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Abstract. We generalize Joyal’s theory of species to the case of functors from the groupoid of finite sets to the
category of varieties over Fq . These have cycle index series defined by counting fixed points of twisted Frobenius
maps. We give an application to configuration spaces.

Keywords: species, finite field, configuration space

1. Introduction

In [4], Joyal defined a species (of structures) to be a functor A : B → B, where B is the
groupoid of finite sets and bijections between them. One should think of A as a “kind”
of structure on a finite set, and of A(I ) as the set of structures of that kind on the set I .
For instance, A could be the species L of total orders; it is clear how a bijection I

∼→ I ′

defines a bijection between the set L(I ) of total orders on I and the set L(I ′) of total orders
on I ′.

As well as providing a useful language in which to discuss many combinatorial construc-
tions, species are of great use in certain enumerative problems, particularly those involving
labelled trees. Their utility comes about via the definition of the cycle index series Z A of a
species A, which is an element of the formal power series ring Q[[x1, x2, . . .]], encoding
the number of fixed points on A(I ) of the permutation A(w) for any permutation w of I .
(See Section 2 for the definition.) Joyal showed that many natural operations on species
correspond to natural operations on their cycle index series: most significantly, substitution
of species corresponds to plethysm of series (see Theorem 2.1).

Variants of the notion of species abound. In Section 3, for later use, we will discuss the
notion of �-species, which is a functor from B to the category of sets with a �-action, for
some finite group �. We will also give in full a proof of the generalization of Joyal’s result
to this context (see Theorem 3.1).

The linear analogue of a species, a tensor species or S-module, is a functor from B to the
category of vector spaces over a fixed base field. Examples of S-modules are the operads
encountered in quantum cohomology theory (see [9, Chapter IV], for instance). These too
have attached power series, which this time encode traces rather than numbers of fixed
points. (They are usually called characteristics and disguised as symmetric functions—see
Section 4.) Again, Joyal observed that substitution of S-modules corresponds to plethysm
of characteristics (see Theorem 4.1).
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Further variants involve functors from B to some geometric or topological category (for
instance, topological operads). These are generally studied via their cohomology, which
is a graded S-module: after all, if the fixed-point sets are infinite, the cycle index series
cannot be defined in the usual way. However, the point of this paper is to indicate a case
when cohomology is not required, namely the case of species over Fq , where Fq is a finite
field. These are functors X from B to the category of varieties over Fq , and they have cycle
index series which encode the number of fixed points on X (I ) of the twisted Frobenius map
X (w)F , for any permutation w of I . The main result of this paper (Theorem 5.1) is that
substitution corresponds to plethysm in this context.

One would expect species over finite fields to be of most use in counting the Frobenius
fixed points of varieties which have a stratification with strata parametrized by some sort
of labelled trees. In Section 6, we will illustrate the use of Theorem 5.1 in the case of
configuration spaces and their Fulton-MacPherson compactifications. As will be explained,
this application could also be handled via the cohomological method (in this case, using the
Grothendieck Trace Formula in l-adic cohomology). Moreover, the analogous arguments
for complex varieties and singular cohomology can be found in an unpublished paper of
Getzler ([3]), so the results of Section 6 are not original in essence. But it seemed worthwhile
to present them, since the formalism of species over Fq is cleaner and more elementary than
the cohomological approach.

2. Species of structures

As mentioned in the introduction, a species is a functor A : B → B, where B is the groupoid
of finite sets and bijections between them. (Of course, one could equally well say it is a
functor from B to the category of finite sets, since the image would automatically lie in B.)
The definition of isomorphism of species is the usual one for functors. In addition to [4], a
good reference for the theory of species is [1].

For any nonnegative integer n, write [n] for {1, 2, . . . , n}, and Sn for its group of per-
mutations. For a species A, write A[n] for A([n]); by definition, this is a finite set with
an Sn-action. For w ∈ Sn , we will write the induced permutation on A[n] simply as
w, not as A(w). Generally we are interested in the numbers of fixed points |A[n]w| for
various permutations w ∈ Sn . These numbers are collected for convenience in the cy-
cle index series of A, which is a formal power series in the variables x1, x2, . . . , defined
by

Z A(x1, x2, . . .) :=
∑

n≥0

1

n!

∑

w∈Sn

|A[n]w| xw ∈ Q[[x1, x2, . . .]], (2.1)

where if w has cycle-type (imi ), xw := xm1
1 xm2

2 . . .. Note that |A[n]w| depends only on the
cycle-type (conjugacy class) of w, so Z A can be rewritten (using the partition notation of [7])

Z A =
∑

n≥0

∑

λ�n

z−1
λ |A[n]wλ |xm1(λ)

1 xm2(λ)
2 . . . ,
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where wλ denotes an arbitrary element of cycle-type λ. In particular, all the numbers |A[n]w|
are determined by Z A.

There are also two significant specializations of Z A:

A(x) := Z A(x, 0, 0, . . .) =
∑

n≥0

|A[n]|
n!

xn, (2.2)

the exponential generating series of A, and

Ã(x) := Z A(x, x2, x3, . . .) =
∑

n≥0

|Sn \ A[n]|xn, (2.3)

the type generating series of A. To get the last equality, we have used the following special
case of the Lemma formerly known as Burnside’s:

|Sn \ A[n]| = 1

n!

∑

w∈Sn

|A[n]w|. (2.4)

If A and B are two species, there are species A + B and A · B, defined on a finite set I by

(A + B)(I ) = A(I ) � B(I ),

(A · B)(I ) =
∐

I=I1�I2

A(I1) × B(I2).

The definitions of these functors on bijections I
∼→ I ′ are obvious. It is easy to see that

Z A+B = Z A + Z B, Z A·B = Z A Z B .

There is also a basic notion of substitution of species, which associates to two species A and
B, where B(∅) = ∅, a third species A ◦ B. (This is not the composition of the functors A
and B, although it does correpond to composition of the associated analytic functors—see
[5].) For a finite set I , one defines

(A ◦ B)(I ) :=
∐

π∈Par(I )

(
A(π ) ×

∏

J∈π

B(J )

)
,

where Par(I ) is the set of partitions of I , i.e. sets of non-empty disjoint subsets whose union
equals I . The definition of A ◦ B on bijections I

∼→ I ′ is obvious. It is easy to see that ◦ is
associative up to isomorphism: more precisely, it gives a monoidal structure on the category
of species A which satisfy A(∅) = ∅. The species of singletons E1, defined by

E1(I ) =
{ {I }, if |I | = 1

∅, otherwise,

is an identity for this monoidal structure.
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The corresponding operation on cycle index series is plethysm: if f, g ∈ Q[[x1, x2, . . .]],
and g has zero constant term, define

( f ◦ g)(x1, x2, . . .) := f (g(x1, x2, . . .), g(x2, x4, . . .), g(x3, x6, . . .), . . .).

This too is an associative operation, with identity x1(= Z E1 ).

Theorem 2.1 (Joyal) If A and B are species and B(∅) = ∅, then

Z A◦B = Z A ◦ Z B .

For a proof, see [4, Proposition 14] or [1, Section 4.3], or take the special case � = {1} of
the proof of Theorem 3.1 below. See [1] for a plethora of applications of Theorem 2.1 to
enumerative combinatorics.

3. Γ-species

In this section we examine one of many possible extensions of the definition of species. If
� is a finite group, define a �-species to be a functor from B to the category of finite sets
with a �-action, where the morphisms are �-equivariant maps. (The previous definition of
species is recovered as the case � = {1}.) Let Q[[x1, x2, . . .]]� be the set of functions from
� to Q[[x1, x2, . . .]]. If A is a �-species, then A[n] is a finite set with commuting actions
of Sn and �, and we define the cycle index series Z A ∈ Q[[x1, x2, . . .]]� by

Z A(γ ) :=
∑

n≥0

1

n!

∑

w∈Sn

|A[n]wγ | xw, (3.1)

where A[n]wγ is the set of fixed points of the composition wγ .
Note that Z A(1) is the cycle index series of A considered as an ordinary species (forgetting

the �-actions). We also have specializations of Z A analogous to (2.2) and (2.3):

Z A(γ )(x, 0, 0, . . .) =
∑

n≥0

|A[n]γ |
n!

xn,

(3.2)
Z A(γ )(x, x2, x3, . . .) =

∑

n≥0

|(Sn \ A[n])γ |xn.

The second equality comes from the following easy variant of (2.4):

|(Sn \ A[n])γ | = 1

n!

∑

w∈Sn

|A[n]wγ |. (3.3)

The definitions of addition, multiplication, and substitution given in the previous section
all work identically for �-species. It is also clear that the first two still correspond to
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addition and multiplication of cycle index series, using the pointwise ring structure on
Q[[x1, x2, . . .]]� . We define the plethysm of f, g ∈ Q[[x1, x2, . . .]]� , where g(γ ) has zero
constant term for all γ , by

( f ◦ g)(γ ) := f (γ )(g(γ )(x1, x2, . . .), g(γ 2)(x2, x4, . . .), . . .).

With this definition, the obvious generalization of Theorem 2.1 holds:

Theorem 3.1 If A and B are �-species and B(∅) = ∅, then

Z A◦B = Z A ◦ Z B .

Proof: By definition,

Z A◦B(γ ) =
∑

n≥0

1

n!

∑

w∈Sn

∣∣∣∣∣

(
∐

π∈Par[n]

(
A(π ) ×

∏

J∈π

B(J )

))wγ ∣∣∣∣∣ xw.

It is clear that only those partitions in Par[n] which are invariant under w contribute to the
count of wγ -fixed points. Hence

Z A◦B(γ ) =
∑

n≥0

1

n!

∑

π∈Par[n]

∑

w∈Sn
w.π=π

∣∣∣∣∣

(
A(π ) ×

∏

J∈π

B(J )

)wγ ∣∣∣∣∣ xw. (3.4)

For any m ≥ 0 and n1, n2, . . . , nm ≥ 1, define

I n1,...,nm = {( j, k) | j ∈ [m], k ∈ [n j ]}.

Let πn1,...,nm be the obvious partition {πn1,...,nm
j | j ∈ [m]} of I n1,...,nm , where π

n1,...,nm
j =

{( j, k) | k ∈ [n j ]}, and let Sn1,...,nm be the group of permutations of I n1,...,nm which fix this
partition (not necessarily fixing each part individually). If π ∈ Par[n] has m parts, we can
number these parts π1, . . . , πm in m! ways. Letting n1, . . . , nm be their sizes, there are then

n!
n1!...nm ! bijections between [n] and I n1,...,nm under which π j corresponds to π

n1,...,nm
j . So the

right-hand side of (3.4) equals:

∑

m≥0
n1,...,nm≥1
w∈Sn1 ,...,nm

1

m!n1! . . . nm!

∣∣∣∣(A(πn1,...,nm ) ×
∏

j∈[m]

B(πn1,...,nm
j ))wγ

∣∣∣∣ xw. (3.5)

Now any w ∈ Sn1,...,nm induces a permutation of the parts of πn1,...,nm , which corresponds
to some y ∈ Sm satisfying ny( j) = n j for all j ∈ [m]. Write C(y) for its set of cycles, i.e.
the orbits of 〈y〉 on [m], and for c ∈ C(y), write nc for the common value of n j for j ∈ c.
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Clearly wc = w|c| stabilizes each π
n1,...,nm
j for j ∈ c; choosing a particular representative

of the cycle, we can identify wc with an element of Snc . It is easy to see that

∣∣∣∣∣
(

A(πn1,...,nm ) ×
∏

j∈[m]

B
(
π

n1,...,nm
j

))wγ

∣∣∣∣∣ = |A[m]yγ |
∏

c∈C(y)

∣∣B[nc]wcγ
|c| ∣∣,

and

xw =
∏

c∈C(y)

x|c| ◦ xwc .

Thus the term of (3.5) indexed by w ∈ Sn1,...,nm depends only on y and the collection {wc}.
Since the number of w giving rise to a fixed y and {wc} is exactly n1!...nm !∏

c∈C(y) nc! , we can transform

(3.5) into:

∑

m≥0

1

m!

∑

y∈Sm

|A[m]yγ |
∏

c∈C(y)

(
∑

nc≥1

1

nc!

∑

wc∈Snc

∣∣B[nc]wcγ
|c| ∣∣ x|c| ◦ xwc

)
.

That this equals (Z A ◦ Z B)(γ ) is a matter of unravelling the definition of the latter.

An alternative proof of Theorem 3.1 will be sketched in the next section.

4. Linear Analogues

All the concepts mentioned so far have linear analogues. An S-module, or tensor species
in the terminology of [5], is a functor U from B to the category Vect of vector spaces
(over C, say). In particular, U [n] is a representation of Sn . Clearly any species A can be
linearized to give an S-module H 0 A, by composing with the functor H 0: B → Vect defined
by H 0(J ) = { f : J → C}. (However, not every S-module arises in this way.)

The characteristic of an S-module U is

ch(U ) :=
∑

n≥0

1

n!

∑

w∈Sn

tr(w, U [n]) xw ∈ Q[[x1, x2, . . .]]. (4.1)

This is the linearization of the definition of cycle index for species, in the sense that
ch(H 0 A) = Z A. (In the linear context it is customary to identify Q[[x1, x2, . . .]] with a
completion of the ring of symmetric functions, via the map sending xi to the i th power
sum.) Again we have specializations of ch(U ) analogous to (2.2) and (2.3):

ch(U )(x, 0, 0, . . .) =
∑

n≥0

dim U [n]

n!
xn,

(4.2)
ch(U )(x, x2, x3, . . .) =

∑

n≥0

dim U [n]Sn xn.
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The second equality follows from the linear analogue of (2.4):

dim U [n]Sn = 1

n!

∑

w∈Sn

tr(w, U [n]). (4.3)

The definitions of addition, multiplication, and substitution for S-modules are the lin-
earizations of the definitions for species: that is, disjoint union is replaced by direct sum, and
Cartesian product by tensor product. For instance, the definition of U ◦ V when V (∅) = 0
is:

(U ◦ V )(I ) :=
⊕

π∈Par(I )

(
U (π ) ⊗

⊗

J∈π

V (J )

)
.

Since H 0 A ◦ H 0 B is isomorphic to H 0(A ◦ B), the following is a generalization of
Theorem 2.1:

Theorem 4.1 (Joyal) If U and V are S-modules and V (∅) = 0, then

ch(U ◦ V ) = ch(U ) ◦ ch(V ).

See [5, Chapitre 4]. As observed there, this amounts to an extension to analytic functors of
the results on polynomial functors in [7, I, Appendix A].

In [3], Getzler generalizes the theory of S-modules to the case of functors from B to a
Karoubian ring category R over a field of characteristic 0. A special case of his construction
gives us the linear analogue of the �-species considered in the previous section: namely,
we define an (S × �)-module to be a functor from B to the category of representations of
�, over C say. The characteristic ch(U ) of an (S × �)-module U is the following element
of RQ(�)[[x1, x2, . . .]], where RQ(�) is the representation ring of � with scalars extended
to Q:

ch(U ) :=
∑

n≥0

∑

E∈�̂

1

n!

∑

w∈Sn

tr(w, Hom�(E, U [n])) [E] xw. (4.4)

Here �̂ is a set of representatives for the isomorphism classes of irreducible representations,
and {[E] |E ∈ �̂} is the correponding basis of RQ(�).

Clearly any �-species A gives rise to an (S × �)-module H 0 A. If

χ : RQ(�)[[x1, x2, . . .]] → Q[[x1, x2, . . .]]�

is the linear map defined by χ ([E])(γ ) = tr(γ, E) (an isomorphism onto the class functions
on �), then

χ (ch(H 0 A)) = Z A. (4.5)
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This uses the following well-known identity for representations of Sn × �:

⊕

E∈�̂

Hom�(E, V ) ⊗ E ∼= V .

Plethysm in RQ(�)[[x1, x2, . . .]] can be defined using the λ-ring structure on RQ(�) (see
[3, Section 4]), or by the requirement χ ( f ◦g) = χ ( f )◦χ (g). The analogue of Theorem 4.1
holds for (S × �)-modules also (the more general version for any Karoubian ring category
is used implicitly in [3] but not stated). Thanks to (4.5), this provides another proof of
Theorem 3.1.

5. Species over Fq

Now we come to the main definition of this paper. Let q be a prime power and write Fq

for the finite field with q elements. Fix an algebraic closure Fq , and let Fqi be the unique
subfield with qi elements, for i ≥ 1. Let Fq -var be the category of varieties over Fq and
morphisms defined over Fq . A species over Fq is a functor from B to Fq -var.

If X is a species over Fq , then for all n ≥ 1, X [n] is a variety over Fq , and as such it has
a Frobenius endomorphism F . We will use the letter F also for the induced permutation of
the set X [n](Fq ) of Fq -points, which satisfies

X [n](Fq )Fi = X [n](Fqi ).

Also, X [n] has an Sn-action defined over Fq , which means that X [n](Fq ) has an Sn-action
commuting with F . It is well known that for any w ∈ Sn and any i ≥ 1,

∣∣X [n](Fq )wFi ∣∣ < ∞. (5.1)

(This is simply because wFi is the Frobenius endomorphism of a twisted Fqi -structure on
X [n].) We define the cycle index series of X to be the sequence

Z X = (
Z (1)

X , Z (2)
X , Z (3)

X , . . .
)
,

where

Z (i)
X :=

∑

n≥0

1

n!

∑

w∈Sn

∣∣X [n](Fq )wFi ∣∣ xw ∈ Q[[x1, x2, . . .]].

Since any finite set may be viewed as a variety over Fq with trivial Frobenius map, any
species in the ordinary sense is a species over Fq (with a cycle index series in which every
term is the cycle index series in the ordinary sense). We will see some less trivial examples
of species over Fq in the next section.

Note that |X [n](Fq )wFi | depends only on the conjugacy class of w, so as in the case of
ordinary species, all the numbers |X [n](Fq )wFi | can be recovered from Z (i)

X . Again, we have
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two significant specializations:

Z (i)
X (x, 0, 0, . . .) =

∑

n≥0

|X [n](Fqi )|
n!

xn,

(5.2)
Z (i)

X (x, x2, x3, . . .) =
∑

n≥0

|(Sn \X [n])(Fqi )|xn.

To get this latter equation, we have used

|(Sn \X [n])(Fqi )| = 1

n!

∑

w∈Sn

∣∣X [n](Fq )wFi ∣∣. (5.3)

This is the special case A[n] = X [n](Fq ), γ = Fi of (3.3), which in fact does not require
|A[n]| itself to be finite, as long as all |A[n]wγ | are.

It is clear that the definitions of addition and multiplication for ordinary species make
sense for species over Fq , and correspond to the operations of addition and multiplication
on cycle index series, defined on each term of the sequence independently. The definition of
substitution also makes perfect sense in this new context. The correct definition of plethysm
of two sequences of elements of Q[[x1, x2, . . .]] is readily guessed: if f = ( f (1), f (2), . . .)
and g = (g(1), g(2), . . .), where all g(i) have zero constant term, then

( f ◦ g)(i) := f (i)
(
g(i)(x1, x2, . . .), g(2i)(x2, x4, . . .), . . .

)
.

With these definitions, the obvious extension of Theorem 2.1 is true:

Theorem 5.1 If X and Y are two species over Fq with Y (∅) = ∅,

Z X◦Y = Z X ◦ ZY .

Proof: This can be proved in exactly the same way as Theorem 3.1; the condition (5.1)
is the only finiteness required. Alternatively, we can make our sets finite by brute force: to
any species X over Fq we can associate a Z-species Xfin defined by

Xfin(I ) = X (I )(Fq |I |! ),

with Z acting by the powers of F . It is clear that

X [n](Fq )wFi = Xfin[n]wFi
,

whence Z (i)
X = Z Xfin (i). So in fact we can deduce Theorem 5.1 from Theorem 3.1, which,

as we have seen, may be proved either by direct computation or by linearizing.

To remove any last vestige of surprise at Theorem 5.1, let us sketch a different linear
approach to proving it. The Frobenius map F induces an endomorphism F∗ of the l-adic
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cohomology groups H j
c (X [n], Ql), commuting with the Sn-action. By the Grothendieck

Trace Formula,

Z (i)
X =

∑

n≥0

1

n!

∑

w∈Sn
j∈Z

(−1) j tr
(
w(F∗)i , H j

c (X [n], Ql)
)

xw.

In the terminology of [3, Section 5], the right-hand side is the “associated Euler character-
istic” of the “Künneth functor” H •

c (X, Ql) with values in the Karoubian ring category of
Ql-vector spaces with an endomorphism. So Theorem 5.1 follows from the generalization
of Theorem 4.1 that is used implicitly in [3]. However, note that Getzler’s favoured special
case, where the linear category is that of mixed Hodge structures, does not quite imply
Theorem 5.1, since it gives a coarser Grothendieck group where eigenvalues of F∗ with the
same absolute value are not distinguished.

6. Configuration spaces

Let X be a fixed irreducible nonsingular variety over Fq . We will write X also for the species
over Fq defined by

X (I ) =
{

X, if |I | = 1

∅, otherwise.

The cycle index series of this species is given by

Z (i)
X = |X (Fqi )|x1. (6.1)

Imitating the notation of [3], we define three further species over Fq which depend on X :

(1) The first is the species TX of tuples of points in X , defined by TX (I ) = X I . For instance,
TX [n](Fq ) is the set of n-tuples (p1, . . . , pn) of points in X (Fq ).

(2) The second is the species FX of tuples of distinct points in X , defined by setting
FX (I ) to be the complement of the diagonals in TX (I ). For instance, FX [n](Fq ) is the
configuration space consisting of all n-tuples (p1, . . . , pn) as above where pi �= p j for
all i �= j .

(3) The third is the species F MX defined by setting F MX (I ) to be the Fulton-MacPherson
“compactification” of FX (I ), as defined in [2]. (The word “compactification” only
applies when X is a compact complex variety; but their construction works for any
irreducible nonsingular variety over any ground field.)

In this section we will consider the problem of computing the cycle index series of these
species over Fq , in terms of the numbers |X (Fqi )|.

We need the following obvious principle:
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Lemma 6.1 Let Y be a species over Fq . Suppose that:

(1) Each variety Y (I ) has a finite stratification

Y (I ) =
⋃

α∈AI

Y (I )α

into locally closed subvarieties defined over Fq .

(2) For any bijection f : I
∼→ I ′,

Y ( f )(Y (I )α) = Y (I ′) f̂ (α),

for some bijection f̂ : AI
∼→ AI ′ .

Define a species Ŷ over Fq by “cutting” Y up into the pieces of this stratification; in other
words,

Ŷ (I ) :=
∐

α∈AI

Y (I )α.

Then ZŶ = ZY .

Proof: The distinction between Y and Ŷ is solely that the pieces Y (I )α which are “glued
together” in Y (I ) are disconnected in Ŷ (I ); this does not affect the number of Frobenius
fixed points. (Indeed, if we pass to the truncated finite versions as in the proof of Theorem
5.1, we get an isomorphism Ŷ fin ∼= Y fin of Z-species.)

Of course, the first of the three species presents no difficulty at all.

Lemma 6.2 For i ≥ 1,

Z (i)
TX

= exp

(
∑

n≥1

|X (Fqin )|xn

n

)
.

Proof: This is easy to prove directly from the definition. A slightly cleaner proof is the
following: if E denotes the species of sets, defined by E(I ) = {I } for all I , then we have
an obvious isomorphism

E ◦ X ∼= TX . (6.2)

So by Theorem 5.1, ZTX = Z E ◦ Z X . Here Z E means the constant sequence each of whose
terms is Z E in the sense of ordinary species. It is almost trivial to show that

Z E = exp

(
∑

n≥1

xn

n

)
,

and combining this with (6.1) gives the result.



158 HENDERSON

The second is not much harder.

Lemma 6.3 For i ≥ 1,

Z (i)
FX

= exp

(
∑

n≥1

|X (Fqin )|
n

∑

m≥1

µ(m)

m
log(1 + xnm)

)
.

Proof: Again, this can be proved by directly counting Frobenius fixed points: it is equiv-
alent to [6, Lemma 4.2]. Another approach is to use Theorem 5.1 in the following way
(compare the proof of [3, Theorem 5.6]). The variety TX (I ) of I -tuples is stratified accord-
ing to which components of the tuple are equal. Let T̂X be the species over Fq obtained by
cutting up the varieties TX (I ) into these pieces, as in Lemma 6.1. Then clearly

T̂X
∼= FX ◦ E+,

where E+ is the species defined by

E+(I ) =
{ {I }, if |I | ≥ 1

∅, if I = ∅.

Hence

ZTX = ZT̂X
= Z FX ◦ Z E+ . (6.3)

Now the plethystic inverse of

Z E+ = Z E − 1 = exp

(
∑

n≥1

xn

n

)
− 1

is well known to be

Z 〈−1〉
E+ :=

∑

m≥1

µ(m)

m
log(1 + xm).

(This can also be interpreted as the cycle index series of the virtual species E 〈−1〉
+ – see [1,

Section 2.5].) Multiplying (in the plethystic sense) both sides of (6.3) on the right by Z 〈−1〉
E+ ,

and using Lemma 6.2, we get the result.

For the third of the species, the Fulton-MacPherson “compactifications”, a result such as
Theorem 5.1 is probably essential. In [3, Section 6], Getzler treats the analogous problem
for the case of complex varieties, using the variant of S-modules where the linear category
is that of mixed Hodge structures. (This is an equivariant generalization of the work done
in [8, Section 2].) As we will see, his argument works just as well in the context of species
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over Fq . This is not surprising: changing the base field from C to Fq and using l-adic instead
of singular cohomology accounts for most of the difference between the two contexts, and
the remainder is the minor change from mixed Hodge structures, which encode only the
absolute value of the Frobenius eigenvalues, to our cycle index series, which encode the
eigenvalues themselves (see the remark at the end of the previous section). But some readers
may prefer the following argument, which avoids using cohomology.

The construction of F MX [n] in [2] involves blowing up the union of the diagonals in Xn

in a certain way. Intuitively speaking, when the components of an n-tuple in FX [n] vary in
such a way that some of them become equal, the limit point in F MX [n] records not just the
final value of the n-tuple in Xn , but some extra data (the screens) encoding the relative rates
of coincidence. The main point of Getzler’s argument is that the subvariety parametrizing
the extra data depends only on the dimension of X and which components are equal, not
the components themselves. Hence, as with TX , we can cut up F MX according to which
components are equal, and the resulting species F̂ M X will be isomorphic to FX ◦ Pdim X

for some family {Pk | k ≥ 0} of species over Fq (defined below). Thus

Z F MX = Z F̂ M X
= Z FX ◦ Z Pdim X . (6.4)

(This is the analogue of [3, Proposition 6.9].) Since we know Z FX by Lemma 6.3, we need
only compute Z Pk for all k ≥ 0. In fact, a recursive procedure for calculating the terms of
Z (i)

Pk
is the best we can do.

The species Pk is defined by setting Pk(I ) to be the variety of screens based on Ak with
marked points labelled by I . (By convention, this is empty if I is empty, and a single point
if |I | = 1.) This variety has an open subvariety Qk(I ) defined by

Qk(I ) =
{

(Gk
a � Gm)\FAk (I ), if |I | ≥ 2

∅, otherwise.

The quotient here is by the simultaneous action of the affine transformation group Gk
a �Gm

on all components of the I -tuple. This is well defined in Fq -var; indeed the group action is
free (unless k = 0, when Q0(I ) = ∅ for all I ). For example, if |I | = 2, Qk(I ) ∼= Pk−1.

It is clear that Qk is a species over Fq . We have the following analogue of [3, Proposition
6.6]:

Lemma 6.4 For i ≥ 1,

Z (i)
Qk

= exp
( ∑

m,n≥1
µ(m)qink

mn log(1 + xmn)
) − 1 − qik x1

qik(qi − 1)
.

Proof: It is a familiar fact, following from Lang’s Theorem, that if Z is a variety over
Fq with a free action of the connected algebraic group G, also defined over Fq , then the
obvious map

G(Fq )\Z (Fq ) → (G\Z )(Fq )
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is a bijection. An easy variant is that if Z also has an action of the finite group W , defined
over Fq and commuting with the action of G, then for all w ∈ W ,

G(Fq )\Z (Fq )wF → (G\Z )(Fq )wF

is a bijection. Applying this to the case where Z = FAk [n], G = Gk
a � Gm , and W = Sn ,

with q replaced by qi , we get

Z (i)
Qk

=
Z (i)

F
Ak

− 1 − qik x1

qik(qi − 1)
.

Using Lemma 6.3, we are done.

The open subvariety Qk(I ) is just one stratum of a stratification of the variety Pk(I ).
The strata are parametrized by the set T (I ) of isomorphism classes of rooted trees, with a
bijection between I and the set of leaves, in which every internal vertex has indegree ≥ 2.
Here we are following the terminology of [1, Section 3.1]: the indegree of a vertex is the
cardinality of its fibre, i.e. the set of edges incident with the vertex which lead away from
the root. The leaves are the vertices of indegree 0, and the internal vertices are the rest. (In
the terminology of [2], T (I ) is the set of nests of subsets of I which include I itself.) Note
that T (∅) = ∅, and |I | = 1 ⇒ |T (I )| = 1.

By abuse of notation, we write T (I ) also for a set of representatives of the isomorphism
classes of trees as above. If T ∈ T (I ), define

Qk(T ) :=
∏

v∈Int(T )

Qk(Fibre(v)),

where Int(T ) denotes the set of internal vertices of T and Fibre(v) denotes the fibre of v. This
is precisely the stratum of Pk(I ) corresponding to T . (The open stratum Qk(I ) corresponds
to the tree in which the root is the sole internal vertex.)

Cutting up Pk(I ) into these strata as in Lemma 6.1, we obtain the species P̂k , defined by

P̂k(I ) =
∐

T ∈T (I )

Qk(T ).

Extending the definition of [1, Section 4.1] to the case of species over Fq , we have a two-
sort species B1+Qk of (1 + Qk)-enriched rooted trees with internal vertices of one sort and
leaves of another sort. To obtain P̂k from B1+Qk , we take isomorphism types according to
the internal vertex sort, as in [1, Section 2.4]. Hence [1, (4.1.34)] implies the following
isomorphism of species over Fq :

P̂k
∼= E1 + Qk ◦ P̂k . (6.5)

(The morphism from the varieties on the left to those on the right works by “splitting the
tree at the root”, to create an assemblage of smaller trees. This result is the analogue of [3,
Theorem 6.4].) We can thus deduce:
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Proposition 6.5 For all k ≥ 0,

Z Pk = x1 + Z Qk ◦ Z Pk .

Proof: This follows from Theorem 5.1, (6.5), and Lemma 6.1.

Now in the grading on Q[[x1, x2, . . .]] defined by deg xn = n, all the series Z (i)
Qk

start
in degree 2. So Proposition 6.5 expresses the degree n term of Z (i)

Pk
as a function of the

coefficients of Z (i)
Qk

and terms of various Z ( j)
Pk

of degree less than n. Since we know Z Qk by
Lemma 6.4, this gives our desired recursion. Once we have computed all Z ( j)

Pk
up to terms

of degree n, (6.4) gives a formula for the terms of Z (i)
F MX

of degree ≤ n in terms of the
coefficients of Z (i)

FX
, which we know by Lemma 6.3.
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