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Abstract. In the last decade there have been many results about special families of graphs whose number of
perfect matchings is given by perfect or near perfect powers (N. Elkies et al., J. Algebraic Combin. 1 (1992), 111–
132; B.-Y. Yang, Ph.D. thesis, Department of Mathematics, MIT, Cambridge, MA, 1991; J. Propp, New Perspectives
in Geometric Combinatorics, Cambridge University Press, 1999). In this paper we present an approach that allows
proving them in a unified way. We use this approach to prove a conjecture of James Propp stating that the number
of tilings of the so-called Aztec dungeon regions is a power (or twice a power) of 13. We also prove a conjecture
of Matt Blum stating that the number of perfect matchings of a certain family of subgraphs of the square lattice
is a power of 3 or twice a power of 3. In addition we obtain multi-parameter generalizations of previously known
results, and new multi-parameter exact enumeration results. We obtain in particular a simple combinatorial proof
of Bo-Yin Yang’s multivariate generalization of fortresses, a result whose previously known proof was quite
complicated, amounting to evaluation of the Kasteleyn matrix by explicit row reduction. We also include a new
multivariate exact enumeration of Aztec diamonds, in the spirit of Stanley’s multivariate version.
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1. Introduction

A lattice in the plane divides the plane into elementary regions. A tile is the union of two
elementary regions that share an edge. A region is a connected region in the plane whose
boundary consists of lattice segments. A tiling of a region is a way to pair the elementary
regions it contains into disjoint tiles.

Tiles are allowed to carry weights, in which case the weight of a tiling is defined to be
the product of the weights of the constituent tiles. The tiling generating function of a region
R, denoted T(R), is the sum of the weights of all its tilings.

An important motivation for studying tiling generating functions is that tilings of lattice
regions can be identified with perfect matchings of their dual graphs, and are therefore
instances of the dimer model of statistical physics on various lattice graphs.

In the last decade there have been many results about special families of regions on
various lattices whose number of tilings is given by perfect powers [5, 8, 11]. In this paper
we present a unified approach that allows proving these cases as well as new results.

The uniform approach in our proofs is afforded by Theorem 2.3 (the General Comple-
mentation Theorem), a result relating the matching generating function of weighted graphs
in a large class (that includes in particular all planar bipartite graphs1) to the matching
generating function of their “complement.” This result is an extension of Propp’s Gen-
eralized Domino-Shuffling [9], which in turn extended the Aztec diamond case of the
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Complementation Theorem of [2] to arbitrary weights by eliminating a technical assump-
tion in the statement of the Complementation Theorem of [2] (the assumption that the
cell-factors are constant along lines of cells—see Section 2 and [2]). Our proofs employ
combinatorial arguments to bring the problems to a form where Theorem 2.3 applies.

This more general version can in fact be proved using the arguments employed in [2] to
prove the Complementation Theorem. However, it is shorter and clearer to prove it in the
spirit of [9]. We present such a proof, based on certain local graph replacement operations,
in Section 2.

A crucial ingredient in our proofs is that certain matrices that encode the type of each
family of regions behave well under the action of a naturally arising matrix operator d whose
action is given by certain rational maps (see Section 3). More precisely, in all these examples
it turns out that after applying d successively to the encoding matrix some convenient number
of times—in two of our examples, twelve and respectively thirty(!) times—, one arrives at
a matrix of the same type as the original one, thus obtaining simple recurrence relations
that determine the tiling generating function.

In several of our examples we find in fact more general matrices, with entries inde-
terminates, which also have this periodicity property under d. These can be interpreted as
parametrized subvarieties of the algebraic variety of matrices having some fixed order under
the action of d.

On the square lattice, Elkies, Kuperberg, Larsen and Propp considered in [5] the Aztec
diamond regions and proved that the region of order n has 2n(n+1)/2 tilings (for n = 4 this
region is illustrated in figure 1).

For the square lattice with the diagonals drawn in—the lattice corresponding to the affine
Coxeter group B2—, B.-Y. Yang [11] considered regions called fortresses, and proved that
the number of their tilings is always a power of 5 or twice a power of 5 (figure 17 illustrates
the case n = 4).

On the triangular lattice, which corresponds to the affine Coxeter group A2, MacMahon
[7] showed that the number of tilings of the hexagon of sides a, b, c, a, b, c (in cyclic order)
is

a∏
i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2
.

It is interesting that there is no known family of regions on the triangular lattice whose
number of perfect matchings is given non-trivially by perfect powers. The “rectangular”

Figure 1. The Aztec diamond region of order 4.
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region obtained from a hexagon with sides m, m, n, m, m, n by cutting off the vertices not
incident to the sides of length n along zig-zag lattice lines has nm tilings, but it can be split
into m hexagons that can be tiled independently (see [3]).

There is only one other affine Coxeter group of order two, G2, and its corresponding
lattice is the triangular lattice with all altitudes of unit triangles drawn in. Propp considered
regions on this lattice called Aztec dungeons (see figure 10 for an example), and conjectured
that the number of their tilings is always a power of 13 or twice a power of 13. We prove
this conjecture and present two weighted generalizations in Section 3.

B.-Y. Yang [11] extended his result on enumerating tilings of fortresses by proving,
using a quite complicated argument—explicit row reduction of the Kasteleyn matrix—,
a conjecture of Kuperberg and Propp stating that a certain multivariate weighting of the
Aztec diamond leads to a matching generating function that factors nicely. We present
a simple combinatorial proof of this general version in Section 4, which also contains a
weighted form that keeps track of the number of different types of tiles used in a tiling of
the fortress (for a simple proof of the original version of B-Y. Yang’s result, based on the
Complementation Theorem, see [2]).

Section 5 contains a couterpart of Stanley’s multivariate generalization ([10]; see also
[2]) of the Aztec diamond theorem of [5].

In Section 6 we present what seems to be a new result, stating that the number of tilings of
a certain subgraph of the Aztec diamond is a power of 2. We also obtain a natural weighted
generalization that keeps track of the horizontal and vertical edges.

In Section 7 we consider the tiling of the plane by equilateral triangles, squares and
regular hexagons. Another ex-conjecture of Propp [8], first proved (but not yet published)
by Ben Wieland, states that the number of tilings of a certain family of regions on this
lattice, called dragons (an example is illustrated in figure 22), equals a power of two. We
present a simple proof of this, and a natural weighted generalization.

Section 8 presents a proof of a conjecture of Matt Blum stating that the number of perfect
matchings of a certain family of subgraphs of the square lattice is a power of 3 or twice a
power of 3. The last section of the paper contains some concluding remarks.

2. The General Complementation Theorem

A perfect matching of a graph is a collection of vertex-disjoint edges that form a spanning
subgraph. For a weighted graph G, the weight of a perfect matching is the product of the
weights of the constituent edges. The matching generating function M(G) is the sum of the
weights of all perfect matchings of G.

We present in this section a generalization of the Complementation Theorem of [2]. We
review the necessary definitions and notations from [2] below.

A cellular graph is a finite graph whose edges can be partitioned into 4-cycles—the cells
of the graph—such that each vertex is contained in at most two cells.

Let c0 be a cell of a graph G and consider two opposite vertices x0 and y0 of c0. By
definition, x0 is contained in at most one other cell besides c0. If such a cell c1 exists, let x1

be its vertex opposite x0. Then x1 in turn is contained in at most one cell other than c1; if
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such a cell exists denote by x2 its vertex opposite x1, and continue in this fashion. Repeat
the procedure starting with y0.

The set of cells that arise this way is said to be a line of G. If the sequence {xi } (and
hence the analogous sequence {yi }) defined above is finite, the line is called a path, and the
last entry of each of the two sequences is called an extremal vertex of G.

A weighted graph is a graph equipped with a weight function on its edges. Unless stated
otherwise, the edge-weights are considered independent indeterminates. Let V (G) and
X (G) be the sets of vertices and extremal vertices, respectively, of G. Let E(G) be the set
of edges of G.

The following definition is a relaxation of the corresponding one from [2] (the original
definition involved the additional requirement that H is an induced subgraph of G).

Definition 2.1 Given a weighted graph H , a weighted cellular graph G is said to be a
cellular completion of H if

(i) H is a subgraph of G, and all edges of E(G)\E(H ) with both endpoints in H have
weight 0 in G, and

(ii) V (G)\V (H ) ⊆ X (G).

Therefore, any (not necessarily induced) subgraph of a weighted cellular graph has a
cellular completion; see Remark 2.4. A graph may have more than one cellular completion:
figure 2(c) shows a cellular completion of the graph in figure 2(a); another is obtained by
shading in figure 2(b) the other class of the indicated chessboard coloring. The cellular
completion of a subgraph of the square grid is not necessarily a subgraph of the square grid.

Let G be a cellular completion of the graph H . The complement H ′ of H (with respect
to G) is defined as follows. First we define the underlying graph of the complement (the
weight on H ′ is defined in the next paragraphs): it is the induced subgraph H ′ of G whose
vertex set is determined by the equation V (H ′) 
 V (H ) = X (G), where the triangle denotes
symmetric difference of sets (an example is illustrated in figures 2(a)–(d);2 the edges of G
not contained in H are represented by dotted lines in figure 2(c)). In other words, V (H ′) is
the set obtained from V (H ) after performing the following operation at each end of every
path of G: if the corresponding extremal vertex belongs to V (H ), remove it; otherwise,
include it.

Starting with the weight wt on G, we define a new weight wt1 on G as follows (the
weight of the complement H ′ will be defined by restriction from wt1). If the cell c has
edges weighted by x , y, z and w (in cyclic order), set �(c) := xz + yw. We call �(c) the
cell-factor of c.

Consider a cell c of G. Assume first that the set of endpoints of edges of H contained in
c is the full set of four vertices of c—we call such cells whole. In this case, for each edge e
of c set wt1(e) := wt( f )/�(c), where f is the edge opposite e in c (this is summarized in
figure 3, where the left part shows the original weight on a whole cell and the right part the
new weight). If c is whole it follows that �(c) �= 0, and this is well-defined. Note that this
definition has the effect of sliding each 0-weight edge to the opposite edge in its cell, so
by interpreting these back as missing edges, the graph changes—see figures 2(a) and (d),
where 0-weight edges are indicated as missing.
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(a)

(c) (d)

(b)

Figure 2. (a) The graph H . (b) Whole and partial cells of H . (c) A cellular completion of H . (d) The graph H ′.

(x +ywz )w/(x +ywz )z/x y

w (x +ywz ) (x +ywz )y/ /xz

Figure 3. Weight change on whole cells.

If on the other hand the set of endpoints of edges of H contained in c has at most three
elements—such a cell is called partial—, define wt1 on c as indicated by figures 4 and 5.
More precisely, if the aforementioned set has three elements, the partial cell c looks like
the left part of figure 4. By our definition of the complement, the missing extremal point
from cell c will be included in H ′, making this a whole cell in H ′. Assign it new weights
as indicated by the right part of figure 4.

In case the set of endpoints of edges of H contained in c has two elements, define wt1
similarly, using figure 5.

We note that if a partial cell contains an extremal vertex, this cell doesn’t generate a whole
cell in H ′; in this case just use the corresponding restriction of the right side of figure 4
or 5. Instances of this occur in figures 2(a) and (d).
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2/y 2/x

1/(2y)1/(2x)x y

Figure 4. Weight change on partial cells with three vertices.

/21

1/2

/x 2

1/(2 )xx

Figure 5. Weight change on partial cells with two vertices.

Definition 2.2 Let wt be a weight on the edge set of H . The derived weight wt′ on the
complement H ′ is the weight obtained by restricting the above defined weight wt1 to H ′.

(The above defined weight is related to, but different from the complementary weight defined
in [2] and denoted there by the same symbol.)

The following result is a generalization of Theorem 2.1 of [2]. The main improvements
are that here the cell-factors are not required to be constant along lines, and that in the
current set-up H does not need to be an induced subgraph of its cellular completion G (see
Remark 2.4).

Theorem 2.3 (General Complementation Theorem) Let H be a weighted graph and let
G be a cellular completion of H. Let wt be a weight function on the edges of H. Then
M(H ; wt) can be expressed in terms of the complement H ′ of H with respect to G, weighted
by the derived weight wt′, as

M(H ; wt) = 2|C0|
( ∏

c∈C1

�(c)

)
M(H ′; wt′),

where C1 and C0 are the sets of whole and partial cells, respectively.

Proof: The particular case when H is an Aztec diamond is due to Propp [9] and follows
by repeated application of Lemma 2.5 below. For the general case we proceed as follows.
Detach the cells from one another and introduce one new vertex and two new unit-weighted
edges between any two touching cells; introduce two new vertices and two new unit-
weighted edges at every vertex of a cell that doesn’t belong to any other cell (the latter are
precisely the extremal vertices of the cellular completion G that are contained also in H ; for
the graph in figure 2(a), this procedure is illustrated in figures 6(a) and (b)). By the “vertex
splitting” trick (see e.g. [1]), the matching generating function of the resulting graph H1 is
the same as that of H .

In the graph H1 there is an opportunity to apply Lemma 2.5 around each whole cell, and
an opportunity to apply either part (a) or (b) of Lemma 2.6 around every partial cell. Let H2

be the graph resulting from H1 after performing all local replacements prescribed by these
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(a)

(b) (c)

Figure 6. Illustrating the proof of Theorem 2.3.

Lemmas (figure 6(c) illustrates H2 for the example of figures 6(a) and (b); H2 is obtained
by including the dotted 4-cycles and removing all vertices and edges they enclose).

Corresponding to each extremal vertex of G contained in H we have a forced edge in H2

(these are circled in figure 6(c)). Corresponding to each extremal vertex of G not contained in
H , we have a new vertex in H2, created by application of Lemma 2.6(a) or (b). Therefore,
the graph obtained from H2 by removing all forced edges (which by construction have
weight 1) is precisely the complement H ′ (compare figures 6(c) and 2(d)). By Lemmas 2.5
and 2.6, the resulting weight on H ′ is precisely wt′.

Remark 2.4 Any subgraph H of a weighted cellular graph G has a cellular completion.
Indeed, restricting G to the cells containing at least one edge of H, redefining as being 0 the
weight of all edges in E(G)\E(H ) having both endpoints in H, and finally “detaching” the
remaining cells of G at vertices in V (G)\V (H ) (so that they become extremal), we obtain
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Figure 7. Urban renewal.

a cellular completion of H . Therefore, Theorem 2.3 applies to any subgraph of a weighted
cellular graph.

Let G be a weighted graph containing a subgraph isomorphic to the graph K shown in the
left part of figure 7 (the labels indicate weights; unlabeled edges have weight 1). Suppose
in addition that the four inner vertices of K have no neighbors outside K . Let s(G) be the
graph obtained from G (by “surgery”) by replacing K by the graph K̄ shown on right in
figure 7 (dashed lines indicate new edges, weighted as shown).

The following result is a generalization due to Propp of the “urban renewal” trick first
observed by Kuperberg (which corresponds to the case when all weights are 1). It follows
by analyzing the restrictions of matchings of G and s(G) to K and K̄ , respectively (see [9]).

Lemma 2.5 M(G) = (xz + yw)M(s(G)).

The next result appears to be new. Together with Lemma 2.5, it is an essential ingredient
in the proof of Theorem 2.3.

Lemma 2.6
(a) Consider the above local replacement operation when K and K̄ are the graphs shown

in figure 8, with the indicated weights (in particular, s(G) has one vertex, D, that was
not a vertex of G, which is incident only to A and C). We have

M(G) = 2M(s(G)).

(b) The statement of part (a) is also true when K and K̄ are the graphs indicated in figure 9
(in this case s(G) has two vertices, C and D, not belonging to G; they are adjacent
only to one another and to B and A, respectively).

Proof: To prove part (a), partition the perfect matchings of G into three classes: (1) those
containing the edge of K weighted x and the edge of K incident to C , (2) those containing
the edge of K weighted y and the edge of K incident to A, and (3) those containing the
three edges of K incident to A, B or C . Partition the perfect matchings of s(G) also in
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Figure 8. A local graph replacement.
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Figure 9. Another local graph replacement.

three classes: (1) those containing edge C D but not AB, (2) those containing AD but not
BC , and (3) those containing two opposite edges of the 4-cycle ABC D (this is indeed a
partition, since D is incident only to A and C).

Given a perfect matching µ of G, construct a perfect matching µ′ of s(G) by discarding
the edges of µ with both endpoints in K , and including edges of K̄ as indicated by the
correspondence of like-numbered classes in the partitions from the previous paragraph. It
is easy to check that µ → µ′ is a bijection and that wt(µ) = 2wt(µ′). This proves part (a).

Part (b) is proved similarly.

When H is an Aztec diamond we obtain the following important special case due to
Propp (called Generalized Domino-Shuffling in [9]).

Corollary 2.7 (Reduction Theorem [9])

M(ADn; wt) = M(ADn−1; wt′)
∏
c∈C

�(c).

Provided all cell-factors are nonzero and keep being so after each application of the Re-
duction Theorem, Corollary 2.7 can be applied successively—with the weight changing at
every step—until we get down to the Aztec diamond of order 0, whose matching generating
function is equal to 1. This provides in particular an algorithm for finding the matching gen-
erating function of the original weighted Aztec diamond. In certain situations, the weight
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pattern repeats after a small number of successive applications. In these cases the match-
ing generating function turns out to be given by perfect (or near-perfect) powers. Several
instances of this phenomenon are presented in the following sections.

3. Aztec dungeons

The plane lattice corresponding to the affine Coxeter group G2 is obtained from the equi-
lateral triangular lattice by drawing in all altitudes (see figure 10). Consider the family of
all lattice lines parallel to a given lattice line direction �, and also the family of all lattice
lines perpendicular to �. The union of these two families forms a sublattice isomorphic to
the square lattice.

Tracing out what would correspond to an Aztec diamond region of order n on this
sublattice we obtain the Aztec dungeon Dn of order n (see figure 10 for an example). Propp
conjectured that the number of tilings of an Aztec dungeon is either a power of 13 or twice
a power of 13. In this section we prove two different generalizations of this conjecture (see
Theorems 3.1 and 3.8).

There are three possible shapes of tiles on the lattice G2: an equilateral triangle, an obtuse
triangle and a kite-shaped tile. It is natural to keep track of them by assigning them distinct
weights. Since the total number of tiles in a tiling is determined by the order of the Aztec
dungeon, we may assume without loss of generality that one of our weights is equal to 1.
Assign therefore our three types of tiles weights y, x and 1, respectively. Denote by wt the
weight obtained this way on Dn .

Theorem 3.1 Let P denote the irreducible polynomial P := x6 + 3x4 y2 + 3x2 y4 + y6 +
2x3 +2xy2 +1. The tiling generating functions of the first six Aztec dungeons Dn are given
by

T(D0; wt) = 1

T(D1; wt) = x2 + y2

Figure 10. The lattice G2 and the Aztec dungeon D4.
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T(D2; wt) = x2 y2 P

T(D3; wt) = x6 y6 P3

T(D4; wt) = x10 y14(x2 + y2)P5

T(D5; wt) = x16 y24 P8,

and for n ≥ 5 we have the recurrence

T(Dn+1; wt) = x8n−16 y16n−20 P4n−8T(Dn−5; wt). (3.1)

Propp’s original conjecture corresponds to the following special case.

Corollary 3.2 The number of tilings of the Aztec dungeon Dn is given by the equalities
T(D0) = 1, T(D1) = 2, T(D2) = 13, T(D3) = 133, T(D4) = 2 · 135, T(D5) = 138, and
for n ≥ 5 by the recurrence

T(Dn+1) = 134n−8T(Dn−5).

Proof: Set x = y = 1 in Theorem 3.1.

The proof of Theorem 3.1 will follow from the following three preliminary results. The
first of them expresses M(Dn; wt) in terms of a certain weighted count of perfect matchings
of the Aztec diamond graph AD2n−2.

Let A be a given k × l matrix with k and l even. The centers of the edges of the Aztec
diamond graph ADn form a 2n × 2n array. Place a copy of A in the upper left corner of this
array and fill in the rest of the array periodically with period A (i.e., translate A to the right
in the array l units at a time and down in the array k units at a time; if 2n is not a multiple
of k or l some of these translates will fit only partially in the array).

Definition 3.3 Define the weight wtA on the edges of ADn by assigning each edge the
corresponding entry of A in the array described above.

Lemma 3.4 Let N be the matrix

N =




y
x2+y2 y x x

x2+y2

y 0 1 x

x 1 0 y
x

x2+y2 x y y
x2+y2


 (3.2)

We have

T(Dn; wt) = y4n(x2 + y2)n2
M(AD2n−2; wtN ). (3.3)

Proof: Construct the graph dual to the region Dn , i.e. the graph whose vertices are the
elementary regions of Dn and whose edges connect precisely those elementary regions that
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Figure 11. The Aztec dungeon D4 and its dual graph.

share an edge (this is illustrated in figure 11 for n = 4). Weight each edge by the weight of
the corresponding tile.

Clearly, the tilings of the region Dn can be identified with the perfect matchings of its
dual graph. Therefore, the tiling generating function T(Dn; wt) is the same as the matching
generating function of the dual graph of Dn .

This dual graph contains many local configurations like the one described at the beginning
of Section 2, providing one with as many opportunities to apply Lemma 2.5. By their
geometric orientation, these local configurations can be grouped into three families. The
largest family contains n2 members (these are indicated in figure 12). Apply Lemma 2.5 at
each of these n2 places. The resulting weighted graph is readily seen to be isomorphic with
a weighted subgraph of the square lattice (shown in figure 13 for n = 4).

Furthermore, because of the vertices of degree one, the resulting subgraph of the square
lattice will have some edges around the boundary that are forced to be contained in all of
its perfect matchings (the forced edges are shown in thick lines in figure 13). It is easy to
see that all these forced edges except 4n of them correspond to kite-shaped tiles, and have

Figure 12. Applying Lemma 2.5 to the graph dual to D4.
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Figure 13. A graph embedded in Z
2.

therefore weight 1. The remaining 4n edges correspond to equilateral triangle tiles, thus
having weight y.

Removing all vertices (together with all incident edges) connected by forced edges we
are left with a weighted spanning subgraph of the Aztec diamond of order 2n −2 (figure 14
illustrates the case n = 4. This can be regarded as the entire graph AD2n−2 by weighting all
missing edges by 0. By Lemma 2.5, the obtained weight comes out to be exactly wtN , with
the matrix N given by (3.2). Taking into account the contribution of the 4n forced edges of
weight y and applying n2 times Lemma 2.5 we obtain (3.3).

For a k × l matrix A with k and l even define a new k × l matrix d(A) as follows. Divide
matrix A into 2 × 2 blocks

[
x w

y z

]

Figure 14. A weight on AD6.
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and assume xz + yw �= 0 for all such blocks. Replace each such block by

[
z/(xz + yw) y/(xz + yw)

w/(xz + yw) x/(xz + yw)

]

and denote the resulting k × l matrix by B. Define d(A) to be the k × l matrix obtained
from B by cyclically shifting its columns one unit up and cyclically shifting the rows of the
resulting matrix one unit left.

The next simple observation provides a very convenient way of keeping track of the
evolution of periodic weights on Aztec diamonds when one applies the Reduction Theorem.

Lemma 3.5 Let A be a k × l matrix with k and l even and consider the weight wtA it
determines on ADn according to Definition 3.3. We have

wt′A = wtd(A),

where the weight on the left hand side is defined as in Definition 2.2.

Proof: This follows from Definition 2.2 and the above construction of d(A). The rea-
son we need the cyclic shifts in the construction of d(A) is because the derived weight
of Definition 2.2 is defined by viewing the Aztec diamond of order n − 1 as embedded
concentrically into ADn .

Due to the location of the 0’s in the matrix N given by (3.2), all the edges in an Aztec
diamond that are weighted 0 under wtN are parallel among themselves. By Definition 2.2,
this property is preserved by the derived weight. In particular, in any cell at least one pair
of opposite edges is assigned nonzero weights. Therefore all cell-factors are nonzero and
the Reduction Theorem can be applied successively.

By Lemma 3.5, the successive weights that occur are the weights corresponding via
Definition 3.3 to the iterates d(i)(N ), for i = 1, 2, 3, . . .. Therefore, if one of these iterates
would be the same as N—or indeed the same up to a scalar multiplicative factor—then
we would get a recurrence for the matching generating function on the right hand side of
(3.3). By (3.3) this would then translate into a recurrence for M(Dn; wt) and would solve
the problem of computing the latter.

The computation of the iterates d(i)(N ) can be done very easily with a computer algebra
package like Maple. The first few iterates don’t look very promising, but perseverance pays
off: the twelfth(!) iterate turns out to be, up to a scalar multiple, exactly the same as N .
More precisely, one obtains

d(12)(N ) = k0 N , (3.4)

with

k0 = y4(x3 + xy2 + 1)4(x4 + 2x2 y2 + y4 + x)4

(x2 + y2)4(x6 + 3x4 y2 + 3x2 y4 + y6 + 2x3 + 2xy2 + 1)4
. (3.5)
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Since at each application of the Reduction Theorem the order of the resulting Aztec diamond
decreases one unit, it follows that

M(AD2n; wtN ) = k1M(AD2n−12; wtN ), (3.6)

where the constant k1 is the product of all the cell-factors arising in the twelve applications
of the Reduction Theorem, multiplied by k(2n−12)(2n−11)

0 (the latter factor is due to (3.4) and
to the fact that each perfect matching of ADn contains n(n + 1) edges). To carry out the
computation of k1 by hand is a fairly strenuous enterprise, but with the assistance of Maple
it is quite easy. We obtain by (3.6) the following result.

Proposition 3.6 For n ≥ 6 we have

M(AD2n; wtN ) = x8n−16 y16n−44(x2 + y2)24−12n P4n−8M(AD2n−12; wtN ), (3.7)

where P = x6 + 3x4 y2 + 3x2 y4 + y6 + 2x3 + 2xy2 + 1.

We are now ready to present the proof of the main result of this section.

Proof of Theorem 3.1: By Lemma 3.4 we have

T(Dn+1; wt) = y4n+4(x2 + y2)(n+1)2
M(AD2n; wtN )

and

T(Dn−5; wt) = y4n−20(x2 + y2)(n−5)2
M(AD2n−12; wtN ).

Together with (3.7) these two equalities imply (3.1). The stated values for the tiling gener-
ating functions of the first six Aztec dungeons are easily checked using (3.3) and applying
repeatedly the Reduction Theorem to evaluate the weighted perfect matching counts of the
resulting Aztec diamonds.

Remark 3.7 In fact, it turns out that we can further distinguish between the two possible
orientations of the equilateral triangle tile by assigning them distinct weights in our enu-
meration. Indeed, keeping the weight y for the up-pointing equilateral triangle tiles and
assigning weight z to the down-pointing ones, the same calculations as above lead to the
recurrence

T(Dn+1; wt) = x8n−16(yz)8n−10(x6 + 3x4 yz + 3x2 y2z2 + y3z3 + 2x3

+ 2xyz + 1)4n−8 × T(Dn−5; wt),

for n ≥ 5 (where wt denotes now the new weight). Similarly, we obtain the values

T(D0; wt) = 1

T(D1; wt) = x2 + yz
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T(D2; wt) = x2 yzQ

T(D3; wt) = x6(yz)3 Q3

T(D4; wt) = x10(yz)7(x2 + yz)Q5

T(D5; wt) = x16(yz)12 Q8,

where Q := x6 + 3x4 yz + 3x2 y2z2 + y3z3 + 2x3 + 2xyz + 1.
One observes that all above polynomials have the property that the exponents of y and

z in each of their monomials agree. This implies that the same property holds for each
monomial in the expansion of T(Dn; wt), and therefore each tiling of Dn contains the same
number of up-pointing and down-pointing equilateral triangles.

However, the ultimate such generalization that would keep track also of the orientations
of the other two kinds of tiles (six possibilities for each) does not seem to lead to a weighted
count that is expressible by a simple product formula. Indeed, as the Reduction Theorem is
applied successively larger and larger irreducible polynomials occur in the factorization of
the resulting �-factors and their form does not seem to fit a simple pattern.

The key fact that allowed our proof of Theorem 3.1 is the fact that the weight function
obtained by successive applications of the Reduction Theorem repeated—up to a scalar
multiple—after a finite number of applications (in our case twelve).

As mentioned in Remark 3.7, this does not seem to happen if we weight each tile orien-
tation by a different weight. In the following result we present a weight function on Aztec
diamonds that depends on eight free parameters which does have the property that the
weight resulting at the twelfth iteration is a constant times the original weight. The result
originally conjectured by Propp corresponds, via the argument that proved (3.3), to setting
parameters a and b equal to 1/2 and the rest equal to 1.

Consider the 4 × 4 matrix

M =




a d d a

e 0 g e

f h 0 f

b c c b


 .

and the weight wtM it determines on ADn by Definition 3.3.

Theorem 3.8 Let R denote the irreducible polynomial R := abgh+ac f g+bdeh+2cde f .
The matching generating functions of the first twelve Aztec diamonds weighted by wtM are
given by

M(AD0; wtM ) = 1

M(AD1; wtM ) = de

M(AD2; wtM ) = abR

M(AD3; wtM ) = (de)2abghR
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M(AD4; wtM ) = 2(ab)2cde f R3

M(AD5; wtM ) = 2(de)4(abgh)2c f R3

M(AD6; wtM ) = 23(ab)4(cde f )3gh R5

M(AD7; wtM ) = 23(de)7(abgh)4(c f )3 R5

M(AD8; wtM ) = 25(ab)7(cde f )5(gh)3 R8

M(AD9; wtM ) = 25(de)10(abgh)7(c f )5 R8

M(AD10; wtM ) = 28(ab)10(cde f )8(gh)5 R12

M(AD11; wtM ) = 28(de)14(abgh)10(c f )8 R12,

and for higher orders we have the recurrences

M(AD2n; wtM ) = 24n−12(ab)4n−10(cdef )4n−12(gh)4n−16 R4n−8M(AD2n−12; wtM )

(3.8)

and

M(AD2n−1; wtM ) = 24n−16(de)4n−10(abgh)4n−14(c f )4n−16 R4n−12M(AD2n−13; wtM ).

(3.9)

Proof: As we noted in the proof of Proposition 3.6, Lemma 3.5 implies that the successive
weights one obtains when applying the Reduction Theorem repeatedly are the weights
corresponding to the iterates d(i)(M), for i = 1, 2, 3, . . .. The twelfth iterate is again a
constant multiple of M . More precisely, we obtain

d(12)(M) = k2 M, (3.10)

with

k2 = 1

16

(ag + de)2(bh + c f )2(ag + 2de)2(bh + 2c f )2

(abgh + ac f g + bdeh + 2cde f )4
. (3.11)

Since at each application of the Reduction Theorem the order of the resulting Aztec diamond
decreases one unit, it follows that M(ADn; wtM ) differs from M(ADn−12; wtM ) just by a
multiplicative constant, equal to the product of all the cell-factors arising in the twelve
applications of the Reduction Theorem, multiplied by k(n−12)(n−11)

2 (since ADn−12 has (n −
12)(n−11) edges in each perfect matching). The explicit value of this multiplicative constant
depends on the parity of n. (In Proposition 3.6 we were only interested in even orders because
those are the ones that correspond to Aztec dungeons.)

With the assistance of Maple the multiplicative constant is easily determined. It comes
out to be the one shown in (3.8) for n even, and the one in (3.9) for n odd.

Remark 3.9 Recurrence (3.1) explains why there are no new prime factors (in the poly-
nomial ring Z[a, y]) entering the factorizations of T(Dn; wt) for n ≥ 6 besides the ones
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occurring for the first six values of n. However, we do not have an explanation for the
aesthetically pleasing and somewhat mysterious fact that the only prime factors occurring
for n ≤ 5 are the weight indeterminates themselves and the irreducible polynomial P . In-
deed, (3.5) illustrates two other irreducible polynomials that occur as divisors of cell-factors
arising when the Reduction Theorem is applied successively—they specialize to 3 and 5,
respectively, for x = y = 1 (and they are the only other prime divisors of cell-factors aris-
ing in this process). However, as indicated by the initial values stated in Theorem 3.1, both
these prime factors cancel out in the expressions giving T(Dn; wt) for n = 0, 1, . . . , 5—and
hence the only prime factor of the number of tilings of Dn is 13, except for the occurrence
of a single factor of 2 for n = 1 (mod 3).

The same remark applies to recurrences (3.8) and (3.9) and the initial values stated in
Theorem 3.8, as (3.11) indicates four additional potential prime factors—ag +de, bh +c f ,
ag + 2de and bh + 2c f (again, they are the only other prime divisors of cell-factors in this
case)—which, however, cancel out in the expressions of M(ADn; wtM ) for n ≤ 11.

There is another way to place the Aztec diamond contour on the sublattice of rectangles
described at the beginning of this section. Indeed, one can place it so that the resulting
region has no forced tiles. Denote the region obtained this way by En; we will still call it
an Aztec dungeon. Figure 15 illustrates the case n = 4.

Enumerating the tilings of En turns out to be a distinct problem from the case of Dn .
However, as indicated in the next result, the resulting number of tilings is strikingly similar
to that corresponding to Dn . The enumeration of the tilings of En follows by a suitable
specialization of Theorem 3.8, which is thus seen to be a common generalization of the
enumeration of the two kinds of Aztec dungeons.

Theorem 3.10 The number of tilings of the Aztec dungeon En is given by the equalities
T(E0) = 1, T(E1) = 2 · 13, T(E2) = 133, T(E3) = 135, T(E4) = 2 · 138, T(E5) = 1312,

and for n ≥ 5 by the recurrence

T(En) = 134n−8T(En−6).

Figure 15. The Aztec dungeon E4 and its dual graph.
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Figure 16. Applying Lemmas 2.5 and 2.6 to the graph dual to E4.

Proof: Consider the dual graph of En (figure 15 illustrates the case n = 4). Apply
Lemma 2.5 at the (n − 1)2 places indicated by light shading in figure 16, and Lemma 2.6 at
the 4n places indicated in the same figure by a darker shade. By these lemmas, with each
such application the matching generating function changes by a factor of two. The resulting
graph is isomorphic with AD2n+1, and the resulting weight is wtB where

B =




1/2 1/2 1 1

1/2 1/2 1 1

1 1 0 1

1 1 1 0


 .

Therefore we obtain that

T(En) = 2(n+1)2
M(AD2n+1; wtB). (3.12)

The Reduction Theorem and Lemma 3.5 yield, after combining all cell-factors of the thus
weighted AD2n+1, that

M(AD2n+1; wtB) = 2n2−1M
(

AD2n; wtd(B)
)
, (3.13)

where

d(B) =




1 1/2 1/2 1

1/2 0 1 1/2

1/2 1 0 1/2

1 1/2 1/2 1


 .

By specializing a = b = g = h = 1 and c = d = e = f = 1/2, (3.8) becomes

M
(
AD2n; wtd(B)

) = 260−24n134n−8M
(
AD2n−12; wtd(B)

)
. (3.14)
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Using (3.12)–(3.14), T(En) is expressed as a constant times M(AD2n−12; wtd(B)). By (3.13),
the latter can be expressed in terms of M(AD2n−11; wtB), which is in turn, by (3.12), a constant
multiple of T(En−6). The multiplicative constant works out to be 134n−8 and we obtain the
recurrence in the statement of the Theorem. The initial cases follow by specialization, using
(3.12) and (3.13), from the initial cases of Theorem 3.8.

4. Fortresses

B.-Y. Yang [11] considered regions called fortresses on the lattice obtained from the grid
lattice by drawing in all diagonals (figure 17 illustrates the fortress of order 4), and proved,
using the permanent-determinant method [6], that the number of their tilings is either a
power of 5 or 2 times a power of 5.

By applying Lemma 2.5 to the dual graph, enumerating the tilings of a fortress amounts to
finding the matching generating function of an Aztec diamond weighted in a certain pattern
with weights 1 and 1/2. B.-Y. Yang proved in fact a more general result [11], included here
as Corollary 4.3.

However, Yang’s proof is quite complicated and does not explain why a nice factorization
exists. This makes it inviting to look for a combinatorial proof. A combinatorial argument for
the weight relevant to fortress tilings can be found in [2]. We present below a combinatorial
proof of the general case of Yang’s theorem. Our proof also explains why such a nice
factorization is obtained.

Consider the square matrix

A =




x1 y1 1/x1 1/y1 x1 y1 1/x1 1/y1 · · ·
x2 y2 1/x2 1/y2 x2 y2 1/x2 1/y2 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

x2n y2n 1/x2n 1/y2n x2n y2n 1/x2n 1/y2n · · ·




.

Figure 17. The fortress of order 4.
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The weight wtA it defines on ADn according to Definition 3.3 is determined by its
submatrix

T =




x1 y1

x2 y2

· ·
· ·
· ·

x2n y2n




.

For simplicity of notation, rename the weight wtA as yT . Let Si := (x2i−1 y2i−1x2i y2i )1/2,
i = 1, . . . , n. Define r to be the operator sending T to the (2n − 2) × 2 matrix

r(T ) =




x1/S1 S1/y1

x4/S2 S2/y4

x3/S2 S2/y3

x6/S3 S3/y6

x5/S3 S3/y5

· ·
· ·
· ·

x2n−2/Sn−1 Sn−1/y2n−2

x2n−3/Sn−1 Sn−1/y2n−3

x2n/Sn Sn/y2n




.

Yang’s theorem (together with an explanation for why a nice factorization exists) will
follow from our next two results.

Theorem 4.1 For n ≥ 1 we have

M(ADn; yT ) = M
(
ADn−1; yr(T )

) n∏
i=1

�i/Si , (4.1)

for n even, and

M(ADn; yT ) = M
(
ADn−1; yr(T )

) n∏
i=1

�i , (4.2)

for odd n, where �i = x2i−1 y2i + x2i y2i−1, for i = 1, . . . , n.
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Using the above result one can easily prove Yang’s formula by induction, provided the
formula has been conjectured explicitly (it is not difficult to conjecture it based on computer
calculations of the first few cases). However, a conceptual way to obtain the formula is by
using the following observation.

Lemma 4.2 For any 2n × 2 matrix T having rows [xi , yi ], i = 1, . . . , 2n, we have

r(4)(T ) =




x5 y5

x6 y6

x7 y7

· ·
· ·
· ·

x2n−4 y2n−4




.

Proof: This is checked directly from the definition of the operator r (assistance from a
computer algebra package like Maple makes this verification quite easy).

By Lemma 4.2 we are guaranteed that successive application of Theorem 4.1 will only
generate a small number of types of cell-factors and quantities Si (all types appear within
four consecutive applications of Theorem 4.1). We obtain the following result.

Corollary 4.3 (B.-Y. Yang) The matching generating function M(ADn; yT ) can be ex-
pressed as a simple product in the variables xi and yi , i = 1, . . . , 2n.

In our proof of Theorem 4.1 we will employ the following simple observation.

Lemma 4.4 Partition the set of edges of ADn into n + 1 classes as follows. View the set
of edges as forming a 2n × 2n array. For each i = 1, . . . , n − 1 include the edges in rows
2i and 2i + 1 in a class. Let the edges in the first row and those in the 2n-th row form
two more classes. Then every perfect matching of ADn contains precisely n edges in each
class.

Proof: Let µ be a perfect matching of ADn . For each class, consider the set of n vertices
of ADn incident only to edges in that class. These guarantee there will be at least n edges
of µ in each class. The statement follows from the fact that the number of edges in µ is
n(n + 1).

Proof of Theorem 4.1: Suppose n is even. For notational simplicity, we illustrate in detail
the case n = 4. The arguments generalize with no difficulty to general even n.



PERFECT MATCHINGS AND PERFECT POWERS 357

The original weight yT on the edges of our Aztec diamond AD4 can be written out
explicitely as wtB , where

B =




x1 y1 1/x1 1/y1 x1 y1 1/x1 1/y1

x2 y2 1/x2 1/y2 x2 y2 1/x2 1/y2

x3 y3 1/x3 1/y3 x3 y3 1/x3 1/y3

x4 y4 1/x4 1/y4 x4 y4 1/x4 1/y4

x5 y5 1/x5 1/y5 x5 y5 1/x5 1/y5

x6 y6 1/x6 1/y6 x6 y6 1/x6 1/y6

x7 y7 1/x7 1/y7 x7 y7 1/x7 1/y7

x8 y8 1/x8 1/y8 x8 y8 1/x8 1/y8




.

Apply the Reduction Theorem. The derived weight is wtC , with

C =




x1/�1 x1x2 y2/�1 x2 y1 y2/�1 y1/�1 x1/�1 x1x2 y2/�1

x4/�2 x3x4 y3/�2 x3 y3 y4/�2 y4/�2 x4/�2 x3x4 y3/�2

x3/�2 x3x4 y4/�2 x4 y3 y4/�2 y3/�2 x3/�2 x3x4 y4/�2

x6/�3 x5x6 y5/�3 x5 y5 y6/�3 y6/�3 x6/�3 x5x6 y5/�3

x5/�3 x5x6 y6/�3 x6 y5 y6/�3 y5/�3 x5/�3 x5x6 y6/�3

x8/�4 x7x8 y7/�4 x7 y7 y8/�4 y8/�4 x8/�4 x7x8 y7/�4




.

(where as defined in the statement of the theorem, �i = x2i−1 y2i + x2i y2i−1, for i =
1, . . . , 4). Taking into account the cell-factors, the Reduction Theorem yields

M(AD4; wtB) =
4∏

i=1

(x2i−1 y2i + x2i y2i−1)2

(
1

x2i−1 y2i
+ 1

x2i y2i−1

)2

M(AD3; wtC ).

(4.3)

Group the rows of C into 4 blocks corresponding to the partition of edges of AD3 from
Lemma 4.4. By Lemma 4.4 we can scale the blocks to obtain

M(AD3; wtC ) =
4∏

i=1

�−3
i M(AD3; wtD), (4.4)

where

D =




x1 x1x2 y2 x2 y1 y2 y1 x1 x1x2 y2

x4 x3x4 y3 x3 y3 y4 y4 x4 x3x4 y3

x3 x3x4 y4 x4 y3 y4 y3 x3 x3x4 y4

x6 x5x6 y5 x5 y5 y6 y6 x6 x5x6 y5

x5 x5x6 y6 x6 y5 y6 y5 x5 x5x6 y6

x8 x7x8 y7 x7 y7 y8 y8 x8 x7x8 y7




.

This matrix does not yet have the form of B, but can be brought to that form by further
scaling of the blocks defined above. Indeed, what characterizes a matrix of type B = (bi j )
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is that the product bi j bi, j+2 is equal to 1 for all choices of indices for which both entries
are defined. Matrix D = (di j ) does not have this property, but it does have the property
that the products di j di, j+2 are constant—equal to x2i−1 y2i−1x2i y2i —within each block.
Therefore, Lemma 4.4 can be used to bring our matrix to the form of matrix B. With
Si = (x2i−1 y2i−1x2i y2i )1/2, i = 1, . . . , 4, we obtain by Lemma 4.4

M(AD3; wtD) =
4∏

i=1

S3
i M(AD3; wtE ), (4.5)

where

E =




x1/S1 S1/y1 S1/x1 y1/S1 x1/S1 S1/y1

x4/S2 S2/y4 S2/x4 y4/S2 x4/S2 S2/y4

x3/S2 S2/y3 S2/x3 y3/S2 x3/S2 S2/y3

x6/S3 S3/y6 S3/x6 y6/S3 x6/S3 S3/y6

x5/S3 S3/y5 S3/x5 y5/S3 x5/S3 S3/y5

x8/S4 S4/y8 S4/x8 y8/S4 x8/S4 S4/y8




.

By (4.3)–(4.5) we obtain that

M(AD4; wtB) =
4∏

i=1

�i

Si
M(AD3; wtE ).

For general even n, the same argument proves (4.1).
The case of odd n is treated similarly. The only difference is that now the exponents in

the product in (4.3) are (n + 1)/2 and (n − 1)/2, as opposed to both being n/2 when n is
even. Relations (4.4) and (4.5) hold with no change for odd n. One obtains the recurrence
(4.2).

On the square lattice with all square diagonals drawn in there are two types of tiles: a
square tile and a triangular tile. The latter has four different possible orientations.

As it was the case for Aztec dungeons, if we assign different weights to the five oriented
tiles the resulting tiling generating function does not seem to be expressible as a simple
product of low-degree polynomials in the weights. However, if the two triangular tiles
whose hypothenuses face northeast and northwest have the same weight a, and also the two
remaining types have the same weight b, the weighted count is a simple product.

As noted before the statement of Theorem 3.1, there is no loss of generality in assuming
that the weight of the square tiles is 1.

Corollary 4.5 The tiling generating function of a fortress with tiles weighted as described
above is a simple product of quadratic polynomials in a and b.

Proof: The described tiling generating function is clearly the same as the matching gen-
erating function of the dual graph of the fortress, with weights on edges induced by the
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Figure 18. The dual graph of a fortress.
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Figure 19. The natural weight of a fortress.

corresponding tiles (figures 17 and 18 show the fortess of order 4 and its dual graph). By
choosing convenient local graph replacements of the type described in Lemma 2.5, comput-
ing it amounts to finding the matching generating function of an Aztec diamond weighted
with the periodic weight indicated in figure 19. By scaling this weight matrix by

√
2 (with

the effect of multiplying the matching generating function by a power of
√

2), it becomes
of the type addressed in Theorem 4.1. Our statement follows then from Corollary 4.3.

5. Aztec diamonds with yet another weight

We have seen in the previous section a periodic weighting of the Aztec diamond that factors
into small factors. Another such factorization has been found by Stanley ([10]; see also [2])
for the weight pattern




x1 y1 x1 y1 x1 y1 x1 y1 · · ·
x2 y2 x2 y2 x2 y2 x2 y2 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

x2n y2n x2n y2n x2n y2n x2n y2n · · ·




.
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We show in this section that a third weight pattern, namely the one given by the matrix

N =




x1 y1 y1 x1 x1 y1 y1 x1 · · ·
x2 y2 y2 x2 x2 y2 y2 x2 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

x2n y2n y2n x2n x2n y2n y2n x2n · · ·




,

also leads to a simple product formula. A matrix having the form above is determined by
its submatrix

T =




x1 y1

x2 y2

· ·
· ·
· ·

x2n y2n




.

consisting of its first two columns. For notational simplicity, denote the weight wtN by zT .
Let t be the operator sending T to the (2n − 4) × 2 matrix

t(T ) =




1/x4 1/y4

1/x3 1/y3

1/x6 1/y6

1/x5 1/y5

· ·
· ·
· ·

1/x2n−2 1/y2n−2

1/x2n−3 1/y2n−3




.

Let �i = x2i−1 y2i + x2i y2i−1, for i = 1, . . . , n

Theorem 5.1 For n ≥ 1 we have

M(ADn; zT ) = 2n−1
n∏

i=1

�i

2n∏
i=1

i �=2,2n−1

xn/2
i yn/2−1

i M
(

ADn−2; zt(T )
)
, (5.1)
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for n even, and

M(ADn; zT ) = 2n−1
n∏

i=1

�i

2n∏
i=1

i �=2,2n−1

x (n−1)/2
i y(n−1)/2

i M
(
ADn−2; zt(T )

)
, (5.2)

for odd n.

Proof: Suppose first that n is even. As for Theorem 4.1, we illustrate the proof for n = 4.
Our arguments generalize with no difficulty to general even n. The weights on the edges of
AD4 form the pattern

B =




x1 y1 y1 x1 x1 y1 y1 x1

x2 y2 y2 x2 x2 y2 y2 x2

x3 y3 y3 x3 x3 y3 y3 x3

x4 y4 y4 x4 x4 y4 y4 x4

x5 y5 y5 x5 x5 y5 y5 x5

x6 y6 y6 x6 x6 y6 y6 x6

x7 y7 y7 x7 x7 y7 y7 x7

x8 y8 y8 x8 x8 y8 y8 x8




.

Apply the Reduction Theorem. The derived weight is wtC , with

C =




x1/�1 x1/�1 y1/�1 y1/�1 x1/�1 x1/�1

x4/�2 x4/�2 y4/�2 y4/�2 x4/�2 x4/�2

x3/�2 x3/�2 y3/�2 y3/�2 x3/�2 x3/�2

x6/�3 x6/�3 y6/�3 y6/�3 x6/�3 x6/�3

x5/�3 x5/�3 y5/�3 y5/�3 x5/�3 x5/�3

x8/�4 x8/�4 y8/�4 y8/�4 x8/�4 x8/�4




.

The Reduction Theorem gives

M(AD4; wtB) =
4∏

i=1

�4
i M(AD3; wtC ). (5.3)

By Lemma 4.4, we can factor out the denominators along rows to obtain

M(AD3; wtC ) =
4∏

i=1

�−3
i M(AD3; wtD), (5.4)
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where

D =




x1 x1 y1 y1 x1 x1

x4 x4 y4 y4 x4 x4

x3 x3 y3 y3 x3 x3

x6 x6 y6 y6 x6 x6

x5 x5 y5 y5 x5 x5

x8 x8 y8 y8 x8 x8




.

Apply the Reduction Theorem again. All new cell-factors are monomials in the variables.
We obtain

M(AD3; wtD) = 232
4∏

i=1
i �=2,7

x2
i yi M(AD3; wtE ), (5.5)

with

E =




1/(2x4) 1/(2y4) 1/(2y4) 1/(2x4)

1/(2x3) 1/(2y3) 1/(2y3) 1/(2x3)

1/(2x6) 1/(2y6) 1/(2y6) 1/(2x6)

1/(2x5) 1/(2y5) 1/(2y5) 1/(2x5)


 .

By Lemma 4.4, the factors of 1/2 can be factored out, with an overall multiplicative con-
tribution of 1/26. By (5.3)–(5.5) we obtain

M(AD4; zT ) = 23
4∏

i=1

�i

8∏
i=1

i �=2,7

x2
i yi M

(
AD2; zt(T )

)
,

where T is the submatrix of B consisting of its first two columns. For general even n, the
same arguments prove (5.1).

The case when n is odd can be treated similarly. The only difference occurs in (5.5),
where the exponents of xi and yi are now both (n − 1)/2, as opposed to n/2 and n/2 − 1,
respectively, in the case of even n. Therefore, (5.3) and (5.4) imply (5.2).
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Lemma 5.2 For any 2n × 2 matrix T having rows [xi , yi ], i = 1, . . . , 2n, we have

t(2)(T ) =




x5 y5

x6 y6

x7 y7

· ·
· ·
· ·

x2n−4 y2n−4




.

Proof: This is readily checked by the definition of the operator t.

Corollary 5.3 The matching generating function M(ADn; zT ) can be expressed as a simple
product in the variables xi and yi , i = 1, . . . , 2n.

Proof: By Lemma 5.2 and application of Theorem 5.1 two successive times we obtain
that, for n ≥ 4, M(ADn; zT ) is a simple product times M(ADn−4; zT̄ ), where T̄ is the matrix
obtained from T by discarding the first four and last four rows. Repeated application of this
proves the statement of the Corollary.

6. Squares and hexagons

Consider the lattice of squares and hexagons shown in figure 20, and regard it as an infinite
graph H . This graph can naturally be embedded in the square grid, as indicated in figure 21.
Draw an Aztec diamond on the grid (see figure 21; dotted lines indicate portions of the
boundary lying along missing edges).

A natural question to look at is to find the number of perfect matchings of the portion of
the embedding of H that is a subgraph of our Aztec diamond (these subgraphs of H have
a natural definition also on the original squares and hexagons lattice; the example shown
in figure 21 is isomorphic, after removing forced edges, to the subgraph of H indicated in

Figure 20. A lattice of squares and hexagons.



364 CIUCU

Figure 21. Embedding the lattice of figure 20 into a square grid.

figure 20). This is similar to a question posed by Propp and answered by Chris Douglas in
[4].

We present in this section the solution to a weighted generalization of the problem posed
above that keeps track of the orientation of the edges in the perfect matching. As in the
previous sections, the proof will follow by repeated applications of the Reduction Theorem.

For definiteness, let us draw the Aztec diamond contour so that its westernmost edge
belongs to a 4-cycle of H lying outside the contour (this is the way the contour was drawn
in figure 21). Assign weight 1 to the horizontal edges, and weight a to the vertical edges. It
is easy to see that the weight on ADn arising this way is precisely wtA, with period

A =
[

1 0 1 a 1 a

a 1 a 1 0 1

]
.

Theorem 6.1 For all k ≥ 1, M(AD3k ; wtA) = M(AD3k+1; wtA) = (1 + a2)2k(k+1), and
M(AD3k+2; wtA = (1 + a2)2(k+1)2

.

In our proof we will employ the following counterpart of Lemma 4.4.

Lemma 6.2 Partition the set of edges of ADn into n classes as follows. View the set of
edges as forming a 2n × 2n array. For each i = 1, . . . , n include the edges in columns
2i −1 and 2i in a class. Then every perfect matching of ADn contains precisely n +1 edges
in each class.

Proof: Let µ be a perfect matching of ADn . For each class, consider the set of n + 1
vertices of ADn incident only to edges in that class. These guarantee there will be at least
n + 1 edges of µ in each class. Since the number of edges in µ is n(n + 1), the statement
follows.

Proof of Theorem 6.1: Apply the Reduction Theorem. Since all the cell-factors are either
1 or 1 + a2, we obtain

M(ADn; wtA) = (1 + a2)k1 M
(
ADn−1; wtd(A)

)
, (6.1)
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where k1 is a positive integer and

d(A) =
[

1 a/(1 + a2) 1/(1 + a2) a 1 0

a 1/(1 + a2) a/(1 + a2) 1 0 1

]
.

Apply the Reduction Theorem again. All the cell-factors are now equal to 1, so we obtain

M
(
ADn−1; wtd(A)

) = M
(
ADn−2; wtd(2)(A)

)
, (6.2)

where

d(2)(A) =
[

1 a 1/(1 + a2) 0 1 a/(1 + a2)

a 1 a/(1 + a2) 1 0 1/(1 + a2)

]
.

The cell-factors for wtd(2)
(A)

are either 1 + a2 or (1 + a2)−1. One more application of the
Reduction Theorem yields

M
(
ADn−2; wtd(2)(A)

) = (1 + a2)k2 M(ADn−3; wtd(3)(A)), (6.3)

where k2 is an integer and

d(3)(A) =
[

1/(1 + a2) 0 1 a 1 + a2 a/(1 + a2)

a/(1 + a2) 1 + a2 a 1 0 1/(1 + a2)

]
.

Lemma 4.4 clearly holds also when partitioning the edges of an Aztec diamond into vertical
blocks. Apply this version of Lemma 4.4 to the weight pattern wtd(3)(A) we have on ADn−3.
Factor out from every third vertical block, starting with the leftmost one, a factor of (1 +
a2)−2; leave all other blocks unchanged. By Lemma 4.4 we obtain

M
(
ADn−3; wtd(3)

(A)

) = (1 + a2)k3 M(ADn−3; wtB), (6.4)

where k3 is an integer and

B =
[

1 + a2 0 1 a 1 + a2 a(1 + a2)

a(1 + a2) 1 + a2 a 1 0 1 + a2

]
.

View B as consisting of three 2 × 2 blocks. By Lemma 6.2, scaling the entries within a
block has a simple multiplicative effect on the matching generating function. Factoring out
the constants 1 + a2, 1 and 1 + a2, respectively, the resulting scaled matrix is precisely our
original matrix A. We obtain by Lemma 6.2 that

M(ADn−3; wtB) = (1 + a2)k4 M(ADn−3; wtA), (6.5)

where k4 is an integer.
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By (6.1)–(6.5) we obtain, after working out the explicit values of k1, . . . , k4 that

M(ADn; wtA) = (1 + a2)αn M(ADn−3; wtA),

where α3k = α3k+1 = 4k, and α3k+2 = 4k + 2. Repeated application of this proves the
Theorem.

7. The Aztec dragon

Consider the lattice of hexagons, squares and equilateral triangles illustrated in figure 22.
Propp [8] considered a family of regions Rn called Aztec dragons on this lattice (R6 is
outlined in figure 22) and conjectured that the number of their tilings is 2n(n+1). This was
first proved, in work not yet published, by Ben Wieland (as announced in [8]). In this section
we use the Reduction Theorem to obtain a weighted version of this result.

There are two types of tiles. Since each hexagon must be paired with a square, and each
triangle also with a square, the number of tiles of each type is constant across all tilings of a
given dragon. Thus, our weighted version (Theorem 7.1 below) will not concern the natural
weight in the original set-up, but a certain other weight that is natural once we rephrase the
problem.

Let R′
n be the region obtained from Rn by including n square-triangle tiles along its

northwestern boundary, as indicated in figure 23. Clearly, these tiles are forced to be part
of any tiling of the enlarged region. Enumerating the tilings of Rn is equivalent therefore to
enumerating tilings of R′

n .
As in the previous sections, consider the dual graph of R′

n (for n = 6 this is pictured
in figure 24). It is easy to see that this graph can be deformed isomorphically to the one
illustrated in figure 25.

Furthermore, by employing the “vertex-splitting” trick (see e.g. Lemma 1.3 of [1]), the
latter graph is readily seen to have its perfect matchings identified with those of the graph

Figure 22. The Aztec dragon R6.
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Figure 23. The region R′
6.

Figure 24. The dual graph of R′
6.

in figure 26 (this figure should be regarded as a subgraph of the grid graph; in particular, it
has vertices at the midpoints of the segments of length 2).

However, the graph we obtained this way is just the periodic weighting wtA of the Aztec
diamond AD2n , with

A =




1 1 1 1

1 0 1 1

0 1 1 1

1 1 1 1


 .

Therefore, we have

T(Rn) = M(AD2n; wtA). (7.1)



368 CIUCU

Figure 25. An isomorphic deformation.

Figure 26. A subgraph of AD12.

One can also regard the obtained graph (shown in figure 26 for n = 6) as a subgraph of
AD2n . Weight the vertical edges in this subgraph by 1, and the horizontals by a, i.e. consider
the weight wtB on AD2n , where

B =




a 1 a 1

1 0 1 a

0 1 a 1

1 a 1 a


 .
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Theorem 7.1 M(AD2n; wtB) = (1 + a2)n(n+1).

Corollary 7.2 T(Rn) = 2n(n+1).

Proof: This follows from (7.1) and the case a = 1 of Theorem 7.1.

Proof of Theorem 7.1: By applying the Reduction Theorem twice and collecting cell-
factors one obtains

M(AD2n; wtB) = �3n−1M(AD2n−2; wtC ), (7.2)

where � = 1 + a2 and C = d(2)(B) is the matrix

C =




a 1 a/� 1/�

� 0 1 a

0 � a 1

1 a 1/� a/�


 .

By Lemma 4.4, we can factor out 1/� from the first and last rows of C to obtain

M(AD2n−2; wtC ) = (
(1/�)2n−2

)n
M(AD2n−2; wtD), (7.3)

where

D =




a� � a 1

� 0 1 a

0 � a 1

� a� 1 a


 .

In turn, by Lemma 6.2 we can factor out � from the first two columns of D to get

M(AD2n−2; wtD) = (
�2n−1

)n−1
M(AD2n−2; wtB). (7.4)

By (7.2)–(7.4) we obtain the recurrence

M(AD2n; wtB) = �2nM(AD2n−2; wtB).

Repeated application of this proves the statement of the Theorem.
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Figure 27. The region B13.

Remark 7.3 The number 2n(n+1) of perfect matchings of the above subgraph of AD2n is
approximately equal to the square root of the total number 2n(2n+1) of perfect matchings of
the full AD2n .

8. Powers of 3

We have seen in the previous sections families of (unweighted) graphs whose number
of perfect matchings are perfect or near-perfect powers of the base 2, 5 or 13. What
about 3? Matt Blum has considered (as described in an e-mail message to James Propp dated

Figure 28. A deformation of the lattice.
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Figure 29. B13 with forced edges removed.

December 1997) a family of subgraphs of the square grid for which he noticed (from data
on concrete cases) that the number of perfect matchings seems to be always a power of 3
or twice a power of 3. We prove in this section that this is indeed the case.

Consider, following Blum, the sublattice of the square grid lattice showed in figure 27
and view it as an infinite graph S. Draw the boundary of an Aztec diamond of order n on this
lattice in such a way that the easternmost edge has an embedded hexagon east of it. Let Bn

be the induced subgraph of S spanned by the vertices lying inside or on the Aztec diamond
boundary (the graph inside the larger contour in figure 27 is B13). An alternative way to
view Bn is as a subgraph of the lattice showed in figure 28, which is just a deformation
of the lattice considered by Blum (the graph obtained from B13 after removing the forced
edges is shown in this guise in figure 29).

Table 1. The first thirty values of T(Bn).

n T (Bn) Factorization n T (Bn) Factorization

1 1 1 16 531441 312

2 2 2 17 43046721 316

3 6 2 · 3 18 10460353203 321

4 6 2 · 3 19 10460353203 321

5 6 2 · 3 20 10460353203 321

6 6 2 · 3 21 10460353203 321

7 27 33 22 7625597484987 327

8 486 2 · 35 23 5559060566555523 333

9 486 2 · 35 24 5559060566555523 333

10 486 2 · 35 25 5559060566555523 333

11 486 2 · 35 26 5559060566555523 333

12 6561 38 27 24315330918113857602 2 · 340

13 531441 312 28 79766443076872509863361 348

14 531441 312 29 79766443076872509863361 348

15 531441 312 30 79766443076872509863361 348
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Theorem 8.1 For n ≥ 31 we have

M(Bn) = 34xn M(Bn−30), (8.1)

where x5k+1 = 4k − 12, x5k+2 = 4k − 10 and x5k+3 = x5k+4 = x5k+5 = 4k − 8, k ≥ 6.

The values of M(Bn) for n = 1, . . . , 30 are given in Table 1. By (8.1) one obtains that
M(Bn) is either a perfect power of 3 or twice a perfect power of 3, for all n.

Proof: The graph Bn is the periodic weighting of ADn with period indicated by the
dashed contour in figure 17. Rotating the indicated subgraph by 180◦ (due to our choice of
the “base” edge being easternmost), we read off the period to be the 20 × 20 matrix

A =




1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1

0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1

1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1

0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1

0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0

1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0




.

By Lemma 3.5, the periodic weightings arising by successive applications of the Reduc-
tion Theorem have periods given by the orbit of A under the operator d defined in Section 3.
Using a computer algebra program (for instance Maple) one can easily compute d(i)(A) for
successive values of i . One finds that all entries of d(30)(A) are either 0 or integer powers
of 9, with the position of the zeroes matching perfectly the positions of the zeros of A. The
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exponents of 9 form the pattern




4 1 −2 −1 −∞ −1 −∞ 1 −∞ 0 −∞ −1 −∞ 1 −∞ 1 2 −1 −4 0

1 −∞ −1 −∞ −1 −2 1 4 0 −4 −1 2 1 −∞ 1 −∞ −1 −∞ 0 −∞
−2 −1 −∞ −1 −∞ 1 −∞ 0 −∞ −1 −∞ 1 −∞ 1 2 −1 −4 0 4 1

−1 −∞ −1 −2 1 4 0 −4 −1 2 1 −∞ 1 −∞ −1 −∞ 0 −∞ 1 −∞
−∞ −1 −∞ 1 −∞ 0 −∞ −1 −∞ 1 −∞ 1 2 −1 −4 0 4 1 −2 −1

−1 −2 1 4 0 −4 −1 2 1 −∞ 1 −∞ −1 −∞ 0 −∞ 1 −∞ −1 −∞
−∞ 1 −∞ 0 −∞ −1 −∞ 1 −∞ 1 2 −1 −4 0 4 1 −2 −1 −∞ −1

1 4 0 −4 −1 2 1 −∞ 1 −∞ −1 −∞ 0 −∞ 1 −∞ −1 −∞ −1 −2

−∞ 0 −∞ −1 −∞ 1 −∞ 1 2 −1 −4 0 4 1 −2 −1 −∞ −1 −∞ 1

0 −4 −1 2 1 −∞ 1 −∞ −1 −∞ 0 −∞ 1 −∞ −1 −∞ −1 −2 1 4

−∞ −1 −∞ 1 −∞ 1 2 −1 −4 0 4 1 −2 −1 −∞ −1 −∞ 1 −∞ 0

−1 2 1 −∞ 1 −∞ −1 −∞ 0 −∞ 1 −∞ −1 −∞ −1 −2 1 4 0 −4

−∞ 1 −∞ 1 2 −1 −4 0 4 1 −2 −1 −∞ −1 −∞ 1 −∞ 0 −∞ −1

1 −∞ 1 −∞ −1 −∞ 0 −∞ 1 −∞ −1 −∞ −1 −2 1 4 0 −4 −1 2

−∞ 1 2 −1 −4 0 4 1 −2 −1 −∞ −1 −∞ 1 −∞ 0 −∞ −1 −∞ 1

1 −∞ −1 −∞ 0 −∞ 1 −∞ −1 −∞ −1 −2 1 4 0 −4 −1 2 1 −∞
2 −1 −4 0 4 1 −2 −1 −∞ −1 −∞ 1 −∞ 0 −∞ −1 −∞ 1 −∞ 1

−1 −∞ 0 −∞ 1 −∞ −1 −∞ −1 −2 1 4 0 −4 −1 2 1 −∞ 1 −∞
−4 0 4 1 −2 −1 −∞ −1 −∞ 1 −∞ 0 −∞ −1 −∞ 1 −∞ 1 2 −1

0 −∞ 1 −∞ −1 −∞ −1 −2 1 4 0 −4 −1 2 1 −∞ 1 −∞ −1 −∞




.

(8.2)

Denote the matrix (8.2) by B = (bi j )1≤i, j≤20 (the position corresponding to a zero of A is
recorded in B by −∞).

The form of B suggests the following generalization of our original weight period A.
Consider the matrix A(q) = (ai j (q))1≤i, j≤20 given by

ai j (q) = qbi j , 1 ≤ i, j ≤ 20,

with the convention that q−∞ = 0. By construction, A(1) is our original weight period A.
Applying the operator d successively thirty times to A(q) (a simple task with the aid of

Maple), we obtain

d(30)(A(q)) = A(9q). (8.3)

Therefore, by the Reduction Theorem and Lemma 3.5 we obtain that M(ADn; wtA(q)) is
equal to M(ADn−30; wtA(9q)) multiplied by a product of cell-factors. The latter product
is obtained multiplying together all cell-factors from the (thirtyfold!) application of the
Reduction Theorem. With the assistance of Maple it is not hard to find this product explicitly.
One obtains

M
(
ADn; wtA(q)

) = 34yn M
(

ADn−30; wtA(9q)
)
, n ≥ 31, (8.4)

where y10k+1 = 8k − 13, y10k+2 = y10k+6 = 8k − 9, y10k+3 = y10k+7 = 8k − 7, y10k+4 =
y10k+5 = 8k − 8, y10k+8 = 8k − 5 and y10k+9 = y10k+10 = 8k − 4, for k ≥ 3.
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Table 2. The first thirty values of M(ADn ; wtA(q)).

n M(ADn ; wtA(q)) Factorization n M(ADn ; wtA(q)) Factorization

1 q2 q2 16 531441q2 312q2

2 2q−2 2q−2 17 43046721q2 316q2

3 6q−2 2 · 3q−2 18 10460353203q2 321q2

4 6 2 · 3 19 10460353203 321

5 6 2 · 3 20 10460353203 321

6 6q2 2 · 3q2 21 10460353203q2 321q2

7 27q2 33q2 22 7625597484987q−2 327q−2

8 486q2 2 · 35q2 23 5559060566555523q−2 333q−2

9 486 2 · 35 24 5559060566555523 333

10 486 2 · 35 25 5559060566555523 333

11 486q2 2 · 35q2 26 5559060566555523q2 333q2

12 6561q−2 38q−2 27 24315330918113857602q2 2 · 340q2

13 531441q−2 312q−2 28 79766443076872509863361q2 348q2

14 531441 312 29 79766443076872509863361 348

15 531441 312 30 79766443076872509863361 348

Recurrence (8.4) determines M(ADn; wtA(q)) for all n provided we know it for n ≤ 30.
This can be easily found using Maple to carry out successive applications of the Reduction
Theorem. One obtains the values in Table 2. These clearly specialize to the values in Table 1
when q = 1. It is straightforward to check that for q = 1 recurrence (8.4) and these initial
values imply (8.1).

9. Concluding remarks

As mentioned in the proof of Theorem 6.1, a result analogous to Lemma 4.4 holds for the
columns of the edge-weight array. It is easy to see that together with Lemma 6.2 this analog
of Lemma 4.4 implies that single columns of the edge-weight array can be scaled with a
simple multiplicative effect on the matching generating function of a periodically weighted
Aztec diamond. The same is true for the rows of the edge-weight array.

A natural equivalence relation arises this way on the set of period matrices. In order to
obtain a recurrence for the values M(ADn; wtA), it is enough to find an iterate d(k)(A) in the
equivalence class of A.

Sometimes it is useful to have an alternative approach, as illustrated in the proof of
Theorem 8.1, where it was crucial for the proof that we first generalized the original weight—
by introduction of the parameter q. This larger class of matrices had the desired property
that a convenient iterate (the thirtieth) was in the same class, yielding thus a recurrence.

All the problems treated in this paper led, in their unweighted form, to periodic weightings
of Aztec diamonds with periods given by certain 0–1 even by even matrices (except for
the case of Aztec dungeons and fortresses, when entries equal to 1/2 also arise). A natural
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problem to consider would be to classify the 0–1 matrices that give rise to nice enumeration
results when regarded from the point of view of the approach described in this paper. Two
ways for this to come about are mentioned in the previous two paragraphs. Given the
similarity of the examples considered in Sections 6 and 8, one natural starting point would
concern sublattices of the square grid obtained by deleting parallel edges in some more
general simple pattern.
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Notes

1. Indeed, the statement of Theorem 2.3 clearly applies when H is an arbitrary subgraph of the square grid. By
performing “vertex splittings” (see e.g. [1]) if necessary, any planar bipartite graph can be viewed as a subgraph
of the square grid, with unaffected matching generating function.

2. In figure 2(d) the graph H ′ is indeed an induced weighted subgraph, with the missing edges weighted by 0 (see
the definition of the derived weight wt′).
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