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Abstract. We prove a conjecture by Kreiman and Lakshmibai on a combinatorial description of multiplicities
of points on Schubert varieties in Graßmannians in terms of certain sets of reflections in the corresponding Weyl
group. The proof is accomplished by relating these sets of reflections to the author’s previous combinatorial
interpretation of these multiplicities in terms of non-intersecting lattice paths (Séminaire Lotharingien Combin.
45 (2001), Article B45c). Moreover, we provide a compact formula for the Hilbert series of the tangent cone to a
Schubert variety in a Graßmannian assuming the truth of another conjecture of Kreiman and Lakshmibai.
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1. Introduction

The multiplicity of a point on an algebraic variety is an important invariant that “measures”
singularity of the point. It was an important recent advance in Schubert calculus when
Rosenthal and Zelevinsky [14] gave a determinantal formula for the multiplicity of a point
on a Schubert variety in a Graßmannian. It paved the way to a combinatorial understanding
of this multiplicity. More precisely, it was shown in [7] that it counts certain families of
non-intersecting lattice paths (and also certain tableaux). An alternative, conjectural com-
binatorial interpretation was proposed by Kreiman and Lakshmibai in [10, Conjecture 2],
in terms of certain sets of reflections. The purpose of this paper is to prove that this latter
combinatorial interpretation is indeed valid.

The reason for the proposition of this alternative combinatorial interpretation of the
multiplicity of a point on a Schubert variety in a Graßmannian in terms of sets of reflections
is that it appears that these sets of reflections also allow the computation of the Hilbert series
of the tangent cone at this point (see [10, Conjecture 1]). While we are not able to prove
this more general conjecture,1 we provide an equivalent form of the conjecture in which the
Hilbert series is essentially given in terms of a generating function for certain families of
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1After the first version of this paper was distributed, Vijay Kodiyalam and K. N. Raghavan proved Conjecture 1
from [10] in “Hilbert functions of points on Schubert varieties in Graßmannians,” J. Algebra 270 (2003), 28–54.
Thus, our Theorem 2 becomes an unconditional theorem, that is to say, the Hilbert series of the tangent cone to
X (w) at τ is indeed given by (4.1).
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non-intersecting lattice paths which are counted with respect to turns. This equivalent form
of the conjecture has the advantage over the original form that it reduces the computation
of the Hilbert series to a finite problem. Moreover, it is analogous to similar formulas for
the Hilbert series associated to related determinantal varieties (see [2, Eq. (1)], [8, p. 1021,
line 11] or [9, Theorem 1]).

Our paper is organised as follows. In the next section we fix notation and formulate
the multiplicity conjecture by Kreiman and Lakshmibai. There we also recall the author’s
combinatorial interpretation of the multiplicity in terms of non-intersecting lattice paths.
Section 3 contains the proof of the conjecture, which is accomplished by showing that
these non-intersecting lattice paths and the sets of reflections of Kreiman and Lakshmibai
are essentially the same objects. In fact, we prove a more general assertion (see Claim 2),
which allows us to show, in Theorem 2 of Section 4, the above mentioned reformulation,
in terms of non-intersecting lattice paths, of Conjecture 1 in [10] on the Hilbert series of
the tangent cone to a Schubert variety in a Graßmannian. It is an open problem to find a
compact formula for the generating function of non-intersecting lattice paths that appears
in this formulation (see Remark (2) after Theorem 2).

2. Combinatorial interpretations of multiplicities of points on Schubert varieties
in Graßmannians

We recall some basic notions from the Schubert calculus in the Graßmannian, and fix the
notation that we are going to use. We refer the reader to [1, Sec. 3.1] and [4, Sec. 9.4] for
in-depth introductions into the subject.

Let d and n be positive integers with 0 ≤ d ≤ n. The Graßmannian Grd (V ) is the variety
of all d-dimensional subspaces in an n-dimensional vector space V (over some algebraically
closed field of arbitrary characteristic). Schubert varieties in the Graßmannian Grd (V ) are
indexed by elements in Sn/(Sd × Sn−d ), where Sm denotes the symmetric group of order m.
Any coset C in Sn/(Sd ×Sn−d ) has a minimal representative, which is the unique permutation
w = i1i2 . . . in in C such that i1 < i2 < · · · < id and id+1 < · · · < in−1 < in . We will
often identify such a minimal representative w with the vector i = (i1, i2, . . . , id ) of its first
d elements. The usual Ehresmann–Bruhat order on Sn induces an order on the cosets of
Sn/(Sd × Sn−d ). Given two representatives w and τ , identified with i = (i1, i2, . . . , id ) and
j = ( j1, j2, . . . , jd ), respectively, τ is less than or equal to w in this induced Ehresmann–
Bruhat order if and only if j� ≤ i� for all � = 1, 2, . . . , d. In that case, we write τ ≤ w,
respectively j ≤ i.

Given a minimal representative w, we denote the corresponding Schubert variety in the
Graßmannian Grd (V ) by X (w). It is well-known that X (w) decomposes into the disjoint
union of Schubert cells which are indexed by elements τ ∈ Sn/(Sd × Sn−d ) with τ ≤ w.
The multiplicity of a point x in X (w) is constant on each Schubert cell. Following [10]
we denote the multiplicity of a point x in the Schubert cell indexed by τ by multτ X (w).
In slight abuse of terminology we will often call it the “multiplicity of the point τ on the
Schubert variety X (w).”

Let us now recall the multiplicity formula conjectured in [10]. We are given two minimal
representatives w and τ of cosets in Sn/(Sd ×Sn−d ) with τ ≤ w. In Conjecture 2 of [10], sets
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S of reflections s = (x, y), 1 ≤ x ≤ d, d + 1 ≤ y ≤ n (here we use standard transposition
notation), are considered with the property that

(S1) Any chain (in the Ehresmann-Bruhat order on Sn) s1 > s2 > · · · > st of commut-
ing reflections, all of them contained in S, satifies w ≥ τ s1 · · · st (in the induced
Ehresmann–Bruhat order on Sn/(Sd × Sn−d ));

(S2) S is maximal with respect to property (S1).

It should be noted that, if si = (xi , yi ), 1 ≤ i ≤ t , then s1 > s2 > · · · > st is a chain of
commuting reflections if and only if x1 < x2 < · · · < xt and y1 > y2 > · · · > yt .

For the future, since all the reflections which we consider in this paper will always be
reflections (x, y) with 1 ≤ x ≤ d and d +1 ≤ y ≤ n, let us abbreviate this set of reflections
by [1, d] × [d + 1, n] (in slight abuse of standard notation).

For an illustration of the conditions (S1) and (S2), let us consider the example n = 7,
d = 3,w = 3561247 and τ = 1352467, so that the corresponding i and j are i = (3, 5, 6) and
j = (1, 3, 5). Then there are exactly two sets of reflections (contained in [1, d]×[d+1, n] =
[1, 3] × [4, 7]) satisfying (S1) and (S2):

(
[1, 3] × [4, 6]

)\{(1, 6)} and
(
[1, 3] × [4, 6]

)\{(2, 5)}. (2.1)

To see this, we first observe that a set of reflections satisfying (S1) cannot contain a reflection
(x, 7), x ≤ 3. For, we have

(τ ◦ (x, 7))(x) =
(

1 2 3 4 5 6 7

1 3 5 2 4 6 7
◦ (x, 7)

)
(x) = 7,

and therefore the minimal representative of τ ◦ (x, 7) in Sn/(Sd × Sn−d ) is

r1r27r4 . . . r7 �≤ 3561247 = w,

a contradiction to (S1).
Second, we observe that (1, 6) and (2, 5) cannot be both in a set of reflections satisfying

(S1), because they form a chain of commuting reflections and

τ ◦ (1, 6) ◦ (2, 5)

=
(

1 2 3 4 5 6 7

1 3 5 2 4 6 7

)
◦ (1, 6) ◦ (2, 5) =

(
1 2 3 4 5 6 7

6 4 5 2 3 1 7

)
.

The minimal representative of this permutation in Sn/(Sd ×Sn−d ) is 4561237 �≤ 3561247 =
w, thereby contradicting (S1).

It can now be checked that the two sets in (2.1) do indeed satisfy (S1). By the above
observations, they cannot be enlarged. Thus, they also satisfy (S2).
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Now we are in the position to formulate Conjecture 2 from [10], which becomes a theorem
by our proof in Section 3.

Theorem 1 The multiplicity of the point τ on the Schubert variety X (w) is given by

multτ X (w) = |{S : S ⊆ [1, d] × [d + 1, n] and S satisfies (S1) and (S2)}|, (2.2)

where, as before, [1, d] × [d + 1, n] denotes the set of reflections (x, y) with 1 ≤ x ≤ d
and d + 1 ≤ y ≤ n.

Thus, returning to our previous example where n = 7 and d = 3, the theorem says that

mult1352467 X (3561247) = 2,

since the set on the right-hand side of (2.2) in this special case consists of the two elements
given in (2.1).

Next we recall the combinatorial interpretation of multiplicities in terms of non-intersec-
ting lattice paths from [7], which is a more or less straight-forward combinatorial translation
of the Rosenthal–Zelevinsky formula [14] using the Lindström–Gessel–Viennot theorem
[12, Lemma 1], [5, Theorem 1]. As before, let w and τ be two minimal representatives
of cosets from Sn/(Sd × Sn−d ) with w ≥ τ , and identify them with i = (i1, i2, . . . , id ),
1 ≤ i1 < i2 < · · · < id ≤ n, and j = ( j1, j2, . . . , jd ), 1 ≤ j1 < j2 < · · · < jd ≤ n,
respectively. In particular, i ≥ j. Furthermore, we define the numbers κq := |{� : iq < j�}|.
Then

multτ X (w) = #
(
families (P1, P2, . . . , Pd ) of non-intersecting lattice paths,

where the path P� runs from (d + 1 − �, d) to
(
d − κσ (�), κσ (�) + iσ (�)

)
, � = 1, 2, . . . , d, for some σ ∈ Sd

)
. (2.3)

Here, by lattice path we mean a lattice path in the plane consisting of positive horizontal
and vertical unit steps. Furthermore, a family of lattice paths is called non-intersecting
if no two paths of the family have a common point. To give an example, let d = 9,
i = (4, 6, 7, 13, 14, 17, 19, 20, 21) and j = (1, 2, 4, 7, 10, 12, 13, 15, 16). For this choice
the vector of the κq ’s is (6, 6, 5, 2, 2, 0, 0, 0, 0). Figure 1 shows a typical family of paths as
described in (2.3) for this choice of i and j. The permutation σ is 674583129 in this example.

Remarks At this point, there are several comments to be made, most of them recalling
facts from [7]:

(1) In [7] the starting points of the paths are (−� + 1, � − 1) and the end points are
(−κ�, κ� + i�), � = 1, 2, . . . , d (the latter in some order, determined by the permutation
σ ). If we shift everything by d units to the right then we obtain the points (d+1−�, �−1)
and (d − κ�, κ� + i�). Whereas now the end points are in agreement, the starting points
still differ slightly. However, the arguments in Section 4 of [7] (and, in fact, figures
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Figure 1.

such as figure 3 in [7]) show that portions of paths below the horizontal line y = d
are forced and can therefore be omitted. This means that we may indeed replace the
starting points (d + 1 − �, � − 1) by the points (d + 1 − �, d). (In fact, figure 1 shows
exactly the result when the forced portions of the paths in figure 3 of [7] are cut off.)

(2) The sequence (κq )1≤q≤d is weakly monotone decreasing if q increases, while the se-
quence (κq + iq )1≤q≤d is weakly monotone increasing if q increases. This implies that
the end points (d − κq , κq + iq ), q = 1, 2, . . . , d, of the paths of a family in (2.3) are
arranged from bottom-left to top-right, to be precise, the q-th end point (d −κq , κq + iq )
is weakly to the left and weakly below the (q + 1)-st end point (d − κq+1, κq+1 + iq+1),
q = 1, 2, . . . , d − 1. (See figure 1.)

(3) We have κq ≥ d − iq , or, equivalently, κq + iq ≥ d. Thus, the end points are never
below the starting points of the paths. Moreover, since i ≥ j, we have κq ≤ d − q,
or, equivalently, d − κq ≥ q . Therefore there is always at least one family of non-
intersecting lattice paths in (2.3).
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(4) It is an implication of (2) and (3) that the order in which starting and end points are
connected by the non-intersecting paths is always the same, i.e., for fixed i and j, the
permutation σ in (2.3) is uniquely determined.

3. Proof of Theorem 1 plus a generalization

Theorem 1 follows from Claim 1 below. However, the actual goal of this section is to prove
a more general assertion, given in Claim 2, which implies Claim 1 (and, thus, Theorem 1).
The purpose and full impact of this more general assertion will become clear in Section 4,
where it will be used to prove the compact formula for the Hilbert series of the tangent cone
to a Schubert variety in a Graßmannian given in Theorem 2. The proof of Claim 2 will be
accomplished by proving a technical assertion given in Claim 3 which implies Claim 2.

In a Bourbaki-style exposition, one would (probably) start with the statement of (the
totally unmotivated) Claim 3, prove it, then derive Claim 2 as a corollary, and finally derive
Claim 1 as a corollary of Claim 2. It is perhaps beneficial for the reader to proceed in the
reverse order, that is, to begin with the statement of Claim 1, then explain Claim 2 and show
that it does indeed imply Claim 1, then explain Claim 3 and show that it does indeed imply
Claim 2, and finally give a proof of Claim 3, because that way the reader is gradually moved
from the point of departure (Theorem 1) to higher levels of generality and technicality.

From now on, we shall always tacitly assume fixed w and τ , w ≥ τ , or, equivalently,
fixed i and j, i ≥ j. We will prove that the multiplicity formulas in Theorem 1 and (2.3) are
equivalent, by showing that the set of reflections in (2.2) and the families of non-intersecting
lattice paths in (2.3) are essentially the same objects.

For convenience, let us abbreviate the set of families of non-intersecting lattice paths in
(2.3) by the symbol nipaths. Clearly, a family of non-intersecting lattice paths is uniquely
determined by the set of all lattice points which lie on its paths. A family P ∈ nipaths,
however, is already uniquely determined by the set of all lattice points which lie on its paths
with y-coordinate > d since the starting points of the paths of any family in nipaths are
always (d + 1 − �, d), � = 1, 2, . . . , d. Let points (P) denote this set of all lattice points
which lie on the paths of P and the y-coordinates of which are greater than d. For example,
points(P0), where P0 is the family of paths in figure 1, is

{(1, 10), (1, 11), (1, 12), (1, 13), (2, 13), (2, 14), . . . , (9, 21), (2, 10), . . . , (3, 12), . . . }.
(3.1)

The precise formulation of the claim that the sets of reflections in (2.2) and the families
of non-intersecting lattice paths in (2.3) are essentially the same objects is given in the
following claim. There, and for the rest of the paper, we identify a reflection s = (x, y)
with the point (x, y) in the plane.

Claim 1 We have

{S : S ⊆ [1, d] × [d + 1, n] and S satisfies (S1) and (S2)}
= points(nipaths),
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where, as usual,

points(nipaths) = {points(P) : P ∈ nipaths}.

It is immediate that Claim 1 implies Theorem 1.
In order to illustrate Claim 1, we return to our example in figure 1: the set of lattice

points on the paths with y-coordinate > 9, i.e., the set (3.1) is a set of reflections with the
properties (S1) and (S2).

As we said at the beginning of this section, rather than giving a direct proof of Claim 1,
we shall next explain a more general claim (Claim 2 below), which is the actual main result
of this paper, generalizing Claim 1 to multisets. (Recall that a multiset is a set where one
allows repetitions of elements.) In order to be able to formulate this more general claim, we
have to explain the “light-and-shadow procedure with the sun in the south-east” (an idea
due to Viennot [15, 3]). We will do this by considering an example.

Suppose that we are given a multiset S of reflections contained in [1, d] × [d + 1, n]. For
example, figure 2(a) shows the multiset of reflections (identified with points in the plane)

{(2, 13), (3, 10), (3, 10), (3, 10), (3, 11), (3, 11), (4, 10), (4, 16),

(5, 18), (5, 18), (5, 18), (6, 17), (6, 18), (7, 11), (7, 16), (7, 16),

(7, 19), (8, 21), (8, 21), (8, 21), (8, 21), (9, 13), (9, 18)}.

(In that example, we have chosen d = 9 and for n a value ≥ 21.)
Next we suppose that there is a light source being located in the bottom-right corner.

The shadow of a point (x, y) is defined to be the set of points (x ′, y′) ∈ R
2 (R denoting

the set of real numbers) with x ′ ≤ x and y′ ≥ y. We consider the (bottom-right) border of
the union of the shadows of all the points of the multiset S. We also include the shadows
of the starting points A� = (d + 1 − �, d) and the end points E� = (d − κ�, κ� + i�),
� = 1, 2, . . . , d . This border is a lattice path. We restrict our attention to the portion of this
lattice path between A1 and Eσ (1). (Here, as before, σ is the permutation as in 2.3 which
describes how starting and end points are connected in the case of non-intersecting lattice
paths, see Remark (4) after Theorem 1. In our example in figure 2, A1 and Eσ (1) are the
points (9, 9) and (9, 17), respectively.) We remove all the points of the multiset that lie on
this path, including A1 and Eσ (1). (In our example, we would remove (9, 9), (9, 13) and
(9, 17).) Then the light-and-shadow procedure is repeated with the remaining points. (That
is, in the next step the roles of A1 and Eσ (1) are played by A2 and Eσ (2), respectively, etc.)
We stop after a total of d iterations. (The result of applying this procedure to the multiset in
figure 2(a) is shown in figure 2(b).) It is obvious that at this point we will have obtained d
non-intersecting lattice paths, the �-th path connecting A� and Eσ (�), and the family of these
paths will be an element of nipaths. We denote this family by lightshadow(S). There may
however be left-over points, that is, there may be points of the multiset S which do not lie
on any of the d paths from lightshadow(S).

Before we are able to state Claim 2, we need to introduce some more notation. Let
Rmsets(Q) denote the set of all multisets of reflections (x, y) contained in [1, d]×[d+1, n]
which have the property Q. For example, Claim 2 will make an assertion about Rmsets(S1),
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Figure 2.

the set of all multisets of reflections (x, y) contained in [1, d] × [d + 1, n] which have the
property (S1). Furthermore, we let Mpoints(nipaths) be the set of all multisets of lattice
points which lie on some path family from nipaths.

We are now ready to state:

Claim 2 We have

Rmsets(S1) = Mpoints(nipaths).

Furthermore, for any multiset S from Rmsets(S1), lightshadow(S) is an element of
nipaths, and it covers all the points of S.
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Let us for a moment assume that Claim 2 were already proved and show that it does
indeed imply Claim 1: suppose that we are given a set (sic!) S of reflections contained in
[1, d] × [d + 1, n] with properties (S1) and (S2). Then the second assertion of Claim 2
says that this set of points lies on lightshadow(S), the latter being a path family from
nipaths. If S were not the complete set of lattice points on the paths with y-coordinate
> d , then we may add such a missing point, (x, y) say, to S. The first assertion of Claim 2
then says that S ∪ {(x, y)} is a set of reflections satisfying (S1). Thus S was not maximal, a
contradiction. On the other hand, if we are given a path family P from nipaths and consider
the set of points points(P), then the first assertion of Claim 2 says that this is a set of
reflections satisfying (S1). In addition, it is maximal with respect to (S1). For suppose that
it is not. Then we may add another reflection, (x, y) say, to points(P), thus obtaining
S′ = points(P) ∪ {(x, y)}. Clearly, lightshadow(S′) cannot cover all the points from S′.
However, this is a contradiction to the second assertion of Claim 2.

A direct proof of Claim 2 seems difficult. We shall accomplish the proof by introducing a
further set of multisets, defined by a technical condition which we shall refer to as the chain
condition and abbreviate as (CC). The previously announced Claim 3 will then connect
these new multisets to the ones in Claim 2.

Let us call a set {(x1, y1), (x2, y2), . . . , (xt , yt )} of points with x1 < x2 < · · · < xt and
y1 > y2 > · · · > yt a chain. Furthermore, given a point A = (a1, a2), let us define regions
R(A) by

R(A) := {(x, y) : x ≤ a1, y > a2}.
(This is the region in the plane weakly to the left and strictly above the point A.) We say that
a multiset S satisfies the chain condition (CC) if, for any q with 1 ≤ q ≤ d, the maximal
number of points in a chain that can be chosen from S such that all of them are located
inside R(Eq ) is at most d − κq − q. Here, as before, Eq = (d − κq , κq + iq ).

Claim 3 We have

Rmsets(S1) = Rmsets(CC)

and

Mpoints(nipaths) = Rmsets(CC).

Before we turn to the proof of Claim 3, let us verify that it does indeed imply Claim 2: the
first assertion of Claim 2 is obvious assuming the truth of Claim 3. Let us now suppose that
the second assertion of Claim 2 does not hold for the multiset S ∈ Rmsets(S1). Since, by
construction, lightshadow(S) is an element of nipaths, this means that lightshadow(S)
does not cover all the points of S. Let Z0 ∈ S be such a point which is not covered by
lightshadow(S). This point must necessarily lie to the left and above of the paths from
lightshadow(S), see figure 3 for a sketch of a typical situation. (The labels Z1, Z2, Z3, Eq

should be ignored at the moment.) We shall show that S does not satisfy the chain condition,
thus obtaining a contradiction to the first equality in Claim 3.
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Figure 3.

The idea is to construct, in the region strictly to the right and strictly below of Z0, a
sequence of east-north turns of the paths of lightshadow(S). Here, an east-north turn
(EN-turn for short) is a point in a lattice path which is the end point of a horizontal step
and at the same time the starting point of a vertical step. For example, the EN-turns of the
left-most lattice path in figure 1 are (2, 13), (4, 16) and (5, 18). This sequence is constructed
in the following way (see figure 3): let Z1 be an EN-turn of a path of lightshadow(S)
such that the straight segment connecting Z0 and Z1 does not cross any other path. If
a Z1 is found, the construction is iterated, that is, in the region strictly to the right and
strictly below of Z1, we look for an EN-turn Z2 of a path of lightshadow(S) such that
the straight segment connecting Z1 and Z2 does not cross any other path. If, at some stage,
we should not be able to find an EN-turn strictly to the right and strictly below of Zk ,
then the location of the starting and end points of the paths guarantees that in the region
weakly to the right and strictly below of Zk we find an end point Eq . Thus, we have found
in fact a chain Z0 > Z1 > · · · > Zk in R(Eq ). Now we observe that, for any path family
P from nipaths, the number of lattice paths in P that start strictly to the left of Eq and
pass strictly above Eq (thus, terminating weakly to the right of Eq ; cf. figure 1) is exactly
d − κq − q . This observation follows, for example, by a reverse induction on q. Thus,
k = d − κq − q , and, since by definition of lightshadow(S) any EN-turn is an element of
S, all the points Z0, Z1, . . . , Zk are elements of S. This means that we have found a chain
of k + 1 = d − κq − q + 1 elements of S contained in R(Eq ), and consequently S does not
satisfy the chain condition. This is the desired contradiction to the first equality in Claim 3.
Thus, Claim 3 does indeed imply Claim 2.

We finally prove Claim 3 (and, thus, Claims 2 and 1, and Theorem 1).

Proof of Claim 3: We prove both equalities by showing, first, that the left-hand side
is included in the right-hand side, and then that the right-hand side is included in the
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left-hand side. Thus, we have to prove four assertions, which we label A1–A4. Below,
for all the multisets considered, we shall always tacitly assume that they are contained in
[1, d] × [d + 1, n].

A1. Mpoints(nipaths) ⊆ Rmsets(CC). This is obvious from the above observation that,
for any path family P from nipaths, d − κq − q is the number of lattice paths in P that start
strictly to the left of Eq and pass strictly above Eq .

A2. Mpoints(nipaths) ⊇ Rmsets(CC). Given a multiset S ∈ Rmsets(CC), our goal
is to show that all the points of S lie on lightshadow(S), the latter being an element of
nipaths. This is more or less “obvious.” The only matter is notation. Probably the most
convenient way to prove this rigorously is by induction on d.

For d = 1 the assertion is obvious (the quantity d −κq −q being 0 for d = q = 1). Let us
now assume that we have already proved the assertion for d − 1. We want to show that this
implies the truth of the assertion for d. Given i = (i1, i2, . . . , id ) and j = ( j1, j2, . . . , jd ) and
a multiset S of lattice points satisfying the chain condition, we apply the light-and-shadow
procedure. We restrict our attention to the right-most strip of the picture, i.e., the region
of points with x-coordinate between d − 1 and d, see figure 4. There, we have chosen
d = 9, i = (4, 6, 7, 13, 14, 17, 19, 20, 21) and j = (1, 2, 4, 7, 10, 12, 13, 15, 16). The
starting and end points determined by i and j are indicated by circles. The multiset of points
is indicated by bold dots, multiplicities being indicated by the numbers in parentheses.
(This is in fact the same example as in figure 2. The path pieces should be ignored for the
moment.)

Let k be minimal such that ik ≥ jd . (In our example we have k = 6.) Then the end
points with x-coordinate d are Ek, Ek+1, . . . , Ed . Clearly, under light-and-shadow, Ek is
connected with A1. The path portions leading to the other end points Ek+1, . . . , Ed hit the
vertical line x = d − 1 the last time in the points E ′

k+1, . . . , E ′
d , say (see figure 4). Using

the chain condition for Ek, Ek+1, . . . Ed , it is easy to see that for any q with k + 1 ≤ q ≤ d
the maximal number of points that can be chosen from S such that they form a chain and
all of them are located inside R(E ′

q ) is at most d − q. Now, instead of i and j, we consider
i′ = (i1, . . . , ik−1, i ′

k+1 − 1, . . . , i ′
d − 1) and j′ = ( j1, j2, . . . , jd−1),where i ′

� denotes the
y-coordinate of E ′

�, � = k + 1, . . . , d. It should be observed that, up to a vertical shift of 1
unit, the starting points determined by i′ and j′ are A2, A3, . . . , Ad , whereas the correspond-
ing end points are E1, . . . , Ek−1, E ′

k+1, . . . , E ′
d . By the above consideration, the multiset S

satisfies the chain condition with respect to these new starting and end points. Thus, we may
apply the induction hypothesis, which says that light-and-shadow yields a family of paths
connecting the (new) starting points with the (new) end points, thereby covering all elements
of S with x-coordinate at most d − 1. This family of paths is finally concatenated with the
path portions that we already obtained in the strip between the vertical lines x = d − 1
and x = d . Thus we have found a path family from nipaths that covers all the points
of S.

A3. Rmsets(S1) ⊆ Rmsets(CC). Suppose we are given a multiset of reflections which
satisfies (S1) but does not satisfy the chain condition. Then for some q there is a chain of
d − κq − q + 1 reflections from the multiset which are all located inside R(Eq ).
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Figure 4.

Let the reflections in the chain be s1, s2, . . . , sd−κq−q+1, and consider a reflection in the
chain, (x, y) say. Since (x, y) ∈ R(Eq ) we have x ≤ d − κq . Furthermore, we have

(
τ s1 · · · sd−κq−q+1

)
(x) = τ (y),

where as before τ is identified with j, i.e., τ = j1 j2 . . . jn with j1 < j2 < · · · < jd and
jd+1 < · · · < jn−1 < jn . Since (x, y) is contained in R(Eq ) we have y > κq + iq ≥ d.
Because of jd+1 < · · · < jn−1 < jn , this implies τ (y) ≥ τ (κq + iq + 1).

We claim that τ (κq + iq + 1) = iq + 1. This is seen as follows. Taking into account
the trivial fact that the set of values { jd+1, jd+2, . . . , jn} is equal to the complement of
{ j1, j2, . . . , jd} in {1, 2, . . . , n}, a value τ (y) = jy for y > d is characterized by

jy = (y − d) + |{� : 1 ≤ � ≤ d and j� < jy}|.
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Thus we may verify our claim by setting y = κq + iq +1 and substituting iq +1 for jκq+iq+1

in this equation. Indeed, we have iq + 1 = (κq + iq + 1 − d) + (d − κq ). Hence, we have
τ (y) > iq .

In summary, we have found d − κq − q + 1 values of x , 1 ≤ x ≤ d, such that

(τ s1 · · · sd−κq−q+1)(x) > iq , (3.2)

all of which are ≤ d − κq . Moreover, if d − κq < x ≤ d, then we have

(τ s1 · · · sd−κq−q+1)(x) = τ (x) = jx > iq .

Hence, in total we found (d − κq − q + 1) + κq = d − q + 1 values x for which (3.2)
holds. If we recall that we also always identify w with i, i.e., w = i1i2 . . . in , then this is a
contradiction to (S1).

A4. Rmsets(S1) ⊇ Rmsets(CC). Let S ∈ Rmsets(CC), and consider a chain of t points
of S, viewed as reflections s1 > s2 > · · · > st . Still identifying w and i, we observe that
the inequality w ≥ τ s1 · · · st is equivalent to the inequality

|{x : 1 ≤ x ≤ d and (τ s1 . . . st )(x) > iq}| ≤ d − q (3.3)

to hold for 1 ≤ q ≤ d . A careful examination of the arguments in A3 shows that they
actually prove

|{x : 1 ≤ x ≤ d and (τ s1 · · · st )(x) > iq}| = |{� : s� ∈ R(Eq )}| + κq .

By assumption, our multiset S of points satisfies the chain condition, hence |{� : s� ∈
R(Eq )}| ≤ d − κq − q . Clearly, this implies (3.3), as desired.

4. A formula for the Hilbert series of the tangent cone at a point

Now the full significance of Claim 2 can be revealed. Briefly, it allows the formulation of
a version of Conjecture 1 in [10] which has the advantage of being efficient, as it reduces
the computation of the Hilbert function of the tangent cone to X (w) at a point τ to a
finite problem. More precisely, we can express the Hilbert series of the tangent cone in
terms of a generating function for the set nipaths of non-intersecting lattice paths from
the previous section (which is obviously a finite set). This form of the conjecture is the
analogue of, say, formulas for the Hilbert series as in [2, Eq. (1)], [8, p. 1021, line 11] or
in [9, Theorem 1].

In order to formulate this equivalent form, we need to introduce some further notation.
We recall from the previous section that a point in a lattice path P which is the end point
of a horizontal step and at the same time the starting point of a vertical step is called an
EN-turn of the lattice path P . We write EN(P) for the number of EN-turns of P . Also, given
a family P = (P1, P2, . . . , Pd ) of paths P�, we write EN(P) for the number

∑d
�=1 EN(P�)

of all EN-turns in the family. Finally, given any weight function µ defined on a set M, by
the generating function GF(M; µ) we mean

∑
x∈M µ(x).
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Theorem 2 Conjecture 1 from [10] is equivalent to saying that the Hilbert series of the
tangent cone to X (w) at τ is equal to

GF(nipaths; zEN(.))

(1 − z)
∑d

�=1 i�−( d+1
2 )

, (4.1)

where, as before,nipaths is the set of all families (P1, P2, . . . , Pd ) of non-intersecting lattice
paths, where the path P� runs from (d + 1 − �, d) to (d − κ�, κ� + i�), � = 1, 2, . . . , d.

Proof: We can simply copy the corresponding proof in [8, first proof of Theorem 2].
According to Conjecture 1 from [10], the dimension of the m-th homogeneous component

of the tangent cone is equal to the number of m-element multisets from Rmsets(S1), that
is, to the number of multisets of cardinality m which are contained in [1, d] × [d + 1, n]
and satisfy (S1). Following [10] we denote this dimension by hT Cτ X (w)(m).

Let S be an m-element multiset from Rmsets(S1). We apply the light-and-shadow pro-
cedure from Section 3 to it. By Claim 2, we obtain a path family (P1, P2, . . . , Pd ) from
nipaths. Each path P� contains a few (possibly multiple) points of S. However, at each
EN-turn of P� there has to be at least one element of S, � = 1, 2, . . . , d. Therefore, given
such a path family (P1, P2, . . . , Pd ) from nipaths with a total number of exactly t EN-turns,

there are exactly ( T +m−t−1
m−t ) multisets S of cardinality m that reduce to (P1, P2, . . . , Pd )

under light-and-shadow, where

T =
d∑

�=1

((d − κ�) + (κ� + i�)) −
d∑

�=1

((d + 1 − �) + d) =
d∑

�=1

i� −
(

d + 1

2

)

is the total number of lattice points with y-coordinate > d on the lattice paths P1, P2, . . . , Pd .
(T is independent of the path family.) Because of the first assertion of Claim 2, all of these
multisets satisfy (S1).

Hence, if we let ht denote the number of all path families in nipaths with a total number
of exactly t EN-turns, we obtain for the Hilbert series,

∞∑

m=0

hT Cτ X (w)(m) zm =
∞∑

m=0

(
m∑

t=0

(
T + m − t − 1

m − t

)

ht

)

zm

=
∞∑

t=0

ht

∞∑

m=t

(
T + m − t − 1

m − t

)

zm

=
∞∑

t=0

ht z
t

∞∑

m=0

(
T + m − 1

m

)

zm

=
∑∞

t=0 ht zt

(1 − z)T
.

The generating function
∑∞

t=0 ht zt is exactly the numerator in (4.1). This proves the
theorem.
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Remarks

(1) Formula (4.1) implies the Rosenthal–Zelevinsky formula. For, the multiplicity
multτ X (w) is equal to the numerator of the Hilbert series of the tangent cone to X (w)
at τ , evaluated at z = 1. But, by (4.1), this is exactly the number of all families of
non-intersecting lattice paths in nipaths, i.e., of all path families as described in (2.3).
As we already remarked earlier, the combinatorial interpretation (2.3) of the multi-
plicity in terms of the non-intersecting lattice paths from nipaths is equivalent to the
Rosenthal–Zelevinsky formula.

(2) Unfortunately, all the results that have been found so far on the enumeration of non-
intersecting lattice paths with respect to turns (see [6, 8, 9, 11, 13]) do not cover the
above case, because the location of the starting and end points is quite unusual. This
means that, up to now, there is no compact formula (a determinant, or whatever) for
nipaths.
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