
Journal of Algebraic Combinatorics, 17, 323–334, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

On Trees and Characters

AVITAL FRUMKIN frumkin@math.tau.ac.il
Sackler School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

GORDON JAMES g.james@ic.ac.uk
Department of Mathematics, Imperial College of Science, Technology and Medicine, 180 Queen’s Gate,
London SW7 2BZ, England

YUVAL ROICHMAN∗ yuvalr@math.biu.ac.il
Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

Received December 1, 2000; Revised January 8, 2002

Abstract. A new family of trees, defined in term of Young diagrams, is introduced. Values of central characters
of the symmetric group are represented as a weighted enumeration of such trees. The proof involves a new
decomposition theorem for representations corresponding to general shapes.
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1. Introduction

Throughout this paper the base field is of characteristic zero. Let λ and µ be partitions of n,
let Sλ be the corresponding symmetric group irreducible representation, and let χλ

µ be the
value of its character at a conjugacy class of cycle type µ. The central character is defined
by

cλ
µ := |Cµ| · χλ

µ

χλ
(1n )

,

where |Cµ| is the size of the conjugacy class of cycle type µ. The central characters of
the symmetric group are integer valued. The goal of this paper is to give a combinatorial
interpretation to the value of the central characters of cycles cλ

(k,1n−k ).
A new family of graphs is introduced. For any subset D of boxes in a given Young

diagram [λ] (or: of elements in the lattice Z2), define a Young graph, � = �(D), as follows:
�(D) is the graph whose set of vertices is D, where there is an edge between two boxes in
D iff they are in the same row or column, and there is no box of D between them. In other
words, ((i1, j1), (i2, j2)) ∈ D×2 is an edge iff one of the following two conditions holds:
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(i) i1 = i2, and there is no j3 such that j1 < j3 < j2 and (i1, j3) ∈ D;
(ii) j1 = j2, and there is no i3 such that i1 < i3 < i2 and (i3, j1) ∈ D.

If the resulting graph is a tree we call it a Young tree. The order of a Young graph (tree) is
the number of vertices in the graph.

The edges in a Young graph � are either horizontal or vertical (where the Young diagram
is drawn in the British way; i.e. λ1 is the length of the first upper row etc.). Denote the
number of vertical edges in � by vert(�). We define the sign of � as

sign(�) := (−1)vert(�).

A simple path in � is a connected subgraph contained in one row or column. The length of
the path p, denoted by 	(p), is the number of edges in p. A simple path p in a Young graph
� is a maximal simple path if no simple path in � strictly contains p (as a subgraph). The
weight of a Young tree T is the product

weight(T ) :=
∏

p is a maximal simple path in T

	(p)!

where the product is taken over all maximal simple paths in T .
Let cλ

k := cλ
(k,1n−k ) be the central character of Sλ evaluated at the conjugacy class of cycles

of length k. Generalizing Suzuki’s method for computing the characters of 3-cycles [12]
we prove

Theorem For any k ≤ n and any partition λ 
 n,

cλ
k =

∑
{T | T is a Young tree of order k in [λ]}

sign(T ) · weight(T ).

For example, all trees of order 2 consist of one edge, which is either horizontal or
vertical. The weight of all these trees is 1. Hence, cλ

2 is equal to the number of horizontal
edges in the Young diagram [λ] minus the number of vertical edges in [λ], which is equal to∑

i (
λi

2
) − ∑

j (
λ′

j

2
), where λ′

j is the length of the j-th column. This is a well known special
case of the Frobenius Trace formula [2, 4].

The proof of the main theorem combines techniques from graph theory and from the (or-
dinary) representation theory of the symmetric group. In particular, it involves generalized
Specht modules, which were introduced in [6] and further studied in [8].

The rest of the paper is organized as follows. Basic properties of central characters
are described in Section 2. In Section 3 two lemmas are stated. The main theorem is an
immediate consequence of these lemmas. The first lemma connects the computation of
central characters to weighted enumeration of Young graphs. This lemma is proved in
Section 4. the second lemma shows that it suffices to consider Young trees. This lemma is
proved in Section 6. The proof applies a new decomposition theorem for generalized Specht
modules which is presented in Section 5.
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2. Central characters

This section contains basic lemmas on central characters of ordinary representations, most
of them are well-known.

2.1. Central characters of IC groups

In this subsection the base field is C. Let G be a finite group, let C be a conjugacy class in
G. Let ϕ be a representation of G, χϕ(C)—the character of ϕ at C , and dϕ = χϕ(id)—the
degree of ϕ. The central character of ϕ at C is

cϕ(C) := |C | · χϕ(C)

dϕ

.

The following lemma is an immediate consequence of Schur’s lemma. See e.g. ([9] Lemma
4.1, [7] Theorem 8.2.1) and references therein.

Lemma 2.1 Let G be a finite group and let ρ be the regular representation of G. Then for
any conjugacy class C in G the eigenvalues of the matrix

ρ

( ∑
g∈C

g

)

are all central characters of the irreducible representations evaluated at C.

Proof:
∑

g∈C g is a central element in the group algebra C[G]. By Schur’s lemma this
element acts as a scalar matrix on each irreducible representation ϕ. The scalar of this matrix
is equal to

Trace
( ∑

g∈C ϕ(g)
)

dϕ

= 1

dϕ

∑
g∈C

χϕ(g) = |C | · χϕ(C)

dϕ

.

An IC group is a group whose characters are integer valued (see e.g. [11], p. 473).

Corollary 2.2 The central characters of any finite IC group are integers.

Proof: By Lemma 2.1, the central characters are eigenvalues of an integer matrix. Hence,
the central characters (of any finite group) are algebraic integers, and thus they are integers
whenever they belong to Q. On the other hand, by definition the central characters of an IC
group are rational.

In particular, the symmetric group is an IC group. Hence, its central characters are integers.
An independent proof of this assertion is given in the next subsection.
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2.2. Central characters of the symmetric group

From now on the base field C may be replaced by any other field of characteristic zero.
Recall a few basic notions from the representation theory of the symmetric group (cf. [5]).
The Young symmetrizer of a Young tableau Q is the element in the group algebra C[Sn]
defined by

eQ :=
∑

p∈Qr ,q∈Qc

sign(q)pq,

where Qc is the subgroup in Sn consisting of column preserving permutations, and Qr is
the subgroup of row preserving permutations.

The left Sn-module C[Sn]eQ is irreducible. For any given partition λ, different tableaux
of shape λ define isomorphic left modules. The notation Sλ is referring to any module
isomorphic to C[Sk]eQ , where Q is of shape λ. Sλ is called the Specht module of shape λ.
The set consisting of one Specht module for each partition of n is a full set of irreducible,
inequivalent representations over C. Denote the central character of Sλ by cλ.

The following lemma is used by Suzuki to compute the irreducible characters of 3-cycles
[12]. Suzuki attributes it to the anoymous referee of [1].

Lemma 2.3 Let Q be a given Young tableau of shape λ. The central character cλ
µ is equal

to the coefficient of the identity in

( ∑
g∈Cµ

g

)
· eQ,

where Cµ is the conjugacy class of permutations of cycle type µ.

Proof: By Lemma 2.1,

( ∑
g∈Cµ

g

)
· eQ = cλ

µ · eQ .

The coefficient of the identity in eQ is 1. The desired result follows.

For any 2 ≤ k ≤ n let Ck be the conjugacy class of the k-cycles, and let cλ
k be the central

character of Sλ at Ck . It follows from Lemma 2.3 that

Corollary 2.4 For any Young tableau Q of shape λ, and any 2 ≤ k ≤ n

cλ
k =

∑
{(p,q) | p∈Qr ,q∈Qc,pq∈Ck }

sign(q).
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3. Proof of the main theorem

The support of a permutation π ∈ Sn , supp(π ), is the set of non-fixed letters under the
action of π . For any permutation π ∈ Sn and any Young tableau Q of order n define

�Q(π ) := the Young graph whose set of vertices is the subset

of boxes in Q, labeled by the letters of supp(π ).

Denote by T λ
k the set of all Young trees of order k in the Young diagram [λ]. By Corol-

lary 2.4, in order to prove the main theorem it suffices to prove the following two comple-
mentary lemmas:

Lemma 3.1 For any Young tableau Q of shape λ∑
{(p,q) | p∈Qr ,q∈Qc,pq∈Ck ,�Q (pq)∈T λ

k }
sign(q) =

∑
{T | T ∈T λ

k }
sign(T ) · weight(T ).

Lemma 3.2 For any Young tableau Q of shape λ∑
{(p,q) | p∈Qr ,q∈Qc,pq∈Ck ,�Q (pq)/∈T λ

k }
sign(q) = 0.

The following easy fact is helpful.

Fact 3.3 Let Q be a Young tableau, and let p ∈ Qr and q ∈ Qc. If �Q(pq) is not connected
then pq is not a cycle.

It follows that in order to prove Lemma 3.2 it suffices to prove the following.

Lemma 3.4 In the above notations:∑
{(p,q) | p∈Qr ,q∈Qc,pq∈Ck ,�Q (pq) is connected and not a tree}

sign(q) = 0.

4. Proof of Lemma 3.1

Let λ = (λ1, . . . , λt ) be a partition of n. For any subset D of k boxes in the Young
diagram [λ] let ri (D) be the number of boxes of D in the i-th row of [λ], and let µr (D) be
the partition of k obtained by reordering the numbers r1(D), . . . , rt (D). Define, similarly,
ci (D) to be the number of boxes of D in the i-th column of [λ], and µc(D) to be the
partition of k obtained by reordering these numbers. For a Young graph � = �(D) denote
µr (�) := µr (D) and µc(�) := µc(D). For a given λ-tableau Q and a subset S ⊆ {1, . . . , n}
denote µr

Q(S) := µr (D) and µc
Q(S) := µc(D), where D is the subset of boxes in [λ], which

are labeled by S.
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Lemma 4.1 Let T be a Young tree of order k in a Young diagram [λ], and let Q be a
Young tableau of shape λ. For any pair (p, q), p ∈ Qr , q ∈ Qc with �Q(pq) = T, the
following holds:

pq is a k-cycle iff p is of cycle type µr (T ) and q is of cycle type µc(T ).

Proof: By induction on the number of edges in T . Clearly, if T consists of one edge the
lemma holds. Assume that the lemma holds for all trees of k edges. Let T be a tree of k + 1
edges, and let D = T \ {x} be a subtree of T of k edges, where x is a vertex of degree one
(“a leaf”) in T . We may assume that x is connected to D by a unique horizontal edge (y, x),
where y ∈ D. The proof for a vertical edge is similar.

Assume that p ∈ Qr , q ∈ Qc, �Q(pq) = T and that p is of cycle type µr (T ). We will
show that pq is a k-cycle. By definition,

�Q(pq) = T ⇔ supp(pq) = Q(T ),

where Q(T ) := {Q(v) | v ∈ T } is the set of labels of vertices of T in the given tableau
Q. Also, for any p ∈ Qr and q ∈ Qc, supp(pq) = Q(T ) implies that supp(p) ⊆ Q(T ).
Combining this together with the assumption that p ∈ Qr is of cycle type µr (T ) implies
that there exists a permutation p1 of cycle type µr (D) with supp(p1) ⊆ Q(D), and a
transposition γ = (Q(y), Q(x)) such that

p = γ p1.

In this case, for any q ∈ Qc,

supp(pq) = Q(T ) ⇒ supp(p1q) = Q(D).

By the induction hypothesis, p1q is a (k − 1)-cycle in Sn . On the other hand, |supp(γ ) ∩
Q(D)| = |supp(γ ) ∩ supp(p1q)| = 1. Hence, γ p1q = pq is a k-cycle.

For the opposite direction, for any p ∈ Qr and q ∈ Qc

supp(p) ⊆ supp(pq).

Hence, if p is not of cycle type µr
Q(supp(pq)) then there is a row in the subset of boxes

labeled by supp(pq), such that the action of p on it consists of at least two cycles. Then,
since there are no cycles in �Q(pq), the action of pq on supp(pq) consists of at least two
cycles. By definition, there is no fixed point of pq in supp(pq). Hence, pq consists of at
least two cycles of length >1. In particular, pq is not a k-cycle. Similarly, for q whose cycle
type is not µc

Q(supp(pq)).

Corollary 4.2 For any Young tree T of order k
(i) weight(T ) = #{(p, q) | p ∈ Qr , q ∈ Qc, pq ∈ Ck, �Q(pq) = T }

(ii) For any pair (p, q) which appears in the set of the RHS of (i)

sign(T ) = sign(q).
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Proof: Any pair (p, q) in the set

{(p, q) | p ∈ Qr , q ∈ Qc, pq ∈ Ck, �Q(pq) = T }

satisfies the conditions of Lemma 4.1. Hence, pq is a k-cycle iff p is of cycle type µr (T )
and q is of cycle type µc(T ). The number of pairs of permutations with these cycle types
(and a given support) is weight(T ). This proves (i). The sign of and q of cycle type µc(T )
is sign(T ). This proves (ii).

Lemma 3.1 is an immediate consequence of Corollary 4.2.

5. Decomposition theorem

A generalized diagram of order k is a subset D ⊆ Z2 of k lattice points (i.e., |D| = k).
We say that Q is a D-tableau if the points in D are replaced by the letters 1, . . . , k with no
repeats.

For any D-tableau Q of order k let Qc be the subgroup in Sk of column preserving
permutations, and let Qr is the subgroup of row preserving permutations. Define

rQ :=
∑
p∈Qr

p.

cQ :=
∑
p∈Qc

sign(q)q.

eQ := rQ · cQ =
∑

p∈Qr ,q∈Qc

sign(q)pq.

Then eQ is the Young symmetrizer of Q, and C[Sk]eQ is a left module for Sk . For any
given D ⊆ Z2 different D-tableaux define isomorphic left ideals. Hence, we can adopt the
notation SD , referring to any module isomorphic to C[Sk]eQ , where Q is a D-tableau, and
call it the generalized Specht module associated with D. Denote its character by χ D .

The concept of generalized Specht modules was introduced in [6]. In this section consider
its decomposition into irreducible modules.

For every generalized diagram D ⊆ Z2 let width (D) be the number of nonempty columns
in D, and let height (D) be the number of nonempty rows. For a D-tableau Q let width
(Q) := width(D) and height(Q) := height(D).

Lemma 5.1 For every diagram D ⊆ Z2 if

width(D) + height(D) − 1 < |D|,

then no hook character χ (m,1|D|−m ) appears in the decomposition of χ D into irreducible
characters.
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Proof: Let Q be a D-tableau, and let k := |D|. Assume that there is a composition factor
of shape (m, 1k−m) in C[Sk]eQ . Then there exists

J ⊆ C[Sk]eQ, (5.1)

where J is a left ideal of C[Sk] which gives an irreducible module for the partition (m, 1k−m).
Left P be a tableau of shape (m, 1k−m). Then there exists a C[Sk]-isomorphism ϑ from

C[Sk]eP to J . By Maschke’s Theorem, there is a left ideal K of C[Sk] with C[Sk] =
C[Sk]ep ⊕ K , so ϑ may be extended to be a C[Sk]-homomorphism from C[Sk] to J , by
letting ϑ be zero on K . Let r := ϑ(1). Then

ϑ(eP ) = ePϑ(1) = ePr.

In particular,

J = C[Sk]ePr

and ePr �= 0.
It is well known that e2

P is a non-zero multiple of eP (wherever P is a Young tableau
whose shape is a partition). Therefore,

eP J = ePC[Sk]ePr �= 0. (5.2)

Combining (5.1) and (5.2) we obtain

ePC[Sk]eQ �= 0.

Equivalently,

rP cPC[Sk]rQcQ �= 0. (5.3)

Therefore,

rPC[Sk]cQ �= 0.

Hence, for some tableau Q′ of same shape as Q

rP cQ′ �= 0. (5.4)

This implies that the letters in the first row of P appear in different columns of Q′. In
particular,

width(P) ≤ width(Q′) = width(Q).

Similarly, (5.3) gives

cPC[Sk]rQ �= 0.

Hence, for some tableau Q′′ of same shape as Q

cPrQ′′ �= 0. (5.5)
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This implies that the letters in the first column of P appear in different rows of Q′′. In
particular,

height(P) ≤ height(Q′′) = height(Q).

We conclude that

k + 1 = m + (k − m + 1) = width(P) + height(P)

≤ width(Q) + height(Q) < k + 1.

Contradiction.

For any set D ⊆ Z2 define the height partition h(D) = (h1(D), h2(D), . . .) by

hi (D) := number of rows in D with at least i boxes.

Similarly, the width partition w(D) = (w1(D), w2(D), . . .) is defined by

wi (D) := number of columns in D with at least i boxes.

Note that h(D) = µr (D)′ and w(D) = µc(D)′, where µr (D) and µc(D) are defined as in the
beginning of Section 4, and µ′ is the conjugate of the partition µ. Let � be the dominance
order on partitions. Namely, λ � µ iff for all i

∑i
j=1 λ j ≤ ∑i

j=1 µ j . Generalizing the proof
of Lemma 5.1 gives

Theorem 5.2 For any generalized diagram D ⊆ Z2 the following holds:
If the irreducible character χν appears as a composition factor of χ D then

h(D)′ � ν � w(D),

where h(D)′ is the conjugate of the height partition h(D), and w(D) is the width partition.

Proof: Let Q be a D-tableau and let P be a Young tableau of shape ν. By (5.4) there is
a D-tableau, Q′, for which, for any j , the letters in the j-th row of P appear in different
columns of Q′. This implies that for any i

i∑
j=1

ν j ≤
i∑

j=1

w j (D).

Similarly, by (5.5), for some D-tableau Q′′ the letters in the j-th column of P appear in
different rows of Q′′. Hence, for any i

i∑
j=1

ν ′
j ≤

i∑
j=1

h j (D).

Implying ν ′ � h(D), or equivalently, h(D)′ � ν.
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Note: The classical Littlewood-Richardson rule, which provides a combinatorial
method for decomposing outer products of Specht modules, gives, as well, the compo-
sition series for Specht modules of skew shapes (cf. [6], Theorem 3.1; [11], (7.60)). A
characteristic free version was given in [6], and extended by Reiner and Shimozono [8] to
column-convex shapes. In particular, Theorem 5.2 for column-convex shapes is a conse-
quence of ([8], Theorem 1).

6. Proof of Lemma 3.4

For any subset D of boxes in a Young diagram [λ], let its width, width(D), be the number
of nonempty columns in D, and let the height, height(D), be the number of nonempty rows
in D. Recall the definition of the graph �(D) (where either D ⊆ [λ] or D ⊆ Z2) from
Section 1.

Lemma 6.1 Let D be a subset in a Young diagram, whose Young graph �(D) is connected.
Then �(D) is not a tree iff

width(D) + height(D) − 1 < |D|.

Proof: First, note that for any subset D ⊆ [λ], whose Young graph is connected, width (D)
+ height(D) − 1 ≤ |D|. The lemma states that equality holds iff �(D) is a tree.

The lemma is proved by induction on the order of D. If |D| = 1 the lemma is obvious.
Assume that the lemma holds for all subsets of [λ] of cardinality less than k. Let D be a

subset of order k. Consider two complementary cases:

(1) �(D) is connected but not a tree. Let x ∈ D be a box which lies in a cycle of �(D).
Adding x to the set D\x adds zero to the total number of rows and columns, in which
boxes of the subset appear. Note that this number is equal to the sum of the width and
the height. By the induction hypothesis we are done.

(2) �(D) is a tree. Let x ∈ D be a leaf in �(D). Then D = T ∪ x , where �(T ) is a tree
of order k − 1. There are two options: There are vertices of T in the row of x , but
no vertices of T in its column. Or: there are vertices of T in the column of x , but no
vertices in its row. In both cases, adding x to the set T adds one to the total number of
rows and columns. Hence,

width(D) + height(D) = width(T ) + height(T ) + 1 = |T | = |D| − 1.

The second equality follows from the induction hypothesis.

The following lemma is well known.

Lemma 6.2 ([10], Lemma 4.10.3) Let λ be a partition of k, which is not of hook shape.
Then

χλ
k = 0,

where χλ
k is the value of the character of Sλ at cycles of length k.
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Lemma 6.3 Let D ⊆ Z2 be a set of order k, and let Q be a D-tableau. If �(D) is
connected but not a tree then

∑
{(p,q)∈S×2

k | p∈Qr ,q∈Qc,pq∈Ck }
sign(q) = 0.

Proof: Let ρQ be the Sk-representation C[Sk]eQ . By Schur’s lemma, ρQ(
∑

g∈Ck
g) is

diagonalizable, and its spectrum consists of the central characters of the irreducible repre-
sentations, which appear in the decomposition of ρQ , evaluated at k-cycles (see Proof of
Lemma 2.1).

�(D) is not a tree. Hence, by Lemma 6.1 width(D)+height(D)−1 < |D|. It follows from
Lemma 5.1 that no hooks appear in the decomposition of ρQ into irreducibles. Combining
this with Lemma 6.2 shows that all eigenvalues of ρQ(

∑
g∈Ck

g) are zero. It follows that

( ∑
g∈Ck

g

)
· eQ = ρQ

( ∑
g∈Ck

g

)
eQ = 0.

In particular, the coefficient of the identity in (
∑

g∈Ck
g)eQ is zero. Namely,

∑
{(p,q)∈S×2

k | p∈Qr ,q∈QC ,pq∈Ck }
sign(q) = 0.

Corollary 6.4 Let P be a Young tableau of shape λ, and let D be a subset of k boxes in
the Young diagram [λ]. If �(D) is not a tree then

∑
{(p,q)∈S×2

n | p∈Pr ,q∈Pc,pq∈Ck ,�P (pq)=�(D)}
sign(q) = 0.

Proof: Let Sk(D) be the symmetric group on the letters P(D) = {P(v) | v ∈ D}. Let
Q be the restriction of P on the subset D, i.e., Q is the D-tableau, in which for any
v ∈ D, Q(v) := P(v).

For any p ∈ Pr and q ∈ Pc, supp(p) ⊆ supp(pq) and supp(q) ⊆ supp(pq). Hence,
�P (pq) = �(D) implies that p ∈ Qr and q ∈ Qc. On the other hand, for any p ∈ Qr and
q ∈ Qc, if pq is a k-cycle then �P (pq) = �(D). Therefore,

∑
{(p,q)∈S×2

n | p∈Pr ,q∈Pc,pq∈Ck ,�P (pq)=�P (D)}
sign(q)

=
∑

{(p,q)∈Sk (D)×2 | p∈Qr ,q∈Qc,pq∈Ck }
sign(q) = 0.

The last equality follows from Lemma 6.3.
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Lemma 3.4 follows: ∑
{(p,q) | p∈Qr ,q∈Qc,pq∈Ck,n ,�Q (pq) is connected and not a tree}

sign(q)

=
∑

{D | D⊆[λ] and |D|=k}

∑
{(p,q) | p∈Qr ,q∈Qc,pq∈Ck ,�Q (pq)=�Q (D)}

sign(q) = 0.
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