sparse STSs of particu-
lar small r and similar combinatorial structures have been developed. A G(3)(k; l),
when appearing in a Steiner triple system, is often called a “configuration” in recent
literature, and so we shall use the same term here.

A (k, l)-configuration in an STS is a set of l blocks whose union contains precisely
k points. An STS is r-sparse if and only if it contains no (k + 2, k)-configuration for
every 1 < k ≤ r . As well as in combinatorial design theory, 4- and 5-sparse STSs are
also important in some applications to information theory (see, for example, Chee,
Colbourn and Ling [6]; Johnson and Weller [22]; Vasic, Kurtas and Kuznetsov [34];
and Vasic and Milenkovic [33]), and hence constructions of an r-sparse STS are
studied extensively from both sides.

Brouwer [2] constructed a 4-sparse STS(v) for all v ≡ 3 (mod 6). He refined the
Erdős r-sparse conjecture for the case r = 4 to assert that a 4-sparse STS(v) exists for
all v ≡ 1 or 3 (mod 6) except v = 7 and 13. Many partial results had been developed
for this conjecture (see Colbourn and Rosa [8]). In particular, by developing several
new constructions, Ling, Colbourn, Grannell and Griggs [28] substantially extended
the spectrum of 4-sparse Steiner triple systems; and, finally, Brouwer’s conjecture
was settled by Grannell, Griggs and Whitehead [19]:
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Theorem 1.3 (Grannell, Griggs and Whitehead [19]) There exists a 4-sparse STS(v)

if and only if v ≡ 1,3 (mod 6) and v �= 7,13.

Thus, Erdős’ conjecture is true for r = 4 and v0(4) = 13. Also Colbourn, Mendel-
sohn, Rosa and Širáň [9], Ling [27], the author [14, 15], and Wolfe [36] have devel-
oped several constructions for an STS avoiding (6,4)- and/or (7,5)-configuration.
In particular, Wolfe [36] proved that for every admissible order v, except for v = 9,
there exists an STS(v) containing no mitre configuration, which is one of the two
(7,5)-configurations. Recently, Wolfe [35] constructed a 5-sparse STS for all v ≡ 3
(mod 6) and v ≥ 21. He also proved that there exists a 5-sparse STS for, in some
sense, almost all admissible orders.

Let S and T be two subsets of Z+ = {1,2,3, . . .}. Define the arithmetic density of
S relative to T as:

d(S;T ) = lim
n→∞

|{x ∈ S ∩ T : x ≤ n}|
|{x ∈ T : x ≤ n}| .

Theorem 1.4 (Wolfe [35]) The arithmetic density of the spectrum of 5-sparse Steiner
triple systems relative to the set of all admissible orders is 1.

However, little is known about the existence of an STS with higher sparseness.
In fact, no example of r-sparse systems is realized for r ≥ 7 (and v > 3), and no
affirmative answer to the r-sparse conjecture is known in this range.

Our primary focus in the current paper is on relations between group actions on an
STS and its sparseness. Frequently, actions of a finite group on a Steiner triple system
have helped us discover an r-sparse STS and develop a construction method. An
automorphism of an STS(v) = (V ,B) is a permutation on V that maps each block in
B to a block of B, and the full automorphism group is the group of all automorphisms
of the STS. A flag of an STS (V ,B) is a pair (x,B) with x ∈ V , B ∈ B and x ∈ B .

An STS is said to be point-transitive if its full automorphism group contains a
subgroup which acts transitively on the point set. Similarly, we say that an STS is
block-transitive, flag-transitive, 2-transitive, or 2-homogeneous if its full automor-
phism group contains a subgroup which acts transitively on the blocks, flags, ordered
pairs of points, or unordered pairs of points, respectively.

Some classical constructions of STSs involving regular actions of GF(q) on the
point set generate 4- and 5-sparse STSs (see Colbourn and Rosa [8]). The direct
product construction for 5-sparse STSs, developed by Ling [27], employs an abelian
group which acts regularly on the point set.

Theorem 1.5 (Ling [27]) If there exist a point-transitive 5-sparse STS(v) over an
abelian group, v ≡ 1 (mod 6), and a 5-sparse STS(w), then there exists a 5-sparse
STS(vw).

Forbes, Grannell and Griggs [13] discovered a construction method for block-
transitive STSs and found examples of 6-sparse STSs, which have the highest sparse-
ness at the time of writing. They also developed a recursive construction similar to
Theorem 1.5 for 6-sparse STSs and constructed infinitely many examples of such
STSs. No 6-sparse STS other than from these Steiner triple systems is known.
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Also, when examining properties of an STS with computers, group actions often
simplify calculations. In fact, by checking for r-sparseness the block-transitive STSs
arising from one of known constructions, Forbes, Grannell and Griggs [13] found
the first examples of 6-sparse STSs. By limiting the search to point-transitive STS(v)

over cyclic groups, that is, cyclic STS(v), Colbourn, Mendelsohn, Rosa and Širáň [9]
found a 5-sparse STS(v) for nearly all admissible v < 100.

However, as we will see in the next section, such an STS can not have high
sparseness. In this paper we prove first that, for every r ≥ 13, there exists no point-
transitive r-sparse STS over an abelian group. This bound and the classification of
transitive groups give further nonexistence results on block-transitive, flag-transitive,
2-transitive, and 2-homogeneous STSs with high sparseness. In Sect. 3 we give
stronger bounds on sparseness of an STS admitting some particular automorphisms
with small groups. As a corollary of these results, it is shown that various well-known
automorphisms, such as cyclic, 1-rotational over arbitrary groups, and involutions
with fixed points, prevent an STS from being highly-sparse. For undefined notions
appearing in the following sections, we refer the reader to Beth, Jungnickel and Lenz
[1], and Colbourn and Rosa [8].

2 Transitive automorphism group

In this section we consider transitive group actions on an STS and their relations to
its sparseness. We examine transitive actions on points, blocks, flags, ordered pairs of
points, and on an unordered pair of points. In what follows, we ignore the two trivial
systems, that is, STS(1) and STS(3), unless they play a significant role.

First, we consider a point-transitive action. While the Erdős r-sparse conjecture
says that, for any r ≥ 4, an r-sparse STS(v) exists for all sufficiently large admissible
v, we show that every point-transitive STS over an abelian group is at most 12-sparse.

Theorem 2.1 For every r ≥ 13, there exists no point-transitive r-sparse STS over an
abelian group.

To verify Theorem 2.1 we prove two lemmas.
A point-transitive STS (V ,B) over a group G has a short orbit if there exist a

block B ∈ B and an element x ∈ G such that Bx = B and x �= 1, the identity element.
(V ,B) has a Z3-orbit if B contains a block of the form {a, ax, ax2}, where x3 = 1.

Lemma 2.2 Assume that there exists a point-transitive r-sparse STS over an abelian
group G. If the STS has a Z3-orbit, then r ≤ 9.

Proof Suppose to the contrary and let S = (V ,B) be a point-transitive r-sparse
STS with r > 9 over an abelian group G. In order to avoid the triviality, we as-
sume that |V | = v > 3. If S has a Z3-orbit, we can take a block B1 = {a, ax, ax2},
where a ∈ V and x3 = 1. From B \ B1 take a block containing the point a and
write this block as B2 = {a, aix, ajx}. Since ai, aj �= a, ax, ax2

, we can find a
block B3 = {a, aj , ak} from the same family of blocks. By developing these three
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blocks, we obtain a possible (12,10)-configuration B1, B1
i , B1

j , B1
k , B2, B2

x ,
B2

x2
, B3, B3

x and B3
x2

. Since ix, j �= 1, x, x2, we have B2,B3 �∈ OrbG(B1). Hence,
|B1 ∪ B1

i ∪ B1
j | = |B1 ∪ B1

j ∪ B1
k| = 9. On the other hand, r > 9 implies that

|B1 ∪ B1
i ∪ B1

j ∪ B1
k ∪ B2 ∪ B2

x ∪ B2
x2 ∪ B3 ∪ B3

x ∪ B3
x2 | < 12. However, the

only possible case is when ak = ax2i ⇔ axk = ai ⇔ ax2k = axi , leading to a (9,7)-
configuration B1, B1

j , B1
k , B2, B3, B3

x , and B3
x2

. This contradicts the property that
r > 9. The proof is complete. �

The following lemma concerns a point-transitive system having no Z3-orbit.

Lemma 2.3 Assume that there exists a point-transitive 6-sparse STS(v), S = (V ,B),
v > 3, over an abelian group G. If S has no Z3-orbit, then B contains two blocks
B1 and B2 such that these two blocks have the form B1 = {a, ax, ax2i} and B2 =
{a, ai, aj }, and OrbG(B1) �= OrbG(B2).

Proof Take an arbitrary block in B and write the triple as {a, ax, ax2i}. Then we can
find the block containing the pair of points {a, ai} and write this block as {a, ai, aj }.
If the block orbits of these two blocks are different, our task is done. If the orbits
are the same, then we have i ∈ {x, xi, x2i, x−1, (xi)−1, (x2i)−1}. It is easy to see that
the only possible cases are i = x and (xi)−1; otherwise, we have a pair of the same
points in the block {a, ax, ax2i}.

In the former case, rewrite the block {a, ax, ax2i} as B1 = {a, ax3
, ax6x−5}.

If ax−5 = a then, by comparing B1 and B1
x2

, we have ax = ax2
, that is, a =

ax , a contradiction. Hence, we can find the block containing the pair {a, ax−5}
and write this block as B2 = {a, ax−5

, aj }. If OrbG(B1) = OrbG(B2) then x5 ∈
{x, x2, x3, x−1, x−2, x−3}. In each case, we obtain the same pair of points twice in
B, or an (r + 2, r)-configuration for some r ≤ 6, a contradiction. Hence, we obtain a
pair of blocks whose orbits are mutually different.

In the latter case, rewrite similarly the block {a, ax, ax2i} as B1 = {a, ai−3
, ai−6i4}.

Following the above argument, we obtain the required pair of blocks again. This
completes the proof. �

We now return to the proof of Theorem 2.1.

Proof of Theorem 2.1 Suppose to the contrary that there exists a point-transitive r-
sparse STS, S = (V ,B), over an abelian group G, where r ≥ 13. By Lemma 2.2, S

has no Z3-orbit. Hence, by Lemma 2.3, we can take a pair of blocks which have
the form B1 = {a, ax, ax2i} and B2 = {a, ai, aj }, where OrbG(B1) �= OrbG(B2).
Take a pair of blocks B3 = {a, axj , axk} and B4 = {a, ak, al} in B. By develop-
ing these four blocks, we obtain a possible (15,13)-configuration B1, B1

i , B1
j ,

B1
k , B1

l , B2, B2
x , B2

x2i , B3, B3
xi , B4, B4

x , and B4
x2i . Let α be the number

of mutually different blocks in the possible (15,13)-configuration and β be the
number of mutually different points in the developed configuration, that is, β =
|B1 ∪ B1

i ∪ B1
j ∪ B1

k ∪ B1
l ∪ B2 ∪ B2

x ∪ B2
x2i ∪ B3 ∪ B3

xi ∪ B4 ∪ B4
x ∪ B4

x2i |.
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Since r > 12, we must have α + 2 < β < 15 to avoid the developed configuration
being an (r + 2, r)-configuration.

First, we show that |B1 ∪B1
k ∪B1

l | = 9. Suppose to the contrary that |B1 ∪B1
k ∪

B1
l | < 9. We consider six cases:
Case (1): a = axl . By considering the six blocks B1, B1

k , B1
l , B4, B4

x , and B4
x2i ,

it is easy to see that the above condition is equivalent to ak = ax2il and axk = ax2i . By
noting the two blocks B1 and B3, we have ax = axj , that is, a = aj , a contradiction.

Case (2): a = ax2il . As is Case (1), this equation is equivalent to ak = axl ⇔
ax = ax2ik . By noting the two blocks B2

x and B3
xi , we have axj = ax2ij . However,

OrbG(B1) �= OrbG(B2) implies that |B1 ∪ B1
i ∪ B1

j | = 9, a contradiction.
Case (3): a = axk . This is equivalent to al = ax2ik ⇔ axl = ax2i . Since B3 =

{a, axj , axk} ∈ B, again a contradiction.
Case (4): a = ax2ik ⇔ al = axk ⇔ ax = ax2il . Take the seven blocks B1, B1

i ,
B1

j , B2, B2
x , B2

x2i , and B3
xi . Since |B1 ∪ B1

i ∪ B1
j | = 9, these seven blocks form

a (9,7)-configuration, a contradiction.
Case (5): ak = ax ⇔ al = ax2i ⇔ axl = ax2ik . Consider the set of nine blocks

S9 = {B1, B1
i , B1

j , B2, B2
x , B2

x2i , B3, B3
xi , B4

x}. If |{B1 ∪B1
i ∪B1

j }∩B4
x | = 1,

then S9 forms a (11,9)-configuration, a contradiction. Hence, |{B1 ∪ B1
i ∪ B1

j } ∩
B4

x | ≥ 2. But then we obtain a (9,7)-configuration in S9 \ {B3,B4
x}, or in S9 \

{B3
xi ,B4

x}, a contradiction.
Case (6): al = ax ⇔ ak = ax2i ⇔ axk = ax2il . Consider the set of nine blocks

S9 = {B1, B1
i , B1

j , B2, B2
x , B2

x2i , B3, B3
xi , B4

x}. It reduces, by symmetry, to
Case (5).

Next, we prove that {B1 ∪ B1
i ∪ B1

j } ∩ {B1
k ∪ B1

l} = ∅. Suppose to the contrary
that |{B1 ∪ B1

i ∪ B1
j } ∩ {B1

k ∪ B1
l}| ≥ 1. If |{B1 ∪ B1

i ∪ B1
j } ∪ {axk, ax2ik}| < 11,

we obtain a (9,7)-configuration B1, B1
i , B1

j , B2, B2
x , B2

x2i and B3 or B3
xi , a

contradiction. Hence, we must have α ≥ 12. However, |{B1 ∪ B1
i ∪ B1

j } ∩ {B1
k ∪

B1
l}| ≥ 1 implies that β ≤ 14. This contradicts the inequality α + 2 < β < 15.
Thus, we have |B1 ∪ B1

k ∪ B1
l | = 9 and {B1 ∪ B1

i ∪ B1
j } ∩ {B1

k ∪ B1
l} = ∅. On

the other hand, OrbG(B1) �= OrbG(B2) implies that |B1 ∪B1
i ∪B1

j | = 9. Hence, we
must have α = 13 and β = 15, a contradiction. This completes the proof. �

An STS(v) is said to be cyclic if its automorphism group contains a cyclic group
of order v as a subgroup acting regularly on the point set. Peltesohn [29] proved that
a cyclic STS(v) exists for all admissible v, except for v = 9. Colbourn, Mendelsohn,
Rosa and Širáň [9] found many examples of cyclic 5-sparse STSs using computers.
The author [16] developed some general recursive constructions for cyclic 4- and 5-
sparse STSs, and constructed such an STS for infinitely many orders. However, by
Theorem 2.1 and Lemma 2.2, we have:

Corollary 2.4 For every r ≥ 13, there exists no cyclic r-sparse STS(v). In particular,
when v ≡ 3 (mod 6), no cyclic r-sparse STS(v) exists for every r ≥ 10.

Proof The first statement follows from Theorem 2.1. For a cyclic STS, the set of
points can be identified with Zv , the residue group of integers modulo v. It is easy
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to see that every cyclic STS(v), v ≡ 3 (mod 6), has the block {0, v/3,2v/3}, which
leads to a Z3-orbit. �

In the rest of this section we briefly mention corollaries of the classification of
STSs, admitting other types of transitive actions. By employing the classification
of finite simple groups, Key and Shult [24], Hall [20] and Kantor [23] classified
2-transitive Steiner triple systems.

Theorem 2.5 (Key and Shult [24], Hall [20] and Kantor [23]) If a finite group G

acts 2-transitively on the points of an STS S, then S is either a projective space or an
affine space.

Every projective space contains (6,4)-configurations, that is, they are not 4-sparse.
On the other hand, every affine space is 4-sparse but not 5-sparse (see Colbourn and
Rosa [8]). Hence, we obtain the following corollary:

Corollary 2.6 For every r ≥ 5, there exists no 2-transitive r-sparse STS.

Delandtsheer, Doyen, Siemons and Tamburini [10] completed the classification
for 2-homogeneous STSs.

Theorem 2.7 (Delandtsheer, Doyen, Siemons and Tamburini [10]) If a finite group
G acts 2-homogeneously but not 2-transitively on the points of an STS S, then S is
either an affine space over a subfield of GF(pn), where a prime p ≡ 3 (mod 4) and
n is odd, or a Netto triple system of order pn ≡ 7 (mod 12).

Every Netto triple system of order v, v ≡ 19 (mod 24), is 5-sparse, but none is
6-sparse (see Colbourn, Mendelsohn, Rosa and Širáň [9] and Robinson [30]). Hence,
any 2-homogeneous STS is at most 5-sparse.

Corollary 2.8 For every r ≥ 6, there exists no 2-homogeneous r-sparse STS.

The action of a finite group G on an STS is flag-transitive if and only if it is
2-homogeneous on points (see Colbourn and Rosa [8]).

Corollary 2.9 For every r ≥ 6, there exists no flag-transitive r-sparse STS.

For block-transitive STSs, Clapham [7] established the classification.

Theorem 2.10 (Clapham [7]) If a finite group G acts block-transitively but not
2-transitively on the points of an STS S, then G has odd order and is a subgroup
of AΓ L(1,pα) containing the translation group, for some prime p and α ≥ 1, and
one of the following holds:

1. S is an affine space of dimension d over GF(3), d is odd, and G has rank 3 on
points;

2. S is a Netto triple system; or
3. G has rank 7 on points and pd ≡ 7 (mod 12).
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He also showed that if a finite group G acts transitively on the block set of an STS,
then it also acts transitively on the point set. Hence, by combining Theorem 2.1 and
Corollary 2.6 with Theorem 2.10, we have the same bound.

Corollary 2.11 For every r ≥ 13, there exists no block-transitive r-sparse STS.

Remark Any Steiner triple system of Case 1 and 2 in Theorem 2.10 is not 6-sparse. It
is notable that the construction developed by Grannell, Griggs and Murphy [18] can
generate finitely many examples of block-transitive 6-sparse STSs but none of them
are 7-sparse (see Forbes, Grannell and Griggs [13]).

3 Automorphism with fixed points

In this section we mainly consider Steiner triple systems admitting a nontrivial auto-
morphism with fixed points.

An STS(v) is said to be 1-rotational over a group G if it admits G as a subgroup
of the full automorphism group, and G fixes exactly one point and acts regularly on
the other points. A 1-rotational automorphism is closely related to an involution.

An STS is said to be reverse if it admits an involutory automorphism fixing exactly
one point. Any 1-rotational STS is reverse. Indeed, for every 1-rotational STS(v) over
a group G, the order of G is v − 1 and even. Hence, G has at least one involution.

Buratti [4] showed that there exists a 1-rotational STS(v) over an abelian group if
and only if v ≡ 3,9 (mod 24) or v ≡ 1,19 (mod 72). He also gave partial answers for
an arbitrary group. The combined work of Doyen [11], Rosa [31] and Teirlinck [32]
established the fact that the spectrum for reverse STS is the set of all v ≡ 1,3,9 or
19 (mod 24). An STS admitting an automorphism with more than one fixed point is
known to exist (see Hartman and Hoffman [21]) and may also be considered. How-
ever, the fixed points must induce a smaller STS as a subsystem, and hence sparseness
of the original Steiner system can not exceed that of the small sub-STS. Most inter-
esting is the case when the induced subsystem is a trivial STS, that is, one point and
no block, or three points and one block. The following theorem shows that such an
STS is at most 4-sparse.

Theorem 3.1 For every r ≥ 5, there exists no r-sparse STS admitting an involutory
automorphism fixing exactly one or three points.

Proof Let (V ,B) be an STS. First, we consider an involution π1 on V fixing exactly
one point, say ∞. Suppose to the contrary that (V ,B) is 5-sparse and admits π1 as an
automorphism. If B contains a block which has the form {∞, a, b}, where b �= π1(a),
then {∞,π1(a),π1(b)}, {a,π1(b), c}, {π1(a), b,π1(c)} ∈ B, where c �= π1(c). Since
(V ,B) is an STS, a pair {c,π1(c)} must appear in exactly one block, say {c,π1(c), d}.
Then {c,π1(c),π1(d)} is also in B. This implies that d = π1(d) = ∞. Hence, we ob-
tain a (7,5)-configuration {∞, a, b}, {∞,π1(a),π1(b)}, {∞, c,π1(c)}, {a,π1(b), c}
and {π1(a), b,π1(c)}, a contradiction. If B contains no block of the form {∞, a, b},
where b �= π1(a), B must have a pair of blocks {a, b, c} and {π1(a),π1(b),π1(c)},
where c �= ∞. As noted above, each pair having the form {x,π1(x)} and the point
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∞ appear together in B. Hence, we obtain a (7,5)-configuration {∞, a,π1(a)},
{∞, b,π1(b)}, {∞, c,π1(c)}, {a, b, c} and {π1(a),π1(b),π1(c)}, a contradiction.

Next we consider an involution π3 on V fixing exactly three points. Suppose to
the contrary that (V ,B) is 5-sparse and admits π3 as an automorphism. As is the case
with the involution π1, a pair {a,π3(a)}, where a �= π3(a), must occur in a block with
one of fixed points, say ∞0. Considering the points a, π3(a) and another fixed point,
say ∞1, we have {∞1, a, b}, {∞1,π3(a)π3(b)} ∈ B. Again the pair {b,π3(b)} must
be with one of the three fixed points. Since a �= π3(b), the pair {b,π3(b)} can not ap-
pear with the point ∞1. If {∞0, b,π3(b)} ∈ B, then we obtain a (6,4)-configuration
{∞0, a,π3(a)}, {∞0, b,π3(b)}, {∞1, a, b} and {∞1,π3(a)π3(b)}, a contradiction.
Hence, we have {∞2, b,π3(b)} ∈ B, where ∞2 is the remaining fixed point. But
then we obtain a (7,5)-configuration {∞0, a,π3(a)}, {∞1, a, b}, {∞1,π3(a)π3(b)},
{∞2, b,π3(b)} and {∞0,∞1,∞2}. This final contradiction completes the proof. �

The following is an immediate corollary of the theorem above.

Corollary 3.2 For every r ≥ 5, there exists no reverse r-sparse STS.

Since a 1-rotational STS is also reverse, we have:

Corollary 3.3 For every r ≥ 5, there exists no 1-rotational r-sparse STS.

It is well known that the points and lines of AG(n,3) form the elements and triples
of a 1-rotational, and thus reverse, 4-sparse STS(3n). In this sense, the bounds of
Theorem 3.1, Corollary 3.2 and 3.3 are best possible.

Corollary 3.3 limits the sparseness of a 1-rotational STS over any finite group even
if it is nonabelian. The same bound for a rotational group action fixing three points
inducing the other trivial subsystem follows from the same argument. However, if
groups are restricted to be abelian, we can easily obtain a much stronger theorem. In
fact, sparseness is limited to the lowest level.

Theorem 3.4 If the full automorphism group of an STS S contains an abelian sub-
group, which fixes more than one point and acts transitively on the other points, then
S is not 4-sparse.

Proof Let S = (V ,B) be an STS and G be an abelian subgroup of the full automor-
phism group of S. Assume that G fixes each point of W ⊂ V and acts transitively
on V \ W , where |W | ≥ 2. Considering the neighbors of a point a ∈ V \ W and two
distinct fixed points ∞0,∞1 ∈ W , we obtain a pair of blocks B0 = {a,∞0, a

i} and
B1 = {a,∞1, a

j }. By developing B1 and B2, we obtain four blocks B0, B1, B0
j and

B1
i . Since a = aij ⇔ ai = aj ⇔ ∞0 = ∞1, the family of the four blocks forms a

(6,4)-configuration. �

In the remainder of this paper we mention some corollaries on sparseness and
automorphisms, similar to those we have just discussed.

An STS is said to be bicyclic if it admits a permutation on points, consisting of a
pair of cycles of length k and v − k, as an automorphism. Calahan and Gardner [5]
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proved that there exists a bicyclic STS(v) for k > 1 if and only if v ≡ 1,3 (mod 6),
k | v, and either k ≡ 1 (mod 6) and 3k | v, or k ≡ 3 (mod 6) and k �= 9.

Corollary 3.5 Let S be a bicyclic r-sparse STS and l be the length of the smaller
cycle of its bicyclic automorphism. Then

r ≤
⎧
⎨

⎩

4 when l = 1,3,

9 when l ≡ 3 mod 6,

12 when l ≡ 1 mod 6.

Proof Let π be a bicyclic automorphism of S with the smaller cycle of length l. When
l = 1, π consists of a fixed point and a cycle of length v−1. Then S can be considered
1-rotational over Zv−1. When l = 3, π3 is an automorphism of S, consisting of three
cycles of length (v−3)/3 and three fixed points. Since v is admissible and 3 | (v−3),
we have (v −3)/3 even. Hence, S admits an involutive automorphism π(v−3)/2 fixing
exactly three points. Hence, the bound for l = 1,3 follows from Corollary 3.3 and
Theorem 3.1.

Next we assume that l �= 1,3. Let W be the set of points in the point orbit of size l

under π . Consider a block {a, b, c}, where a, b ∈ W . Since πl fixes each point of W ,
we have {a, b, c} = πl({a, b, c}). Hence, c = πl(c) and we have c ∈ W . Hence, the
points of W induce a cyclic sub-STS of order l. The bounds for l ≡ 1 (mod 6) and
l ≡ 3 (mod 6) follow from Corollary 2.4. �

An STS is said to be 1-transrotational if it admits an automorphism consisting
one fixed point, a transposition and a cycle of length v − 3. Gardner [17] showed
that a 1-transrotational STS(v) exists if and only if v ≡ 1,7,9,15 (mod 24). Let π

be a 1-transrotational automorphism of an STS. Every 1-transrotational STS admits
the involutive automorphism π(v−3)/2 fixing exactly three points, and hence it is at
most 4-sparse by Theorem 3.1. In fact, a 1-transrotational STS contains many other
(7,5)-configurations than those implied by Theorem 3.1.

Corollary 3.6 For every r ≥ 5, there exists no 1-transrotational r-sparse STS.

Proof Let (V ,B) be a 1-transrotational STS(v) and π be a 1-transrotational auto-
morphism fixing a point ∞. Since the unique STS(7) contains a (6,4)-configuration,
we assume that v > 7. Then B contains at least one block of which each point lies
in the point orbit of size v − 3 under π . Write the block as B1 = {a,πi(a),πj (a)}.
Take the block containing the pair {∞, a} and write it as B2 = {∞, a,πk(a)}. Then
we obtain five blocks B1, πk(B1), B2, πi(B2) and πj (B1). Considering the neigh-
bors of ∞, we have |B1 ∪πk(B1)∪B2 ∪πi(B2)∪πj (B1)| = 7; otherwise, one of the
three blocks B2, πi(B2) and πj (B1) is reduced to a pair of points. Hence, we obtain
a (7,5)-configuration. �
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