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Abstract Mochizuki’s work on torally indigenous bundles [1] yields combinatorial identities

by degenerating to different curves of the same genus. We rephrase these identities in combi-

natorial language and strengthen them, giving relations between Ehrhart quasi-polynomials

of different polytopes. We then apply the theory of Ehrhart quasi-polynomials to conclude

that the number of dormant torally indigenous bundles on a general curve of a given type

is expressed as a polynomial in the characteristic of the base field. In particular, we con-

clude the same for the number vector bundles of rank two and trivial determinant whose

Frobenius-pullbacks are maximally unstable, as well as self-maps of the projective line with

prescribed ramification.
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1. Introduction

In this paper, we bring together work of Mochizuki in algebraic geometry and the theory of

Ehrhart quasi-polynomials in combinatorics, obtaining results in both fields. There is already

a combinatorial result implicit in [1]; we strengthen it and state it explicitly in terms of

familiar combinatorial objects: namely, we obtain in Theorem 2.4 below an infinite family of

identities of numbers of lattice points in different polytopes. Conversely, we use the theory

of Ehrhart quasi-polynomials to conclude in Theorem 2.1 below that the number of dormant

torally indigenous bundles of Mochizuki’s theory (see the following section for references and

discussion, including relationships to certain rational functions and Frobenius-destabilized

vector bundles) may be expressed as a polynomial in the characteristic of the base field. Both

these phenomena are observed (but not pursued) in [1, p. 46] in a slightly different case, so
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the present paper may be considered a more complete exploration of these phenomena in the

case of dormant torally indigenous bundles.

In fact, the ideas of our paper make no use of the precise definition of dormant torally

indigenous bundles, but rather of formal properties which one might expect to find in a number

of other settings in the geometry of algebraic curves. The basic idea of Mochizuki’s work

is that he counts the dormant torally indigenous bundles on general curves of a given type

(g, r ) (that is, having genus g and r marked points) by degenerating to totally degenerate

curves (Definition 3.7); such curves are determined entirely by the combinatorial data of

their dual graphs (Definition 3.8). He shows that the number of dormant torally indigenous

bundles on a totally degenerate curve can be described combinatorially, essentially as the

number of lattice points inside a polytope whose dimensions depend on the characteristic

of the base field, and he also shows that the number of dormant torally indigenous bundles

on a general curve of type (g, r ) is equal to the number on any totally degenerate curve

of the same type. In particular, the number agrees for any two totally degenerate curves,

which is how we obtain our combinatorial formulas. In addition, the relationship to lattice

points of polytopes allows the application of the theory of Ehrhart quasi-polynomials to

conclude that these numbers are given by polynomials in the characteristic of the base

field.

We remark that for any situation where enumerative invariants are associated to curves in

such a way that the invariant for a general curve can be computed at totally degenerate curves,

one can expect the computations at totally degenerate curves to be of a combinatorial nature,

and then one can hope to obtain non-trivial combinatorial identities by comparing these for-

mulas at different totally degenerate curves, as is done here. Thus, the easiest generalizations

of our combinatorial results are likely to arise not from attempting to generalize dormant

torally indigenous bundles (although that possibility is discussed briefly at the end of the

final section below), but from finding examples of completely unrelated algebro-geometric

objects which are associated to curves and satisfy the same formal properties with respect to

degeneration.

2. Statements

We first state our theorem in algebraic geometry. Dormant torally indigenous bundles are

algebro-geometric objects associated to curves with marked points, and their precise defini-

tion, which is rather technical and given in [1, Def. I.1.2, p. 89, Def. I.4.1, p. 113, Def. II.1.1,

p. 127], is not relevant to the present paper. However, for the purposes of motivating our

Theorem 2.1, we remark on two important cases in which dormant torally indigenous bun-

dles correspond to more concrete and widely-studied objects. In the case of a smooth curve

of genus g ≥ 2 with no marked points, dormant torally indigenous bundles are equivalent

up to a factor of 22g to semistable vector bundles of rank 2 with trivial determinant whose

pullbacks under the relative Frobenius morphism are maximally unstable—specifically, con-

tain a line-bundle of degree g − 1. In the case that C is smooth with g = 0 and r general

marked points, dormant torally indigenous bundles are equivalent up to a factor of 2r−1 to

rational functions on P1 ramified to order less than p at the marked points, and unramified

elsewhere, up to linear fractional transformation. For both these assertions, see [2]. Theorem

2.1 is new and no easier to prove in both these special cases, and we state the general case

partly because it is the most natural level of generality given the arguments, and partly be-

cause the phenomenon of invariants in algebraic geometry being expressible by polynomials

in the characteristic of the base field is ubiquitous and poorly understood, and rather than
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simply providing two apparently unrelated examples of this phenomenon, it seems preferable

to have a single example which simultaneously generalizes the special cases.

We now state our first theorem, denoting by F the relative Frobenius morphism:

Theorem 2.1. Fix g, r ≥ 0 with 2g − 2 + r > 0. Then there exists a polynomial fg,r (n) ∈
Q[n] such that if k is an algebraically closed field of characteristic p > 2, and C a general
smooth curve over k of genus g with r general marked points, then the number of dormant
torally indigenous bundles on C is given by fg,r (p). Furthermore, fg,r (n) has degree 3g −
3 + 2r , is even or odd as determined by its degree, and is always strictly positive for n ≥ 2.

In particular, if r = 0 we have that the number of semistable vector bundles of rank two
and trivial determinant on C such that F∗ contains a line bundle of degree g − 1 is given
by 22g fg,0(p). If g = 0 we have that the number of maps f : C = P1 → P1 ramified to order
less than p at the marked points and unramified elsewhere, counted modulo automorphism
of the image, is given by 2r−1 f0,r (p).

The combinatorial result will require some preliminary definitions. We have:

Definition 2.2. Let V, E be sets, and suppose that we are given ϕ a map from E to V ∪ (
V
2).

We then call G = (V, E, ϕ) a quasi-graph. The standard notions of edges, vertices, and

edges being adjacent to vertices generalize immediately to quasi-graphs. The set of edges E
is naturally subdivided into free edges, which are ϕ−1(V ), and fixed edges, given by ϕ−1((

V
2)).

Thus, a quasi-graph may be thought of simply as a graph where some edges—the free

edges—are allowed to be attached to only a single vertex. A quasi-graph which consists of

only fixed edges is simply a standard graph. Quasi-graphs arise naturally as the dual objects

to nodal curves with marked points, where the marked points correspond to free edges of

the dual quasi-graph; see Definition 3.8. The usual notions of connectedness, regularity,

loops, and simplicity for graphs immediately make sense in the context of quasi-graphs as

well. When there is no ambiguity, we will denote by V and E the vertex and edge sets of a

quasi-graph G.

We next associate a polytope to certain special quasi-graphs, denoting by A(v) the set of

edges adjacent to a vertex v:

Definition 2.3. Let G be a quasi-graph which is regular of degree 3. The convex polytope

G associated to G is defined to be the space of real-valued weight functions w : E → R
on the edge set of G satisfying the following inequalities:

(i) for each e ∈ E , w(e) ≥ 0;

(ii) for each v ∈ V ,
∑

e∈A(v) w(e) ≤ 1;

(iii) for each v ∈ V and e ∈ A(v), w(e) ≤ ∑
e′∈A(v)�{e} w(e′).

Note that condition (iii) is just the triangle inequality for the edges adjacent to any given

vertex. Note also that (i) and (ii) bound all the w(e) between 0 and 1, so in particular G is

in fact a polytope.

We also briefly recall the theory of Ehrhart quasi-polynomials, following [4, p. 235]: a

quasi-polynomial of degree m and quasi-period d is a function f : Z → C such that there

exist polynomials f0, . . . , fd−1 ∈ C[x] of degree m satisfying, for all x ∈ Z, f (x) = fi (x),

with i determined by i ≡ x (mod d). Given a polytope of dimension m with rational

vertices having common denominator d , if we denote by n the nth scaling of , one
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has the Ehrhart quasi-polynomial (see [4, Thm. 4.6.25, Prop. 4.4.1]) of , having degree

m and quasi-period d, and whose nth value is the number of lattice points in n . Finally,

one has the Ehrhart reciprocity theorem (see [4, Thm. 4.6.26]) stating that the number of

points in the interior of n is given, up to the sign (−1)m , by the −nth value of the Ehrhart

quasi-polynomial of .

With these definitions, we can now state the combinatorial result:

Theorem 2.4. Let G, G ′ be any two quasi-graphs, connected, regular of degree three, and
having the same number of vertices and edges. Then the Ehrhart quasi-polynomials for G

and G ′ agree at all odd values.

Ehrhart quasi-polynomials are not in general well-understood: there are formulas for the

first two coefficients, but further coefficients, as well as possible criteria for two polytopes to

have the same Ehrhart polynomial, remain mysterious. Thus, one might hope that a family

of non-trivial identities such as these could help to shed light on the situation.

When presented with cross-disciplinary results such as these, one naturally wonders

whether they can be obtained more directly by further exploration of the situation. In

algebraic geometry, it is a general phenomenon that answers to enumerative questions are

given as polynomials in the characteristic, but as often as not, as in the case here, the only

way to show this is to compute the answer and show a posteriori that it is a polynomial. We

are thus motivated to ask:

Question 2.5. Can one show a priori by methods of algebraic geometry that the number of

dormant indigenous bundles must be given by a polynomial in p? Can such an argument be

given covering a wider range of enumerative problems?

Correspondingly, we wonder:

Question 2.6. Can one demonstrate directly a combinatorial relationship between the

polytopes G for G as in Theorem 2.4 which implies agreement of their Ehrhart

quasi-polynomials?

We discuss additional, more concrete combinatorial questions in the final section.

3. Proofs

We start by associating a second polytope to any quasi-graph which is regular of degree 3,

which is affinely isomorphic to G , but imbedded in a larger-dimensional space:

Definition 3.1. Let G be a quasi-graph which is regular of degree 3. We describe a second

polytope ′
G associated to G, defined to be the space of real-valued weight functions w :

E ∪ V → R on the edges and vertices of G satisfying the following inequalities:

(i) for each e ∈ E , w(e) ≥ 0;

(ii) for each v ∈ V ,
∑

e∈A(v) w(e) = 2w(v);

(iii) for each v ∈ V and e ∈ A(v), w(e) ≤ w(v);

(iv) for each v ∈ V , w(v) ≤ 1.
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Indeed, one checks that points of ′
G correspond to points of 2 G , by leaving the w(e)

unchanged and setting w(v) as determined by (iii) above. The w(v) act as ‘dummy variables’

to insure that lattice points of n ′
G are merely lattice points of 2n G with w(e)’s having

even sum at any v.

We also specify:

Definition 3.2. Let G be a quasi-graph. A sub-quasi-graph H of G is a quasi-graph obtained

by restricting the adjacency function ϕ for G to subsets of the vertex and edge sets on which

ϕ remains well-defined.

In particular, a sub-quasi-graph may not change a fixed edge to a free edge.

Lemma 3.3. Let G be a quasi-graph which is connected and regular of degree 3. Then the
odd values of the Ehrhart quasi-polynomials for G and ′

G ′′ differ by an integer multiple
determined by G.

Proof: Let e1, . . . , ed be the edges of G, and v1, . . . , vm be the vertices. Then the nth value

of the Ehrhart quasi-polynomial of G (respectively, ′
G ′′ ) is by definition the number

of possible integer values for the w(ei ) (respectively, the w(ei ) and w(v j )) lying inside the

(closed) polytope n G (respectively, n ′
G), which is obtained by replacing the 1 in the

definition of G (respectively, ′
G ′′ ) by n. We claim that for n odd, both of these are

equivalent (up to constant integer multiple) to:

#

{
(λ1, . . . , λd , d1, . . . , dm) ∈ Zd+m : ∀i, 0 < λi < n + 2; ∀ j, d j < n + 2;

∀i, j such that ei ∈ A(v j ), λi ≤ d j ; ∀ j, 2d j + 1 =
∑

i :ei ∈A(v j )

λi

}
(3.1)

First, note that the conditions λi < n + 2 are superfluous. If we set λi = w(ei ) + 1 for

each i and d j = w(v j ) + 1 for each j , we recover the description of the nth value of the

Ehrhart quasi-polynomial of ′
G . Next, it is easily checked that if we set λi = 2w(ei ) + 1

(at which point the d j are all uniquely determined) as the w(ei ) range over all possibilities

for the nth value of the Ehrhart quasi-polynomial of G , we recover all possible assign-

ments of the λi , d j for which λi are all odd. The key observation is that for n odd, the

number of possibilities with all λi odd is 1
NG

times the total number of possibilities, where

NG is the number of (not necessarily spanning) sub-quasi-graphs of G which are regu-

lar of degree 2. Indeed, if one starts with an arbitrary assignment of λi , d j , the edges ei

for which λi are even gives such a sub-quasi-graph, and if all λi which are even are re-

placed by n + 2 − λi (and the d j adjusted accordingly), one can check that all conditions

are preserved, and one obtains an assignment with all λi odd. This sets up a natural, visibly

invertible correspondence between arbitrary assignments of λi and d j satisfying the required

inequalities, and pairs of assignments with all λi odd together with an arbitrary sub-quasi-

graph of G which is regular of degree 2. This completes the proof of the claim, and the

lemma. �

We now proceed to describe the vertices of the polytopes we have constructed. We start

with:
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Lemma 3.4. Let G be a regular quasi-graph of degree 3. Then any vertex of G whose
coordinates are all non-zero has coordinates equal to 1

4
or 1

2
. More precisely, for any vertex

of G, the weights associated to the three edges adjacent to any vertex of G are { 1
4
, 1

4
, 1

2
}.

Proof: Denote by E2 and E1 the sets of fixed and free edges of G respectively. Then one has

3(#V ) = 2(#E2) + #E1. A vertex of G must satisfy all of the inequalities listed in Definition

2.3; moreover, by replacing the inequalities with equalities, one obtains a collection of linear

constraints, and among these, the vertex must satisfy some #E independent constraints. By

hypothesis, none of these constraints are of the form w(e) = 0, so they are chosen from the

4(#V ) constraints of the form w(e) + w(e′) + w(e′′) = 1 or w(e) = w(e′) + w(e′′) where

e, e′, e′′ are the three edges (possibly with multiplicity) adjacent to some vertex of G. We

note that for any given vertex of G, we cannot have two constraints of the second form,

since that would force one of the weights to be 0. Therefore, each vertex of G can supply at

most two constraints, and in the case of two, one of the two is necessarily w(e) + w(e′) +
w(e′′) = 1. Moreover, since we need #E = #E1 + #E2 constraints, we must have at least
1
3
(#E2) + 2

3
(#E1) vertices of G with two constraints; denote these vertices by V 2. For any

given such vertex in V 2, we may write the two constraints as w(e) + w(e′) + w(e′′) = 1 and

w(e) = w(e′) + w(e′′), which yields w(e) = 1
2
. Let E2 denote the set of edges e forced to

have weight 1
2

in this manner.

Now, by the hypothesis that all weights are non-zero, for any given vertex of G we cannot

have two edges with weight 1
2
, so every vertex in V (and in particular in V 2) is adjacent to a

unique edge of E2. The next observation is that conversely, every edge e ∈ E2 is adjacent to

a unique vertex of V 2. Indeed, if both vertices adjacent to e were in V 2, the two constraints

at each would both necessarily force e to have weight 1
2
, which would imply that they were

linearly dependent. We claim that in fact every vertex of G is adjacent to an edge in E2;

that is, E2 gives a perfect matching of G. We subdivide V 2 into V 21 and V 22, according

to whether the corresponding edge of E2 is free or fixed, respectively. We therefore want

to show that #V 21 + 2(#V 22) ≥ #V . But 2(#V 21) + 2(#V 22) = 2(#V 2) ≥ 2
3
(#E2) + 4

3
(#E1),

and by definition #V 21 ≤ #E1, so subtracting we find that #V 21 + 2(#V 22) ≥ 2
3
(#E2) +

1
3
(#E1) = #V , as claimed. Finally, we can conclude that #V 21 + 2(#V 22) = #V , and it

follows that we must have had #V 21 = #E1, and no vertices of G without any associated

constraints.

The final step is to show that given our description so far, if one assigns 1
4

to all edges

not in E2, then this assigment satisfies every constraint which is permissible based on the

hypotheses that all weights are non-zero and that the weights of E2 are predetermined as
1
2
. Indeed, let v be any vertex of G, and e, e′, e′′ its adjacent edges. Suppose without loss

of generality that e ∈ E2. Then under the assignment w(e′) = w(e′′) = 1
4
, both constraints

w(e) + w(e′) + w(e′′) = 1 and w(e) = w(e′) + w(e′′) will be satisfied. All that remains is

to note that with w(e) = 1
2
, no valid assignment of w(e′) and w(e′′) can achieve w(e′) =

w(e) + w(e′′) or w(e′′) = w(e) + w(e′), since with all three weights positive, their sum would

have to be greater than 1. Thus, our assignment satisfies any possible choice of constraints

associated to the vertices of G not in V 2, and we conclude that our chosen vertex of G has

coordinates of the desired form. �

We can now conclude:

Proposition 3.5. Let G be a regular quasi-graph of degree 3. Then any vertex of G has
each of its coordinates equal to 0, 1

4
or 1

2
, with the only possible weights associated to the
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edges adjacent to a given vertex of G being {0, 0, 0}, {0, 1
2
, 1

2
}, {0, 1

4
, 1

4
}, and { 1

4
, 1

4
, 1

2
}. Any

vertex of ′
G has each of its coordinates equal to 0, 1

2
or 1.

Proof: We begin with the assertion for G , working by induction on the number of co-

ordinates of a given vertex which are equal to 0. The base case is that all coordinates are

non-zero, which we handled in the previous lemma. Now, suppose we have an edge e of G
whose weight is zero for our chosen vertex of G . Suppose e is a fixed edge, and let v1, v2 be

the two adjacent vertices; note that it suffices to consider the case that v1 and v2 are distinct,

since if e is a loop, the triangle inequalities in the definition of G will force the other edge

adjacent to v1 = v2 to have weight 0 as well, and we could instead choose this edge to be e.

Next, note that if e1, e′
1 and e2, e′

2 are the adjacent edges other than e at v1, v2 respectively,

then the triangle inequalities at v1 and v2 force w(e1) = w(e′
1) and w(e2) = w(e′

2). We define

a new graph G ′ obtained by removing e, v1, and v2, and replacing each pair e1, e′
1 and e2, e′

2

by single edges e′′
1 and e′′

2 in the obvious way: that is, if ei , e′
i are each adjacent to vertices

other than v1 or v2, replace them with an edge adjacent to those two vertices; if only one

is adjacent to a vertex other than v1 or v2, replace them by a single free edge; if neither is

adjacent to a vertex other than v1 or v2, remove them entirely.

Now, we claim that we obtain a vertex of G ′ by assigning weights to the edges of G ′

which are the same as G where the graphs are the same, and which assign the common weight

of ei , e′
i to the new edges e′′

i for i = 1, 2. It suffices to show that we can provide constraints

from the definition of G ′ to replace any constraints that were lost when v1 and v2 were

removed. The constraints coming from triangle inequalities at vi are easily replaced: they

can either require w(ei ) = w(e′
i ), or w(ei ) = w(ei ) = 0. The first condition is superfluous,

while the second can be replaced by the constraint w(e′′
i ) = 0. So we need only show that

we can effectively replace the condition that the sum of the weights at a vi be equal to 1,

which gives w(ei ) = w(e′
i ) = 1

2
, so is equivalent to requiring w(e′′

i ) = 1
2
. Choose v3 to be a

vertex adjacent to e′′
i ; without loss of generality, suppose this was the vertex adjacent to ei

in G. Since we had w(ei ) = 1
2

in G, the inequality requiring the sum of the three weights at

v3 to be at most 1, together with the triangle inequality for w(ei ), implies that in fact both of

these inequalities are sharp, giving corresponding constraints satisfied in G, so we can then

require them also in G ′ in order to force the weight of e′′
i to be 1

2
, as desired.

By the induction hypothesis, we can assume that the vertex of G ′ we have constructed

has weights only equal to 0, 1
4

or 1
2
, with the weights of the asserted form for edges adjacent

to a particular vertex. One checks easily that our description of weights of the edges adjacent

to a given vertex is preserved by the construction, as long as we verify that if in constructing

G ′ we removed an edge of G other than e, its weight must also have been one of 0, 1
4
, 1

2
. Such

a removal only occurred if both ei and e′
i were both adjacent only to v1, v2 for i = 1 or 2.

There are only two possibilities: either ei = e′
i is a loop, or ei and e′

i are both adjacent to both

v1 and v2, in which case these three edges and two vertices are necessarily all of G. In the

first case, one checks that in order for the weight of the loop to be uniquely determined, given

that w(e) = 0, its weight is necessarily either 0 or 1
2
. In the second case, one can check the

assertion of the Proposition directly for G (see also Example 4.1). Finally, note that although

we carried out this process in the case that e was fixed, the argument works equally well (and

is in fact simpler) in the case that e is free. This completes the induction argument for G .

We may now conclude the desired statement for ′
G : for finding vertices of our polytopes,

we work over R, and in this setting, as mentioned above, the introduction of the w(v)

coordinates are irrelevant, and if we ignore these coordinates, the polytope ′
G is the same

as 2 G . In particular, with the possible exception of the w(v), all coordinates of vertices
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of ′
G are equal to 0, 1

2
or 1. But the same follows for w(v) from our sharp description of

the possible weights associated to edges adjacent to a vertex of G in the case of a vertex of G .

�

This gives us our key result:

Corollary 3.6. The odd values of the Ehrhart quasi-polynomial of ′
G, and hence G, are

given by a single polynomial, of degree equal to #E.

Proof: We note that the dimension of G (and hence ′
G) is equal to #E : indeed, it is

easily verified that the (#E)-cube with all weights between 1
6

and 1
3

lies inside G . The

assertion for ′
G is then immediate from Proposition 3.5 and the existence theorem for

Ehrhart-quasi-polynomials. The assertion for G then follows by Lemma 3.3. �

Recall the following:

Definition 3.7. A nodal curve C is a curve obtained from a (not necessarily connected)

smooth curve by gluing together pairs of points transversely, creating nodes at these points.

The smooth curve from which C is obtained is unique, and called the normalization of C ,

and will be denoted C̃ . When considering curves with marked points, we set the marked

points of C̃ to be the points lying above marked points or nodes of C . Finally, a totally
degenerate curve is a nodal curve such that C̃ consists of disjoint copies of P1 with three

marked points each.

Because any three points on P1 are equivalent up to automorphism, a totally degenerate

curve is determined by combinatorial data, and specifically by the dual quasi-graph:

Definition 3.8. Let C be a nodal curve with marked points. Then the dual quasi-graph
associated to C is defined to be the quasi-graph whose vertices are the components of C ,

whose fixed edges correspond to nodes of C and are adjacent to the components intersecting

at a given node, and whose free edges correspond to marked points of C , and are adjacent to

the component on which the marked point lies.

One checks directly that a C such that C̃ is a disjoint union of P1’s is totally degenerate if

and only if its dual quasi-graph is regular of degree 3, and that conversely given a quasi-graph

which is regular of degree 3, there is a unique totally degenerate curve having the chosen

dual quasi-graph. Finally, one checks that the type (g, r ) of the curve is related to the number

of vertices and edges of the dual quasi-graph by the formulas #V = 2g − 2 + r, #E = 3g −
3 + 2r .

The theorem we will use which is implicit in Mochizuki’s work may be stated as:

Theorem 3.9. (Mochizuki) Fix g, r ≥ 0 with 2g − 2 + r > 0, and p an odd prime. Then
the number of dormant torally indigenous bundles on a general curve of type (g, r ) over an
algebraically closed field of characteristic p is given as the (p − 2)nd value of the Ehrhart
quasi-polynomial of G, where G is any connected regular quasi-graph of degree 3 satisfying
#V = 2g − 2 + r, #E = 3g − 3 + 2r; in particular, these values depend only on #V and #E.

Proof: The first relevant statement is that the number of dormant torally indigenous bundles

on a general curve of type (g, r ) over an algebraically closed field may be computed at any
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totally degenerate curve of type (g, r ). This follows immediately from the assertions of [1,

Thm 2.8, p. 153] in the n = 0 case that the stack of dormant torally indigenous bundles is

finite and flat over Mg,r and is étale over points corresponding to totally degenerate curves.

Next, one needs to know that a dormant torally indigenous bundle on a totally degenerate

curve C is equivalent to dormant torally indigenous bundles on each component of C̃ having

radii which agree at any two points which are glued together; this is immediate from [1,

§I.4.4, p. 118] when one takes into account that the dormancy condition is simply a condition

of vanishing p-curvature, and will not be affected by gluing.

The final ingredient is the description of dormant torally indigenous bundles on P1 with

three marked points, given as the n = 0 case of [1, Thm. IV.2.3, p. 211]. If we are given λi

as in this last theorem (these always exist, since the radii are only defined up to ±1, so we

could choose all the λi to be odd), we have to check that the existence of a finite separable

morphism from P1 to itself ramified to orders λi at 0, 1, ∞ and unramified elsewhere is

equivalent to the conditions that the degree d, which by the Riemann-Hurwitz formula is

determined by 2d + 1 = ∑
λi , must also satisfy d < p and d ≥ λi for all i . This is shown

in [3], but could also be deduced directly from [1, (2), p. 232]. Given all of this, one can

verify directly that the dormant torally indigenous bundles on a totally degenerate curve C
are nearly counted by setting n = p − 2 in Eq. (3.1) as applied to the dual quasi-graph G of

C . The only discrepancy is a factor of the NG of the proof of Lemma 3.3, since radii are only

defined up to ±1 and therefore assignments of λi which differ by ±1 mod p give the same

dormant torally indigenous bundle. Since we saw in the proof of Lemma 3.3 that 1
NG

times

the value of Eq. (3.1) computed the odd values of the Ehrhart quasi-polynomial of G , we

thus conclude the desired result. �

We can now easily give the proofs of our main theorems:

Proof of Theorem 2.1: We note that given any specified (g, r ) with 2g − 2 + r > 0, we

can find a connected regular quasi-graph of degree 3 having the number of vertices and

edges required by Theorem 3.9. This is equivalent to the standard algebraic geometry

statement that there exist totally degenerate curves of any hyperbolic type, but one can

easily verify it directly. Indeed, the figure demonstrates how to increase either g or r
by 1 while keeping the other fixed, and given this it suffices to check the base cases of

(g, r ) = (0, 3), (1, 1), (2, 0), which is easily accomplished. Putting together Corollary

3.6 with Theorem 3.9 then gives the existence and degree of the desired polynomial.

The positivity follows from the fact that for any n ≥ 0, G contains the lattice point

with all weights equal to 0. Lastly, to see that the polynomial is always odd or even, we

note that simply by translating all coordinates by 1 one sees that the number of lattice
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points in the interior of n G is equal to the number in the the closed polytope (n − 4) G .

Applying the reciprocity theorem for Ehrhart polynomials then easily gives the desired result.

Proof of Theorem 2.4: This is almost the same as Theorem 3.9, except that it asserts agree-

ment of the nth value of the Ehrhart quasi-polynomial for all odd n rather than those for

which n + 2 is a prime. The stronger statement then follows from Corollary 3.6, although in

fact for this application one need not consider ′
G at all: it is enough to use the existence

of Ehrhart quasi-polynomials once one knows that the Ehrhart quasi-polynomial of G has

quasi-period 4, since Mochizuki’s values then give infinitely many values for n congruent

to either 1 or 3 mod 4. Thus, to prove Theorem 2.4 it suffices to know the statement of

Proposition 3.5 for G only.

Remark 3.10. Translating from self-maps of P1 to indigenous bundles and back in order to

obtain the statement for g = 0 of Theorem 2.1 may seem superfluous, and indeed one could

argue directly using the results of [3] that the number of such maps is counted by the Ehrhart

polynomial of ′
G . However, there is something to be said for concluding the statement as

a special case of a more general result.

Remark 3.11. In fact, an induction argument similar to that carried out for Proposition 3.5 can

be used to show that the number NG of Lemma 3.3 also depends only on the number of vertices

and edges of G, and is in fact given explicitly by 2g for r = 0 and 2g+r−1 for r > 0. The basic

idea is to observe that the operation of exclusive or puts the structure of an abelian group with

all elements having order 2 on the set of sub-quasi-graphs which are regular of degree 2, and

then to make use of the fact that for any given edge, a generating set for this group may always

be chosen to have at most one element which contains the chosen edge. It then follows that one

also obtains identities for the odd values of the Ehrhart quasi-polynomials of ′
G . We have

chosen to phrase our main result in terms of G partly for the sake of simplicity, and partly be-

cause it seems like the more natural object, in that its Ehrhart quasi-polynomial computes the

number of dormant torally indigenous bundles directly, and it is imbedded in a space of its own

dimension.

4. Further remarks and questions

In this section, we discuss some explicit examples and possible directions of further inves-

tigation, with a particular focus towards the combinatorial side. We begin by describing the

simplest example of our results, seeing that the combinatorial identities obtaining in Theorem

2.4 do in fact appear to be non-trivial.
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Example 4.1. Consider the case of (g, r ) = (2, 0), or equivalently graphs with three edges

and two vertices. One checks that we get only two graphs: the G1 and G2 of the figure.

The corresponding polytopes G1
and G2

are, respectively: a regular tetrahedron with

vertices at (0, 0, 0), ( 1
2
, 1

2
, 0), (0, 1

2
, 1

2
) and ( 1

2
, 0, 1

2
); and a square pyramid with vertices

(0, 0, 0), ( 1
2
, 0, 0), (0, 1

2
, 0), ( 1

2
, 1

2
, 0) and ( 1

4
, 1

4
, 1

2
). One finds that in fact not only the odd

values, but the entire Ehrhart quasi-polynomials of G1
and G2

agree, and are given by
1
24

(n3 + 6n2 + 20n + 24) for even n and 1
24

(n3 + 6n2 + 11n + 6) for odd n. The number of

dormant torally indigenous bundles in this case is thus given by 1
24

(p3 − p).

While we have not explicitly presented G for different G in further cases, one can

compute that in the case of (g, r ) = (3, 0), there are five different graphs, for which the

corresponding G have 8, 10 or 14 vertices depending on G. Thus, in this situation there

are at least three polytopes which are not combinatorially equivalent for which we obtain

relations. It seems reasonable to expect that the number of non-trivial identities obtained will

grow with (g, r ).

In computing further examples, there are two phenomena which stand out. The first is that

in all examples computed so far, for any two G, G ′ as in Theorem 2.4 we find that not only

the odd values of the Ehrhart quasi-polynomial agree, but the even values agree as well. This

holds for examples with (g, r ) up to (4, 0), as well (0, 6) and (1, 2). The data for (5, 0) is also

consistent with this conclusion, although computation of the entire Ehrhart polynomial for

even a single graph in this case appears unfeasible. We therefore conjecture:

Conjecture 4.2. In Theorem 2.4, the restriction to odd values of the Ehrhart quasi-

polynomials is unnecessary.

We also remark that the same seems to hold for ′
G in the few examples we have computed

thus far. This is interesting in its own right, as there is no obvious relation between the even

values of the Ehrhart quasi-polynomials of G and ′
G .

We also make some observations on the period of the Ehrhart quasi-polynomial of

G . First, in certain cases with r > 0 (for instance, when (g, r ) = (1, 1), (1, 2), or (3, 1))

one can compute that the Ehrhart quasi-polynomial in fact has quasi-period 4. This is as

expected based on the fact that for any graph G of the corresponding type, some vertices

of G have quarter-integer coordinates, but it is interesting in that it means that Theorem

2.4 is producing potentially infinitely many examples of rational polytopes for which the

Ehrhart quasi-polynomial has different quasi-periods when restricting attention to even or

odd values. In contract, we have observed that when r = 0 the Ehrhart quasi-polynomials

of G and G ′ always appear to have quasi-period 2 and 1 respectively, rather than the a
priori expected quasi-periods of 4 and 2. This would follow from the above conjecture for

g ≤ 4, since in this case there is always a G with all vertices of G lying on half-integers

(and correspondingly, all vertices of ′
G lying on integers). However, for g = 5 and above

it is possible to show by strengthening the induction argument of Proposition 3.5 that

every G must have some vertices with quarter-integer coordinates. Yet, the data we have

for g = 5 is consistent with the Ehrhart quasi-polynomial of G having quasi-period 2.

Thus, we seem to have a separate pattern not explained by our previous conjecture, and

we ask:

Question 4.3. Is it true that for r = 0, the quasi-period of the Ehrhart quasi-polynomial of

G is always 2? Are there other cases where the quasi-period is smaller than expected based
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on the denominators of the vertices of G as G ranges over all quasi-graphs corresponding

to (g, r )? Is the quasi-period of the Ehrhart quasi-polynomial for ′
G always half the

quasi-period for G?

Finally, we would like to add that Mochizuki had already remarked on the existence of

apparently non-trivial combinatorial identities implicit in his work (see [1, pp. 238–239]),

but in a more general setting than we have treated here. Additional families of combinatorial

identities are obtainable by considering more general nilpotent torally indigenous bundles

than the dormant ones we have examined. For instance, Mochizuki treats a few cases of these

identities for g = 0, 1 in the situation of ordinary torally indigenous bundles; see [1, p. 24]

and [1, Cor. V.1.3, p. 237]. He also develops the basic combinatorial algorithms necessary to

describe the intermediate cases, called spiked torally indigenous bundles; see [1, Def. II.3.1,

p. 160], [1, Thm. V.1.1, p. 236], as well as the diagram [1, p. 270]. Translating these identities

into combinatorial language is likely to be more complicated than for the dormant case, but

may yield correspondingly more interesting identities.
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