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Abstract Finite groups of prime order must be cyclic. It is natural to ask what about asso-

ciation schemes of prime order. In this paper, we will give an answer to this question. An

association scheme of prime order is commutative, and its valencies of nontrivial relations

and multiplicities of nontrivial irreducible characters are constant. Moreover, if we suppose

that the minimal splitting field is an abelian extension of the field of rational numbers, then

the character table is the same as that of a Schurian scheme.
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1. Introduction

The classification of finite simple groups is one of the most important result in group theory.

Classification of (commutative) primitive schemes is also important. But it is difficult and

even those having prime order have not been classified. In this paper, we prove that any scheme

having prime order is commutative and its valencies of nontrivial relations and multiplicities

of nontrivial irreducible characters are constant. Moreover, if we suppose that the minimal

splitting field is an abelian extension of the field of rational numbers, then the character table

is the same as that of a Schurian scheme.

We use the notations in Zieschang’s book [9]. Let X be a finite set, and G a collection

of nonempty subsets of X × X . We say g ∈ G a relation of (X, G). For a relation g ∈ G,

we denote the adjacency matrix by σg . Namely, σg is a matrix whose rows and columns are

indexed by X and its (x, y)-entry is 1 if (x, y) ∈ g and 0 otherwise. We say that (X, G) is

an association scheme if (1) X × X is a disjoint union of g ∈ G, (2) G contains the trivial
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relation 1 := {(x, x) | x ∈ X}, (3) if g ∈ G, then g∗ := {(y, x) | (x, y) ∈ g} ∈ G, and (4) for

f, g, h ∈ G, there exists an integer a f gh such that σ f σg = ∑
h∈G a f ghσh . We call |X | the

order of (X, G), and ng := agg∗1 the valency of g ∈ G.

By the condition (4), we can define a Z-algebra ZG := ⊕
g∈G Zσg with the usual matrix

multiplication. For a commutative ring R with the identity, we can define an R-algebra

RG := R ⊗Z ZG and call this the adjacency algebra over R. When R contains Z as a

subring, we regard ZG as a subring of RG. Especially, we consider σg is in RG. It is known

that the adjacency algebra over a field of characteristic zero is semisimple [9, Theorem 4.1.3].

A character of G means the trace function of a linear representation of CG, where C is the

complex number field, and it is said to be irreducible if the representation is irreducible. We

denote the set of all irreducible characters of G by Irr(G). Clearly the function σg �→ ng

is a representation and also a character of G. We call this the trivial character of G, and

denote it by 1G . The map σg �→ σg is also a representation of G, and its character γ satisfies

γ (σ1) = |X | and γ (σg) = 0 for 1 �= g ∈ G. We call γ the standard character of G. The

multiplicity of an irreducible character χ ∈ Irr(G) in the standard character is denoted by

mχ and is simply called the multiplicity of χ .

The character table of (X, G) is the table, whose rows are indexed by χ ∈ Irr(G) and

columns are indexed by g ∈ G, with the (χ, g)-entry χ (σg). Usually, we append the multi-

plicity of the irreducible character to each row.

An association scheme (X, G) is said to be commutative if the adjacency algebra ZG
is commutative, namely a f gh = ag f h for all f, g, h ∈ G. Since CG is semisimple, this is

equivalent to that χ (1) = 1 for all χ ∈ Irr(G). Two commutative schemes have the identical

character tables if and only if they have the same intersection numbers a f gh .

Example 1.1 (Schurian schemes). Let X be a finite set, and G a transitive permutation group

on X . Let G be the set of orbits of X × X by the diagonal action of G. Then (X, G) is an

association scheme [2, Chap. II, Example 2.1]. We call this a Schurian scheme. It is well

known that a Schurian scheme (X, G) with |X | = p, a prime, and |G| = d + 1 is isomorphic

to the cyclotomic scheme Cyc(p, d).

Let (X, G) be an association scheme such that |X | = p is a prime number and |G| = d + 1.

In Section 3, we will show that (X, G) is commutative. In Section 4, we determine the

minimal splitting field for (X, G) under the assumption that the minimal splitting field is

abelian. Finally, in Section 5, under the same assumption we determine the character table

of (X, G) explicitly, and conclude that it is the same as that of Cyc(p, d).

2. Discriminants of algebras

Let R be a principal ideal domain, and A an R-free R-algebra of finite rank. For a matrix

representation T : A → Mn(R), we define the discriminant dT (A) of the representation T as

follows. Let {a1, . . . , ar } be an R-basis of A. We put

dT (A) = det(Tr(T (ai a j ))),

where Tr is the usual trace of matrices. Especially, when the representation T is the regular

representation, we call dT (A) the discriminant of A, and denote it by d(A). We note that the

discriminant depends on the choice of the basis. If we take an another basis {a′
1, . . . , a′

r },
Springer
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then det(Tr(T (a′
i a

′
j ))) = ε2 det(Tr(T (ai a j ))) for some unit ε in R. Hence, if R = Z, then the

discriminant is uniquely determined.

If B is an R-subalgebra of A with the same rank, then B is also R-free and d(A) is a

divisor of d(B).

For an algebraic number field K , the ring of integers OK is a Z-free Z-algebra. Then

d(OK ) is equal to the discriminant of the field K . So we denote it by d(K ).

Let (X, G) be an association scheme. The Frame number is defined by

F(G) = |X ||G|
∏

g∈G ng∏
χ∈Irr(G) mχ

χ (1)2
.

It is known that F(G) is a rational integer [3, 6] . In [4], the following fact is shown.

Proposition 2.1. Let (X, G) be a commutative association scheme. Then |d(ZG)| is equal
to the Frame number F(G).

3. Commutativity

In this section, we will show that an association scheme (X, G) is commutative if nG = |X |
is a prime number. The next lemma is crucial.

Lemma 3.1. Let (X, G) be an association scheme. If |X | is a prime number, then all nontrivial
irreducible characters of G are algebraically conjugate. Especially, their multiplicities are
constant.

Proof: Put p := |X |. Let 1G be the trivial character of G and χ a nontrivial irreducible

character of G. Note that an algebraic conjugate of an irreducible character is again an

irreducible character. Put � the sum of all algebraic conjugates of χ , and � the sum of all

nontrivial irreducible characters which are not algebraically conjugate to χ . Then the values

of � and � are rational integers. If � is zero, then the assertion holds, so we assume that

� �= 0.

We know that all eigenvalues of σg are congruent to ng in characteristic p [5, Corollary

3.5]. So there exist rational integers ug (g ∈ G) such that �(σg) = �(1)ng − ug p. Similarly

there exist rational integers vg (g ∈ G) such that �(σg) = �(1)ng − vg p.

By the orthogonality relation [9, Theorem 4.1.5], we have

0 =
∑
g∈G

1

ng
1G(σg∗ )�(σg) =

∑
g∈G

�(σg)

=
∑
g∈G

(�(1)ng − ug p) = p

(
�(1) −

∑
g∈G

ug

)
.
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So we have
∑

g∈G ug = �(1) and similarly
∑

g∈G vg = �(1). Again by the orthogonality

relation,

0 =
∑
g∈G

1

ng
�(σg∗ )�(σg) =

∑
g∈G

1

ng
(�(1)ng∗ − ug∗ p)(�(1)ng − vg p)

=
∑
g∈G

�(1)�(1)ng −
∑
g∈G

�(1)vg p −
∑
g∈G

�(1)ug∗ p +
∑
g∈G

1

ng
ug∗vg p2

= p�(1)�(1) − p�(1)�(1) − p�(1)�(1) +
∑
g∈G

1

ng
ug∗vg p2

= −p�(1)�(1) +
∑
g∈G

1

ng
ug∗vg p2,

so we have

�(1)�(1) =
∑
g∈G

1

ng
ug∗vg p.

But �(1)�(1) is relatively prime to p and
∑

g∈G
1

ng
ug∗vg is a p-integer, namely every ng is

relatively prime to p. So this is a contradiction. �

Lemma 3.2 ([2, Theorem II.4.3]). If all nontrivial irreducible characters of G have the same
multiplicities, then all nontrivial relations have the same valencies.

Proof: Since the Frame number is a rational integer, the assertion holds by the same argument

in the proof of [2, Theorem II.4.3]. �

If |X | is a prime, then under the assumption that all nontrivial relations have the same va-

lencies, Arad et al. showed in [1, Theorem 1.2] that (X, G) is commutative. Hence, combining

Lemmas 3.1, 3.2 and their result, we have the main result in this section.

Theorem 3.3. Let (X, G) be an association scheme. If |X | is a prime number, then (X, G)

is commutative. Moreover, all nontrivial irreducible characters are algebraically conjugate,
and all valencies of nontrivial relations and all multiplicities of nontrivial irreducible char-
acters are constant.

Corollary 3.4. If |X | is a prime number p, then the Frame number F(G) is a p-power.

4. Splitting fields

Bannai and Ito asked in [2, Section 2.7] whether the minimal splitting field of a commutative

scheme is contained in a cyclotomic field, and this is still an open question. In this section, we

suppose it, and determine the minimal splitting fields explicitly. For the theory of algebraic

number fields, see [8], for example.

We fix a prime number p. Let (X, G) be an association scheme with |X | =
p and |G| = d + 1. Let K be the minimal splitting field of (X, G), namely
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K = Q(χ (σg) | χ ∈ Irr(G), g ∈ G). By Lemma 3.1, the Galois group Gal(K/Q) acts on

Irr(G) \ {1G} transitively. By the Wedderburn’s theorem, QG is isomorphic to a direct sum

of the full matrix algebras over some division rings. However, since QG is commutative

in our case, it is a direct sum of field extensions of Q. Finally, since each direct summand

corresponds to a Gal(K/Q)-orbit of Irr(G), we have

QG ∼= Q ⊕ K ′

as a Q-algebra for some field K ′. Clearly we have dimQ K ′ = d. The projection QG → K ′

is given by a nontrivial irreducible character of G. So we can regard K ′ as a subfield of K .

Then K is generated by K ′ and its algebraic conjugates.

We can say that ZG is a Z-subalgebra of Z ⊕ OK ′ in the above decomposition. The

discriminant d(Z ⊕ OK ′ ) is equal to the discriminant d(K ′) of the algebraic number field K ′.
By Proposition 2.1, |d(ZG)| is the Frame number F(G), and it is a p-power by Corollary

3.4. So we can say that |d(K ′)| is also a p-power, and so is |d(K )| by [8, Corollary 2 to

Theorem 4.25].

From here, we suppose that K is an abelian extension of Q. Then K = K ′. By Kronecker-

Weber’s theorem [8, Theorem 6.18], K is a subfield of some cyclotomic field. Let N
be the conductor of K , namely N is the smallest positive integer such that K is a sub-

field of Q(ζN ), where ζN is a primitive N -th root of unity. It is known that a prime

number 	 ramifies in K/Q if and only if 	 is a divisor of N [8, Proposition 8.1]. Also

	 ramifies in K/Q if and only if 	 is a divisor of |d(K )| [8, Corollary 3 of Theo-

rem 4.24]. So we can say that N = pa for some non-negative integer a. Then, since

Gal(Q(ζpa )/Q) has the unique subgroup of index d , we can say that N = p and we have the

following.

Theorem 4.1. Let (X, G) be an association scheme with |X | = p and |G| = d + 1. Suppose
that the minimal splitting field K of G is an abelian extension of Q. Then K is the unique
subfield of Q(ζp) with dimQ K = d and Gal(K/Q) is a cyclic group of order d.

Remark

(1) If we suppose K = K ′ in the above notation, then we can also say the same conclusion

in Theorem 4.1.

(2) There exists a p-Eisenstein polynomial f (x) of degree d such that K ′ ∼=
Q[x]/( f (x)), and we can say that |d(K ′)| = pd−1. We know no such non-abelian

field.

(3) In [7], Munemasa showed that, if all Krein parameters are rational numbers, then the

minimal splitting field is abelian.

5. The character table

In this section, we determine the character table of an association schemes of prime order

under the same assumption in Section 4. Then we can conclude that it is the same as that of

a Schurian scheme.

Let (X, G) be an association scheme such that |X | = p is a prime number and |G| = d + 1.

Put k := (p − 1)/d. Suppose that the minimal splitting field K of G is an abelian extension

of Q. Let ζp be a primitive p-th root of unity. Then K is the unique subfield of Q(ζp)
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with dimQ K = d by Theorem 4.1. Put α := TrQ(ζp)/K (ζp), and let τ be a generator of the

cyclic group Gal(K/Q). It is well known that {ατ i | i = 0, 1, . . . , d − 1} is an integral basis

of OK .

Firstly, we describe the character table of the cyclotomic scheme Cyc(p, d) without a

proof.

Lemma 5.1. The character table of Cyc(p, d) is as follows.

1 1 k k · · · k 1

ϕ 1 α ατ · · · ατ d−1

k

ϕτ 1 ατ ατ 2 · · · α k

· · · · · · · · ·
ϕτ d−1

1 ατ d−1

α · · · ατ d−2

k

By the second orthogonality relations [2, Theorem II.3.5 (iii)] for the cyclotomic scheme,

we have the next easy lemma.

Lemma 5.2. Use the above notations, then we have
∑d−1

i=0 ατ i = −1 and

d−1∑
i=0

ατ i
ατ i+ j =

{
p − k if j ≡ 0 (mod d),

0 otherwise.

Now we consider the character table of (X, G). By Lemma 3.1, it looks like the following.

1 g1 g2 gd

1G 1 k k · · · k 1

χ 1 β1 β2 · · · βd k

χτ 1 βτ
1 βτ

2 · · · βτ
d k

· · · · · · · · ·
χτ d−1

1 βτ d−1

1 βτ d−1

2 · · · βτ d−1

d k

We fix g j ∈ G for a while. Since {ατ i | i = 0, 1, . . . , d − 1} is an integral basis of OK and

β j ∈ OK , there exist bs ∈ Z such that

β j =
d−1∑
s=0

bsα
τ s

.

By the second orthogonality relation with respect to g j and 1, we have

0 = k

(
1 +

d−1∑
i=0

βτ i

j

)
= k

(
1 +

d−1∑
i=0

d−1∑
s=0

bsα
τ i+s

)
= k

(
1 −

d−1∑
s=0

bs

)
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by Lemma 5.2. So we have
∑d−1

s=0 bs = 1. Again by the second orthogonality relation with

respect to g j and itself, we have

pk = k

(
k +

d−1∑
i=0

βτ i

j β j
τ i

)
= k

(
k +

d−1∑
i=0

d−1∑
s=0

d−1∑
t=0

bsbtα
τ i+s

ατ i+t

)

= k

(
k + (p − k)

d−1∑
s=0

b2
s

)

by Lemma 5.2. This means
∑d−1

s=0 b2
s = 1, and consequently we have that the only one bs = 1

and the others are zero. Namely, β j = ατ s
for some 0 ≤ s < d .

The character table does not have the identical columns. This shows that the character

table of (X, G) is the same as that of Cyc(p, d) by a suitable reordering of G. Now we have

the main result.

Theorem 5.3. Let (X, G) be an association scheme of prime order p with |G| = d + 1.
Suppose that the minimal splitting field of G is an abelian extension of Q. Then the character
table of (X, G) is the same as that of the cyclotomic scheme Cyc(p, d).
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