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Abstract In this paper we construct inverse bijections between two sequences of finite
sets. One sequence is defined by planar diagrams and the other by lattice walks. In [10]
it is shown that the number of elements in these two sets are equal. This problem and the
methods we use are motivated by the representation theory of the exceptional simple
Lie algebra G2. However in this account we have emphasised the combinatorics.
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1 Introduction

The aim of this paper is to give an enumeration of non-positive planar trivalent graphs.
Here the graph is embedded in a disk and the number of boundary points is specified.
This differs from other enumerations of planar trivalent graphs such as [16] or [4] in
that neither the number of vertices nor the number of edges is specified. So if there
were no further conditions then the number of graphs would be infinite. The extra
condition that is imposed is that the graph is non-positive. This means that there is no
internal face with less than six edges.

This problem arose in the work of Greg Kuperberg on the representation theory
of the exceptional simple Lie algebra G2 in [10]. In particular, one of the results of
this paper is that the two sets we consider have the same numbers of elements. This is
proved by showing that both sets are a basis of the same vector space.

Here, we give a bijective proof of this result. A bijective proof of the analogous
result for A2 is given in [7]. Moreover, the map from diagrams to words given below is
constructed by the same method as the analogous map in this reference. However the
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construction of the inverse map that we give here is new. This construction is based
on a diagram model for the crystal graph.

2 Background

The main result of this paper is the construction of inverse bijections between two
sequences of finite sets. The two sets and the bijections are constructed by combinato-
rial methods and in writing this paper we have emphasised the combinatorial aspects.
However both the original problem and the construction of the bijections are moti-
vated by representation theory. The origins of the idea of using diagrams to represent
invariant tensors are the Brauer algebras, spin networks and work of Cvitanovic. The
advent of quantum groups and the applications to knot theory have made the use of
diagrams more prevalent.

There are two combinatorial methods that have been introduced into representation
theory and the study of invariant tensors; Littelmann paths and crystal graphs. The
basic idea in this paper is to take the diagrams that have been introduced to study
invariant tensors and to apply them to the crystal graph. The translation between these
two points of view is given by the PRV theorem, [13, Theorem 2.1]. All of these
methods can, in principle, be applied to other representations. In particular, these
methods are applied to the spin representation of so(7) in [17].

In this paper we are studying the invariant theory of the seven dimensional fun-
damental representation of the exceptional simple Lie algebra of type G2. The Lie
algebra can be constructed as the derivation algebra of the octonions and the represen-
tation can then be taken to be the imaginary octonions. The weights and the dominant
weights below are the usual weights and dominant weights of this Lie algebra. This
representation has the (rare) property that all weight spaces are one dimensional. The
set S in (1) consists of the seven weights of this representation; moreover Fig. 6 (with
the centre point of weight (0, 0)) is the weight diagram of this representation.

The two finite sets we consider here each describe a basis for the vector space
of invariants in the n-th tensor power of this representation. One basis is given by
dominant Littelmann paths.

The Littelmann paths in this example are the seven paths drawn in Fig. 1. Then
the vector space of highest weight vectors in the n-th tensor power of this seven
dimensional representation has basis the set of concatenations of n of these seven
paths such that the concatenated path stays in the infinite wedge indicated by the
shaded region in Fig. 2. The motivation for Definition 3.1 is that the lattice walks
correspond to these paths. In particular the dimension of the space of invariant tensors
in the n-th tensor power of this seven dimensional representation is the number of
concatenations of n of these seven paths which stay in this infinite wedge and which
start and end at the origin.

The second method for constructing a basis of invariant tensors is to use crystal
graphs. The crystal graph in this example is a directed graph with edges labelled by
the simple roots where the vertices are the set S. The crystal graph is obtained from
the crystal base. The crystal base and the crystal graph for this representation are
given in [9]. These crystal graphs are then used in [11] to find the plactic monoid
associated to this seven dimensional representation and also to find the crystal basis of
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Fig. 1 Littelmann paths

Fig. 2 Dominant weights

the irreducible representation of Uq (G2) associated to any dominant integral weight.
In this example the vertices are parametrised by the weights and two weights are
connected by an edge labelled by a simple root if the difference is the simple root. In
this paper we do not make any use of the edges in the crystal graph and so they have
been omitted.

The main innovation in this paper is to give the diagram model of the crystal graph
as an alternative to the path model. So Fig. 1 is replaced by Fig. 8. Then we also want
a diagram model for the tensor powers of the diagram model. This is described in
Section 5.

Next we give the diagram model for crystal graphs of the tensor powers of the two
dimensional fundamental representation of sl(2). This is part of the graphical calculus
in [3] and is included here for pedagogical purposes.

The diagram model for the crystal graph of this two dimensional representation is
given by the two diagrams in Fig. 3.

Then the diagram models for the tensor powers of this crystal graph are drawn in the
triangle in Fig. 4. A diagram consists of a finite number of non-intersecting arcs drawn
in this triangle (with the endpoints in the boundary of the triangle). Furthermore every
arc has at least one endpoint on the edge XY. The length is the number of endpoints
on the edge XY. The height is the number of endpoints on the edge Y A and the depth
is the number of endpoints on the edge AX.

Springer



360 J Algebr Comb (2007) 25:357–373

Fig. 3 sl(2) diagrams

Fig. 4 Triangle

There is a bijection between the diagrams of length n and words of length n in the
two letters ( and ). This bijection is given by associating one of these letters to each
endpoint on the edge XY. The rule is that given an endpoint we label it with ( if the
other endpoint of the arc is to the right on the edge XY or on the edge YA and we label
it with ) if the other endpoint is to the left on the edge XY or on the edge AX.

Now we want to define the product of two of these diagrams. We require that the
height and depth of the product is given by the rules for the tensor product of crystal
graphs. This is illustrated in Fig. 10. It is clear that there is a unique way to fill in
the diamond in Fig. 10 so that this rule is satisfied. This product makes the set of all
diagrams into a graded monoid. This monoid is the free monoid on the two diagrams
in Fig. 3. This is also the diagram model for the crystal graph of the tensor algebra of
the fundamental representation.

The product of diagrams in Section 5 is not so clear and so we will now describe
a more formal procedure for drawing the diagram associated to a word of length n in
the two generators. First we draw a grid; the grid for n = 4 is shown in Fig. 5.

Then to draw the diagram for a product of four generators; start by drawing the four
generators in the four triangles along the top edge in Fig. 5. Now fill in the diamonds

Fig. 5 Grid
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by working down the grid. More precisely if the two triangles or two diamonds above
a diamond have been filled in then that diamond can be filled in by choosing one of
the four diamonds below:

3 Lattice walks

In this section we will give the description of the lattice walks that will be related to the
diagrams. We will use the terminology of weights which comes from representation
theory.

A weight λ is an ordered pair of integers. The set of weights is an abelian group under
addition and is partially ordered. The partial order is given by saying (a1, b1) ≥ (a2, b2)
if a1 ≥ a2 and b1 ≥ b2. A weight λ such that λ ≥ 0 is called a dominant weight.

Define the set S to be the following set of seven weights

S = {(1, −2), (0, −1), (1, −1), (0, 0), (0, 1), (−1, 1), (−1, 2)} (1)

Then the main definition of this section is

Definition 3.1. A lattice walk of length n is a sequence of n + 1 dominant weights
(λ0, λ1, . . . , λn) such that (λi − λi−1) ∈ S for 1 ≤ i ≤ n. The sequence is also required
to satisfy the additional condition that, for 1 ≤ i ≤ n, if λi = (a, 0) for some a ≥ 0
then λi−1 �= λi .

If (λ0, λ1, . . . , λn) is a lattice walk then we say that the walk starts at λ0 and ends
at λn . Denote the set of lattice walks of length n which start at λ and end at μ by
W (λ, n, μ). Also let the number of elements of W (λ, n, μ) be denoted by w(λ, n, μ).

Next we interpret a lattice walk as a walk in the triangular lattice. First we identify
the set of weights with the vertices of the triangular lattice. This is an identification
of abelian groups. The identification we use identifies the non-zero weights in S with
the regular hexagon of nearest neighbours of the origin in the triangular lattice. This
is shown in Fig. 6.

Example 3.2. The following diagram has w(0, 5, μ) written at position μ.

11 5
30 40 20 4

10 35 45 30 10 1
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Fig. 6 Seven steps

Example 3.3. The following diagram has w(0, 6, μ) written at position μ.

5
65 40 9

120 176 120 40 5
35 120 180 145 65 15 1

It is clear that the sets W (λ, n, μ) can be enumerated. Here we give numbers
of the form w(0, n, μ). Let X and Y be the following Laurent polynomials in the
indeterminates x and y:

X = 1 + x + x−1 + x−1 y + xy−1 + x−2 y + x2 y−1

Y = x − x−3 y2 + x−6 y3 − x−8 y3 + x−8 y2

−x−6 + x−3 y−2 − xy−4 + x4 y−5 − x6 y−5 + x6 y−4 − x4 y−2

Then the numbers w(0, n, μ) can be computed from the observation that if μ =
(a, b) then w(0, n, μ) is the coefficient of ya xb in the Laurent polynomial YXn−1.
The reason for this is that X is the Weyl character of this representation; this is the
generating function for the seven points in Fig. 6. The Weyl group of G2 is the dihedral
group of order twelve. Then Y is the generating function for the orbit of (0, 1) under
the action of the Weyl group with origin moved to (−1, −1). This gives a regular
polygon with twelve sides with centre at (−1, −1). The signs are such that if two
points are related by a reflection then they have different signs. The powers Xn are the
generating functions for sequences of steps of length n. Then the effect of multiplying
by Y is to impose the boundary conditions.

The sequence a(n) = w(0, n, 0) which is the number of lattice walks of length n
which start and end at the origin is of particular interest. This sequence is given in [14]
as sequence A059710. Equivalently a(n) is the constant term in the expansion of YXn−1

where X and Y are the Laurent polynomials in (2). It follows from this description that
the sequence a(n) satisfies a finite recurrence relation with polynomial coefficients.
Alex Mihailovs has proposed that this sequence satisfies the following recurrence
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relation

(n + 5)(n + 6)a(n) = 2(n − 1)(2n + 5)a(n − 1) + (n − 1)(19n + 18)a(n − 2)

+14(n − 1)(n − 2)a(n − 3)

together with the initial conditions a(0) = 1, a(1) = 0, a(2) = 1. The evidence for
the proposal is that it gives the initial terms of the sequence and gives the correct
asymptotics.

4 Diagrams

The main definition of this section is the following:

Definition 4.1. A diagram with n boundary points consists of a disc with n marked
points on the boundary together with an embedded graph. The graph has n vertices of
valence one which are identified with the marked boundary points by the embedding
and all other vertices of the graph have valency three.

A region is a connected component of the complement of the image of the graph
in the disc.

Definition 4.2. A diagram is non-positive if every region of the disc which is bounded
by edges of the graph is bounded by at least six edges of the graph.

Example 4.3. There are four non-positive diagrams with four boundary points. These
are

Although we will not make use of this result we first recall the argument from
[10] which shows that if we specify the number of boundary points then there are
only finitely many non-positive diagrams. This proof depends on the isoperimetric
inequality given in [?].

Proposition 4.4. Let n ≥ 0. Then there are finitely many non-positive diagrams with
n boundary points.

Proof: Consider a diagram whose graph is connected. Then the dual graph gives
a triangulation of the disc. Take each triangle to be a Euclidean equilateral triangle
with edge length 1. Then this gives a polyhedral metric on the disc. Now if the planar
graph is non-positive then this polyhedral metric has non-positive curvature. Hence the
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isoperimetric inequality is satisfied. Each triangle has area
√

3/2 and the length of the
boundary is n. Hence the isoperimetric inequality gives that there at most n2/(π

√
3)

triangles. �

Next we recall a crucial definition from [10].

Definition 4.5. Assume we are given a diagram. Let A and B be two boundary points
which are not marked points. Then a cut path from A to B is a path from A to B such
that each component of the intersection with the embedded graph is either an isolated
transverse intersection point or else is an edge of the graph.

The diagrams for these two cases are:

A cut path which crosses b edges and contains a edges is assigned the weight (a, b).
The weight (a, b) is called dominant if a ≥ 0 and b ≥ 0. The weights are partially
ordered by (a1, b1) < (a2, b2) if 2a1 + b1 < 2a2 + b2 or if 2a1 + b1 = 2a2 + b2 and
b1 < b2. A cut path is minimal if there is no cut path with the same endpoints and with
lower weight.

Definition 4.6. A triangular diagram is a non-positive diagram together with three
points A, X and Y which are in the boundary of the disc but not marked points. Then
we require that the edges AX and AY are minimal cut paths.

We will draw a triangular diagram as in Fig. 4. The length of a triangular diagram
is the number of marked points on the edge XY.

Definition 4.7. A triangular diagram is reducible if there is a point B inside the triangle
(and not on the graph) such that there is a minimal cut path from A to X which passes
through B, a minimal cut path from A to Y which also passes through B and such that
the the triangular diagram with vertices B, X and Y and edges given by these minimal
cut paths from B to X and B to Y is a proper subdiagram.

A triangular diagram is irreducible if it is not reducible. The diagram for a reducible
triangular diagram is given in Fig. 7. Note that since they are both minimal the paths
AX and AB + BX have the same weight. Hence they are related by H -moves, see
[10, Lemma 6.5]. For example, the seven diagrams in Fig. 8 are irreducible triangular
diagrams of length one and Fig. 9 shows an irreducible triangular diagram of length
two and a reducible triangular diagram of length one.

5 Diagrams to paths

In this section we construct a map T (n) → Sn .
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Fig. 7 Reducible diagram

Let T (n) be the set of irreducible triangular diagrams of length n and Sn the set
of words in S of length n. Then first we construct a maps T (n) → Sn for n ≥ 0. The
construction is essentially the same as the construction of the analogous map in [7].

Choose a sequence of points in the edge XY, (X0, X1, . . . , Xn), with X = X0 and
Y = Xn such that no point in the sequence is a marked boundary point and such that
for 1 ≤ i ≤ n the interval (Xi−1, Xi ) contains exactly one marked boundary point.
Now for 0 ≤ i ≤ n let λi be the weight of a minimal cut path with endpoints A and
Xi . Then the claim is that (λi − λi−1) ∈ S for 1 ≤ i ≤ n. This condition follows from
the following:

Proposition 5.1. The irreducible triangular diagrams of length one are precisely the
seven triangular diagrams in Fig. 8.

An isoperimetric inequality for sectors is given in [1]. It would be interesting to
know if this isoperimetric inequality also holds for polyhedral metrics; and, if so,

Fig. 8 Steps as triangles
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Fig. 9 Triangular diagrams

whether this implies that the number of irreducible triangular diagrams of length one
is finite.

Proof: It is straightforward to check that each of the seven diagrams in Fig. 8 is an
irreducible triangular diagram of length one. It remains to show that these are all such
diagrams.

For the first observation assume that we are given an irreducible triangular diagram
AXY and a point B on the edge AX but not on the graph. Then we can find a minimal
cut path from B to Y . Then the diagram BXY is a triangular diagram which may
be reducible. If the diagram BXY is reducible then by [10, Lemma 6.6] there is a
minimal cut path from B to Y of the same weight so that the triangular diagram BXY
is irreducible.

It follows from this observation that if there is a counter example then there is a
counter example such that the irreducible triangular diagram BXY is one of the seven
triangular diagrams in Fig. 8 and such that the weight of the cut path AB is either (0, 1)
or (1, 0).

Now observe that in this situation the weight of AY is at most the sum of the weights
of AB and BY; otherwise AY would not be a minimal cut path. Then the weight of AY
is less than the sum of the weights of AB and BY; otherwise the triangular diagram
AXY would be reducible.

There are only finitely many triangular diagrams with the following properties. The
triangular diagram BXY is one of the seven triangular diagrams in Fig. 8; the weight
of AB is (0, 1) or (1, 0); the weight of AY is less than the sum of the weights of AB and
BY.

To prove the proposition it is sufficient to check that none of these diagrams give a
counter example. �

Example 5.2. As a simple example we give the paths associated to the four diagrams
in Example 4.3.
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The weight on the top edge is the weight of the central cut path. The weights of
the two sides of the triangle are (0, 0) in all four cases and the weights of the two
intermediate cut paths are (0, 1) in all four cases. Taking the successive differences of
these five weights gives a sequence of four elements of S in each case. In each case
the first element of the sequence is (0, 1) and the last element is (0, −1).

6 Paths to diagrams

In this section we construct a map Sn → T (n). First we introduce a new type of edge.
This will be drawn as a double edge. The Definition 4.1 (of a diagram) is modified to
allow this new type of edge. The graph is still required to be trivalent but we also allow
a vertex to be incident to two edges of the original type and to one of the new type. The
Definition 4.5 (of a cut path) is also modified to allow a cut path to intersect any edge
transversally. A cut path which crosses b edges of the original type, contains a edges
(of the the original type) and crosses c edges of the new type has weight (a + c, b).
This new type of edge is natural from the point of view of the representation theory.
Given a word in Sn we will describe how to construct a diagram which may include
this double edge. Once this diagram has been constructed we eliminate the double
edge using the following replacement; see [10, Section 4 (4) and Section 6.2]. This
gives the element of T (n).

Construct a planar graph by taking the subgraph of the square lattice on the vertices
(i, j) such that 0 ≤ i, j and i + j ≤ n. Identify this subgraph of the square lattice
with a grid as in Fig. 5, where (0, 0) corresponds to the bottom vertex, (0, n) to the
top left corner and (n, 0) to the top right corner. Then we label the edges of this graph
by dominant weights. Label the edge from (i, j) to (i, j + 1) by Di, j and label the
edge from (i, j) to (i + 1, j) by Hi, j . The labelling is constructed by induction on
n − i − j .

The first stage in the construction of the diagram is to read the sequence of steps
as a sequence of triangular diagrams using the correspondence in Fig. 11. This fills in
the triangles in the top row of the grid in Fig. 5 and the corresponding labels on the
edges of the triangles are the dominant weights Di, j and Hi, j for i + j = n − 1.

Then the remaining labels Di, j and Hi, j are constructed by induction on n − i − j .
These rules are the rules for the height and depth of the vertices of the tensor product
of two crystal graphs. The tensor product of two crystal graphs was first defined in
[5, Section 6] and other accounts are given in [15, Section 3] and [9, Section 4.4].
These fix a k and determine the k-th components of dominant weights by applying
the same rule that applies for sl(2). The explicit rule for the k-th components is: If
Di+1, j−1(k) ≥ Hi, j (k) then put

Di, j−1(k) = Di+1, j−1(k) − Hi, j (k) Hi, j−1(k) = 0
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Fig. 10 Labelling the edges

and if Hi, j (k) ≥ Di+1, j−1(k) then put

Di, j−1(k) = 0 Hi, j−1(k) = Hi, j (k) − Di+1, j−1(k)

This rule is shown on the triangular diagrams in Fig. 10.
At this point we have filled in the triangles in the top row of the grid in Fig. 5 and

we have labelled all the edges in the grid by dominant weights. Next we give the rule
for filling in each diamond. The top two edges of the diamond have been labelled by
one of the four dominant weights

{(0, 0), (0, 1), (0, 2), (1, 0)}

This observation follows from an inductive argument. The basis of the induction is
that all sides of all triangles in Fig. 11 are labelled by one of these four dominant
weights. The inductive step is a consequence of the rule for constructing the labelling.

This gives sixteen labelled diamonds. Next we give a diagram for each of these
sixteen labelled diamonds. The rule for completing the diagram is then that each
diamond in the grid is filled in with the corresponding diamond diagram.

There are four symmetric diamonds which are also the diamonds where the weights
on the top two edges are equal and the weights on the bottom two edges are zero. The

Fig. 11 Steps as triangles
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case in which all four weights are zero is an empty diamond. The other three diamonds
are

The other twelve diamonds come in pairs and we only give one member of each
pair. The other member is obtained by reflection in a vertical line. There are three
diagrams in which an oposite pair of edges have weight zero. These give the three
diamonds

The remaining three diamonds are

Example 6.1. If we draw the hexagon and take the sequence of dominant weights we
get the top row below and then the second row is the sequence of six elements of S
obtained by taking successive differences.

(0, 0) (0, 1) (1, 0) (0, 2) (1, 0) (0, 1) (0, 0)
(0, 1) (1, −1) (−1, 2) (1, −2) (−1, 1) (0, −1)

Then if we were given this sequence we can recover the hexagon. The first stage of
the construction is to draw this as a sequence of six triangles. Then we find that the
diagram completes when we fill in the first row of diamonds. This is shown in Fig. 12.
Then substituting for the two double edges gives the hexagon.

The construction which associates a word to a diagram can be applied to a diagram
which looks at first sight like an element of T (n) but which may be positive or reducible.

Fig. 12 Constructing the hexagon
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This will still give an element of Sn and then we can construct an element of T (n).
This gives a projection map from the set of these more general diagrams to T (n). The
following two examples illustrate this.

Example 6.2. The square is positive and if we look at the cut paths we get the following
diagram

This gives the path labelled (1, 0) in Example 5.2.

Example 6.3. The pentagon is also positive and if we draw the diagram and take the
sequence of dominant weights we get the top row below and then the second row is
the sequence of five elements of S obtained by taking successive differences.

(0, 0) (0, 1) (1, 0) (1, 0) (0, 1) (0, 0)
(0, 1) (1, −1) (0, 0) (−1, 1) (0, −1)

(2)

Note that this path does not satisfy the conditions of Definition 3.1 since we have
λ3 = (1, 0) = λ4. The triangular diagram associated to this sequence is

If we take the sequence of dominant weights associated to this diagram we get the
sequence in the top row of (2) with (0, 1) added to each term. The sequence of five
elements associated to this is then the second row of (2). This corresponds to moving
the starting point from (0, 0) to (0, 1) and this path does satisfy Definition 3.1.

It is possible to construct the diagram without introducing a double edge. The
starting point is to fill in the triangles in the top line of the grid (in Fig. 5) using Fig. 8
(instead of Fig. 11). The labels on the edges of the grid are the same as before. Then
for each of the sixteen diamonds we have a rule for extending the diagram to include
the diamond. The reason we need rules for extending diagrams is that if we simply fill
in the diamonds we may introduce a square, which is positive. If the diagram for filling
in a diamond does not have a double edge then we fill in using the same diagram. The
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remaining cases are covered by the four rules below (and their reflections in a vertical
line). On the left we give the diamond before we extend and on the right the diamond
after extending.

We can now state the main theorem of this paper.

Theorem 6.4. For all n ≥ 0 these are inverse bijections between words in S of length
n and irreducible triangular diagrams of length n.

An important feature of this construction is the following observation:

Lemma 6.5. Any increasing path which starts at the bottom vertex and follows the
construction lines to the top edge of the diagram is a minimal cut path.

This observation shows that the diagram is non-positive since it shows that we have
a minimal cut path from the bottom vertex to the top edge which passes through any
internal region. Hence we have constructed a triangular diagram of length n. It remains
to check that this is irreducible. This is the statement that the edges of the triangle are
the unique minimal cut paths between their endpoints.

Then Lemma 6.5 also shows that if we start with a word construct the diagram and
then derive a word that we recover the original word. In particular this shows that for
n ≥ 0, the map T (n) → Sn is surjective.

Next we show that, for n ≥ 0, the map T (n) → Sn is injective. The proof is by
induction on the length of the word. The basis of the induction is the case of length
one which is proved in Proposition 5.1. Assume the result for words of length n. Let
w be a word of length n + 1. Let wi be obtained by dropping the final step and w f be
obtained by dropping the first step. Then these are both words of length n and so by
the inductive hypothesis have unique diagrams.
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Fig. 13 Inductive step

Now assume we are given an irreducible triangular diagram which represents w

and draw this in the triangle in Fig. 13. Then there are points X2 and Y1 on the top
edge so that X1Y1 and X2Y2 have length n − 1. Now find a minimal cut path from Y1

to the bottom vertex A. Then the diagram AX1Y1 is triangular but may be reducible.
However, by [10, Lemma 6.6], there is a point A1 so that the diagram in A1 X1Y1 is
irreducible. This irreducible diagram is then the unique irreducible diagram which
represents wi . Similarly there is a point A2 such that the diagram in A2 X2Y2 is the
unique irreducible triangular diagram which represents w f .

Thus the only part of the diagram that has not been filled in is the lowest diamond
between the points A1 and A2. Thus the claim is that for each of the sixteen possible
diamonds the rule we have given for filling it in is the unique rule that gives a non-
positive irreducible triangular diagram. For each of these sixteen diamonds, the claim
can be checked using [10, Lemma 6.5].

This proves Theorem 6.4. Then for n ≥ 0, these bijections restrict to bijections
between the set of non-positive diagrams with n boundary points and the set of lattice
walks of length n which start and end at the origin. There is a general principle which
is illustrated in Example 6.3. Namely, given a word in Sn construct the triangular
diagram and let the dominant weight on the left edge be D. Then if we start at D
and take the path associated to the word then we get a lattice path; moreover D is the
lowest dominant weight with this property. In particular, lattice paths which start at
the origin correspond to triangular diagrams whose left edge has weight (0, 0). Then
the path ends at the weight of the right hand edge of the triangular diagram. So lattice
paths which start and end at the origin correspond to triangular diagrams such that
both sides have weight (0, 0).

One application of this is to the representation theory of the centraliser algebras
of the tensor powers of the seven dimensional fundamental representation of G2. Let
A(n) be the centraliser algebra of the n-th tensor power. From the diagram point of
view, a basis of this algebra is the set of non-positive trivalent graphs drawn in a
rectangle with n boundary points on the top and bottom edges and no boundary points
on the sides. Using cut paths which cross the rectangle we can construct cell ideals
as defined in [?] and this shows that these algebras are cellular. The enumeration in
this paper can be used to construct the cell representations. For each dominant weight
μ we have the set of lattice paths W (0, n, μ). Then the bijection between Sn and
T (n) restricts to a bijection between W (0, n, μ) and irreducible triangular diagrams
of length n whose left edge has weight (0, 0) and whose right edge has weight μ. This
set of diagrams may not be a basis for the cell representation because the sequence of
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transverse intersections and edges may not be the same for each diagram. However
we can choose a fixed sequence. Then, given an irreducible triangular diagram whose
right hand edge has weight μ but with a different sequence, there is a unique sequence
of H -moves which changes the sequence on the right edge to the given sequence.
This gives a reducible triangular diagram. These diagrams are a basis for the cell
representation.
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