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Abstract. We give a new, purely combinatorial characterization of geometries E with diagram

c.F4(1) : ◦ ◦ ◦ ◦ ◦c

1 2 2 1 1

identifying each under some “natural” conditions—but not assuming any group action a priori—with one of the
two geometries E(Fi22) and E(3 · Fi22) related to the Fischer 3-transposition group Fi22 and its non-split central
extension 3 · Fi22, respectively. As a by-product we improve the known characterization of the c-extended dual
polar spaces for Fi22 and 3 · Fi22 and of the truncation of the c-extended 6-dimensional unitary polar space.
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Introduction

In this article we carry on the classification project started in [5] of geometries E with
diagram

c.F4(t) : ◦ ◦ ◦ ◦ ◦c1 2 3 4 5

1 2 2 t t
where t = 1, 2, or 4,

(types are indicated above the nodes). We do not assume that E is necessarily flag-transitive
but instead that it satisfies the Interstate Property and the following two conditions.

(I) (a) Any two elements of type 1 in E are incident to at most one common element of
type 2.

(b) Any three elements of type 1 in E are pairwise incident to common elements of type
2 if and only if all three of them are incident to a common element of type 5.

It was shown in [5] that for t = 4 there exists a unique such geometry, which is flag-transitive
with automorphism group isomorphic to the Baby Monster sporadic simple group F2. Here
we deal with the case t = 1. There are two examples E(Fi22) and E(3 · Fi22) of such
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geometries admitting flag-transitive actions of the Fischer 3-transposition group Fi22 and
its non-split central extension 3 · Fi22, respectively. Both examples possess the property that
their collinearity graph is locally isomorphic to the commuting graph of central involutions
in the group �+

8 (2) and one of our main results is

Theorem 1 Let E be a flag-transitive c.F4(1)-geometry such that the collinearity graph of
E is locally the commuting graph of central involutions in �+

8 (2). Then E is isomorphic
either to E(Fi22) or to E(3 · Fi22).

In order to prove Theorem 1, we establish and study the relationships of E(Fi22) and
E(3 · Fi22) with other geometries of Fi22 and 3 · Fi22. Precisely, we construct geometries
G and B with diagrams

◦ ◦ ◦ ◦c

1 2 2 2
,

and

◦ ◦ ◦S3,6,22

14 4 2
,

respectively, and try to characterize those instead of E . In Theorem 2 (cf. Section 7) we prove
that if G satisfies certain properties, which hold if it comes from a geometry like E satisfying
(I), and if B satisfies the Intersection Property (IP) then G belongs to the group Fi22. From
this we derive in Theorem 3 (cf. again Section 7) a group-free version of Theorem 1.

We recall that (IP) is the following property (where X is a geometry containing a set of
elements P(X ) called “points” and, for any object y ∈ X , P(y) denotes the set of points
incident to y).

(IP) For any y, z ∈ X , P(y) ∩ P(z) = P(u) for some u ∈ X and P(y) = P(z) if and only
if y = z.

To understand the rest of the paper, it will be useful to have some knowledge about the
different geometries for Fi22 and 3 · Fi22 and about the relationships between them. This
information will be provided in Sections 2 and 3. In Section 1 we review some general results
on c.F4(1)-geometries. The remaining Sections 4 to 7 contain, respectively, the construction
from E to G, the characterizations of G and B, and the proofs of Theorems 1, 2, 3.

We emphasize again that all our proofs and constructions will be purely combinatorial
and that we do not assume any group-action. However, for some lemmas we have much
easier and shorter proofs in the case of flag-transitivity and for the interested reader we
supply them in the appendix.

1. Some general results on c.F4(1)-geometries

In this section, we review some general results on c.F4(1)-geometries satisfying (I).
In what follows E denotes a c.F4(1)-geometry satisfying (I) and E i denotes the set of

elements of type i in E .
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Figure 1. The suborbit diagram of � related to �+
8 (2) : �3.

Let F = F4(1) be the building with diagram

F4(1) : ◦ ◦ ◦ ◦◦
2 2 1 1

and flag-transitive automorphism group F ∼= �+
8 (2) : �3. The elements from left to right

on the diagram of F4(1) will be called points, lines, planes, and symplecta, respectively. By
[15, 10.14] F can be defined as follows.

Let D = D4(2) be the D4-building with automorphism group F∞ ∼= �+
8 (2). Let the

types of objects of D be labelled by the integers 1, 2, 3, 4 where 2 corresponds to the central
node in the Dynkin diagram. Then the points of F are the objects of type 2 in D, the lines
are the flags of type {1, 3, 4} in D, the planes are the flags of types {1, 3}, {1, 4}, and {3, 4},
and the symplecta are the objects of D whose type is unequal to 2. A point is incident to
another element of F if their union is a flag in D and incidence between lines, planes, and
symplecta is defined by inclusion.

Let � be the collinearity graph ofF4(1) (i.e., the graph on the set of points in which two of
them are adjacent if they are incident to a common line). Then the vertices of � (the points of
F4(1)) can be identified with the central involutions in F in such a way that two involutions
p, q are adjacent if and only if p ∈ O2(CF (q)) (equivalently q ∈ O2(CF (p))). The suborbit
diagram of � with respect to the action of F is given in figure 1 (cf. [5, figure 2]).

If q ∈ �\{p} then the order of the product pq is 2, 2, 4, and 3 for q ∈ �1(p), �2
2 (p),

�4
2 (p), and �3(p), respectively. In particular, p commutes with q ∈ �\{p} if and only if

q ∈ �1(p) ∪ �2
2 (p).

Let � denote the graph on the vertex set of � in which two vertices p and q are adjacent
if q ∈ �1(p) ∪ �2

2 (p). In other terms, � is the commuting graph of the central involutions
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in F . The following result was established in [5, Lemmas 3.1 and 3.3]. (Recall that a graph
X is said to be locally Y if for any vertex x ∈ X the subgraph induced on the neighbourhood
X (x) of x in X is isomorphic to the graph Y .)

Lemma 1.1 Let � = �(E) be the graph on the set of elements of type 1 in E in which two
of them are adjacent if they are incident to a common element of type 2. Then � is locally
� and every graph which is locally � is �(E) for some c.F4(1)-geometry E satisfying (I ).

Thus studying the geometries E is equivalent to studying the graphs � which are
locally �.

In what follows � stands for �(E). The elements of type i in E can be identified with
certain complete subgraphs in � on 1, 2, 4, 8, and 36 vertices for i = 1, 2, 3, 4, and 5,
respectively, so that the incidence relation is via inclusion. If x ∈ � then by (1.1) we can
fix a bijection ix from �(x) onto the vertex set of � which induces an isomorphism from
the subgraph of � induced on �(x) onto �.

The graph � contains an important family of subgraphs which can be described as follows.
Let 	̃ be the graph on the set of elements of type 2 in E (equivalently the graph on the set of
edges of �) where two such elements are adjacent if they are incident to a common element
of type 3 but not to a common element of type 1 (i.e., their (disjoint) union is a clique of
size four in �). For e ∈ E2 let 	̃e be the connected component of 	̃ containing e and let 	e

be the subgraph in � induced on the set of vertices incident to those edges of � which are
the vertices of 	̃e. Then by Proposition 5.2 and Lemma 5.3 in [5] we have the following
(where a graph X is called a 2-clique extension of a graph Y if there exists a mapping ψ

from the vertex set of X onto the vertex set of Y such that |ψ−1(y)| = 2 for every y ∈ Y and
two distinct vertices x1, x2 in X are adjacent if and only if their images ψ(x1) and ψ(x2)
are either equal or adjacent in Y ).

Lemma 1.2
(i) 	̃e is the complement of the collinearity graph of the generalized quadrangle of order

(3, 3) associated with the group U4(2).2 ∼= Sp4(3).2 and has the suborbit diagram

✒✑
�✏

1
27 1 8 18✎

✍
�
✌27

6 + 12 ✎
✍

�
✌12

9

S3 � S3 23.S3 31+2.22

.
(ii) 	e is the 2-clique extension of 	̃e.

The following lemma will be needed in Section 4.

Lemma 1.3 Let K := 	̃e be a connected component of 	̃ and let C ⊆ K be a clique of
size 8. Then any vertex in K\C is incident to at least four vertices in C.
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Proof: By (1.2) we can identify K with the graph on the 40 points of the generalized
O5(3)-quadrangle GQ(4, 3) in which two points are adjacent if they are not incident to
a common line. So any line of GQ(4, 3) can contain at most one point from C . Hence,
as any point from GQ(4, 3) is incident to exactly 4 lines, it can be collinear to at most 4
points from C which implies that it must be adjacent in K to at least 8 − 4 = 4 vertices
of C .

The next result (Lemma 7.2 in [5]) describes possible intersections of the subgraphs 	e.

Lemma 1.4 Let e = {x, y}, f = {x, z} be distinct elements of type 2 in E and set � :=
	e ∩ 	 f . Then the following assertions hold:

(i) if ix (z) ∈ �1(ix (y)) then |�| = 16 and z ∈ 	e;
(ii) if ix (z) ∈ �2

2 (ix (y)) then |�| = 10 and |�(z) ∩ 	e| = 20;
(iii) if ix (z) ∈ �4

2 (ix (y)) then |�| = 2 and |�(z) ∩ 	e| = 7;
(iv) if ix (z) ∈ �3(ix (y)) then |�| = 1 and �(z) ∩ �(x) ∩ 	e = ∅.

Recall that a µ-graph in a graph X is a subgraph X (x, y) induced on the set of com-
mon neighbours of two vertices x and y at distance 2 in X . We will say that a 2-path
(x, z, y) in � is of D6- or D8-type if iz(y) ∈ �3(iz(x)) or iz(y) ∈ �4

2 (iz(x)), respectively.
In the next two lemmas we summarize the results on µ-graphs established in Section
6 in [5].

Lemma 1.5 Let (x, z, y) be a 2-path of D8-type in �. Then
(i) there is a unique edge e = {x, v} incident to x such that y is contained in 	e;

(ii) �(x, y) ∩ 	e is a connected component of �(x, y) of size 36.

Set p := ix (v), � := ix (�(x, y) ∩ 	e), and let I be the stabilizer of � in F := Aut(�).
Then
(iii) I stabilizes p, contains O2(Fp), and I ∼= 21+8

+ .31+2.22;
(iv) I has two orbits (� and its complement) with lengths 36 and 18 on �1(p), two orbits

on �4
2 (p) with lengths 288 and 576, and acts transitively on �2

2 (p) and on �3(p);
(v) if r ∈ �\�3(p) and r = ix (u) for some u ∈ � then r is adjacent in � to a vertex from

� and hence the distance from y to u in � is at most 2;
(vi) if w ∈ �(x, y)\	e then (x, w, y) is of D6-type and ix (w) ∈ �3(p).

Lemma 1.6 Let (x, z, y) be a 2-path of D6-type and let � be the connected component
containing z of the µ-graph �(x, y). Then � is the complete 4-partite graph K4×3 on 12
vertices. The stabilizer of ix (�) in F induces the full automorphism group of � isomorphic
to �3 � �4.

1.1. The residue of an element of type 5

In this short subsection we state some facts about the residue of an element of type 5 in E .
These facts will be useful in Section 4. The reader can verify them by direct calculations.
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If x ∈ E5 then resE (x) is isomorphic to the geometry H with diagram

◦ ◦ ◦ ◦c1 2 3 4

1 2 2 1

and flag-transitive automorphism group H := Sp6(2) (cf. [5]). There are several ways how
to describe the geometry H and its relation to the symplectic polar space P(Sp6(2)) of H
but the one which is most suitable for our purpose is probably the one in the context of
affinization.

Let O: = O+
8 (2) and let V be an 8-dimensional GF(2)-vector space equipped with a

non-degenerate quadratic form q of plus-type which is preserved by O . Let � be the graph
on V with edges

E(�) := {{u, v} | u, v ∈ V, q(u + v) = 0}.

Then the intersection array of � is

✒✑
�✏

1

63
1135 64 72✎

✍
�
✌135

14 + 56 ✎
✍

�
✌120

For v ∈ V and i ≥ 0, we denote as usual by �i (v) the set of vertices at distance i from v

in �. Set �i := �i (0) (where 0 is the zero vector in V ). Then �1 consists of the isotropic
and �2 of the non-isotropic vectors in V \{0}.

The automorphism group of � is a semidirect product Aut(�) = 28.O ∼= 28.O+
8 (2) and

O = Aut(�)0 is the stabilizer of 0 in Aut(�). If v ∈ �2 then

Aut(�)0 ∩ Aut(�)v = Ov
∼= Sp6(2)

(cf. [1]). So we can consider H as the stabilizer in Aut(�)0 of a fixed vector v ∈ �2 and we
will do this from now on.

For i, j ∈ {1, 2}, set �i j := �i ∩ � j (v). Then |�11| = 72 by the intersection array of
� and from the properties of orthogonal and symplectic groups one can calculate that the
intersection array of �11 is

✒✑
�✏ ✎

✍
�
✌ ✒✑

�✏✎
✍

�
✌1 35 35 1

35 1

18

16 16

18

1 35

In particular, there exists a natural pairing on �11 in 36 pairs. (These pairs are of the
shape {u, u + v}, u ∈ �11, and the two vectors in a pair are at distance 3 in �11.)

For u ∈ �11, let ū be the pair containing u and let �̄11 be the graph whose vertices and
edges are the images under ¯ of the vertices and edges of �11. Then �̄11 is the complete
graph on 36 vertices. We take the vertices and edges of �̄11 as the objects of H of type 1 and
2, respectively. The elements of type 4 in H are all the 8-cliques in �̄11 which are images of
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8-cliques in �11 and the elements of type 3 are those 4-cliques which are contained in more
than one 8-clique. The incidence relation on H is defined by inclusion. Then one can show
that H has the desired diagram. Notice that the 8-cliques in �11 are the maximal cliques in
�11 and that they correspond to maximal totally isotropic subspaces of V .

One can show that each edge and each 4- or 8-clique of �̄11 which is an object of
H corresponds to a totally isotropic 1-, 2-, or 3-dimensional subspace of V consisting
only of vectors in {0} ∪ �12. Furthermore, disjoint edges which are contained in a 4-clique
correspond to the same vector in �12 and disjoint 4-cliques which are contained in a common
8-clique (where all are assumed to be objects of H) determine the same 2-space.

For i = 2, 3, define a graph �i on the set of objects of type i inH in which two such objects
are adjacent if they are incident to a common element of type i + 1 but not to a common
element of type 1. For x ∈ Hi denote by �x

i the connected component of � containing x .
LetP be the rank 3 geometry whose objects of types 1 and 2 are, respectively, the connected
components of �2 and �3 and whose objects of type 3 are the objects of type 4 in H. For i ∈
{2, 3} and x ∈ Hi , denote by �x

i the connected component of �i containing x . Define y j ∈
P j , j = 1, 2, to be incident inP if there are xi ∈ Hi , i = 2, 3, such that y j = �

x j+1

j+1 and x2, x3

are incident in H. Define y j and z ∈ P3 to be incident if y j = �x
j+1 for some x ∈ resH(z).

Then in view of the previous paragraph one can show

Lemma 1.7
(i) P ∼= P(Sp6(2)) and P has the diagram

◦ ◦ ◦1 2 3

2 2 2
.

(ii) Each connected component of �2 has 10 vertices and the connected components of �3

are cliques of size 3.

2. Geometries E(Fi22) and E(3 · Fi22)

In this section we describe two c.F4(1) geometries denoted E(Fi22) and E(3 · Fi22) which
satisfy (I). Existence of E(Fi22) was first noticed by D.V. Pasechnik. In [5] E(Fi22) is
described in terms of the Baby Monster graph � and we start with a review of that descrip-
tion. By G we denote the sporadic simple group Fi22 and by Ĝ := G : 2 its extension by a
nontrivial involutory outer automorphism.

Recall that the vertices of � are the {3, 4}-transpositions in the Baby Monster group
F2. Two vertices are adjacent if their product is a central involution in F2. For a ∈ �, let
F2(a) = CF2 (a) ∼= 2.2 E6(2).2 be the stabilizer of a in F2 and let �i (a) be the set of vertices at
distance i from a in �. Then the diameter of � is 3, b ∈ �\{a} commutes with a if and only
if b ∈ �1(a) ∪ �3(a), F2(a) acts transitively on �1(a) and �3(a) and has two orbits �3

2(a)
and �4

2(a) on �2(a) with stabilizers Fi222 and 21+20.U4(3).22, respectively (if b ∈ �m
2 (a)

then the product ab is of order m). Let b ∈ �3
2(a) and let � be the subgraph in � induced by

�3(a) ∩ �3(b). Then � is a connected component of the subgraph in � induced on the set
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of vertices fixed by the order 3 element ab. Furthermore, � has 61 776 vertices, it is locally
�—the commuting graph of central involutions in �+

8 (2) : �3, and F2(a)∩ F2(b) ∼= Fi22.2
acts transitively on the vertex set of � with vertex stabilizer isomorphic to �+

8 (2) : �3 × 2.
By (1.1) this implies that � = �(E) for a c.F4(1)-geometry E = E(Fi22) satisfying (I).

Alternatively, � can be defined as a graph on the set of 2D-involutions in Ĝ ∼= Fi22.2
in which two such involutions are adjacent if and only if they commute. We recall that the
class 2D consists of outer involutions.

In [4] the subdegrees of Ĝ acting on � and the corresponding intersection numbers are
calculated. Taking � as the connected component of the subgraph in the Baby Monster
graph induced on the set of vertices fixed by an element of order 3 and in view of (1.5)(iv)
one gets the suborbit diagram of � given in figure 2 (notice that Ĝ(x) induces the full
automorphism group of the local graph �(x) ∼= � with kernel of order 2).

The Schur multiplier of Fi22 is of order 6. Let G̃ ∼= 3 · Fi22.2 be the non-split extension
of Fi22.2 by a normal subgroup of order 3. Let �̃ be the graph on the conjugacy class of invo-
lutions in G̃ which maps onto vertices of � under the natural homomorphism ϕ : G̃ → Ĝ.
Two involutions in �̃ again are adjacent if and only if they commute. As CG̃(O3(G̃)) = G̃ ′

and the class 2D consists of involutions in Ĝ\G, the involutions in �̃ are not centralized
by O3(G̃). From this it is easy to check that ϕ induces a covering ψ : �̃ → � such that
each triangle from � lifts under ψ to a triangle of �̃. This means that �̃ is also locally
� and by (1.1) �̃ = �(E(3 · Fi22)) for a c.F4(1)-geometry E(3 · Fi22) satisfying (I) and
possessing a covering onto E(Fi22). Since one knows the orbits of G(x, y) on �(x) for x, y
at distance two in �̃ from (1.5) and (1.6) one can deduce from the suborbit diagram of �

that the suborbit diagram of �̃ with respect to the action of G̃ is the one given in figure 3.
Every flag-transitive automorphism group of F4(1) contains �+

8 (2) and the latter acts
primitively on the set of points in F4(1). From this fact it is easy to deduce that (I)(a) holds
for every flag-transitive c.F4(1)-geometry. On the other hand, there exists a large class of
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Figure 2. The suborbit diagram of �related to Fi22.
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Figure 3. The suborbit diagram of �̃ related to 3 · Fi22.2.

c.F4(1)-geometries which do not satisfy (b). This class includes flag-transitive as well as
not flag-transitive examples. The easiest such example can be constructed as follows.

Consider the action of G = Fi22 on the set �̂ of cosets of a subgroup �+
8 (2) : 3 (which

is an index 2 subgroup in the vertex stabilizer of the action of G on �). Then it is easy to
check that the action has two symmetric subdegrees of length 1575. Moreover, if �̂1 and �̂2

are the corresponding orbital graphs then (up to renumbering) an edge of �̂i is contained
in 54 and 144 triangles for i = 1 and 2, respectively. Then �̂1 is the collinearity graph of a
c.F4(1)-geometry in which (b) fails.

Another class of examples comes from representations of F4(1). A separable �+
8 (2)-

admissible representation of F4(1) is a group R and an injective mapping ϕ from the point
set of F4(1) into the set of involutions of R such that R = 〈Imϕ〉 and that ϕ(p)ϕ(q)ϕ(r ) = 1
whenever {p, q, r} is a line of F4(1). The term �+

8 (2)-admissibility means that the action
of every g ∈ �+

8 (2) on the point set of F4(1) can be extended to an automorphism of R.
Let �(R, ϕ) be the Cayley graph of R with respect to Imϕ. Then �(R, ϕ) is the collinearity

graph of a c.F4(1)-geometry for which (b) fails. It follows from the definition of F4(1) that
the group �+

8 (2) itself can be taken as R. In this case ϕ is the identity map. But we can
also take the universal non-abelian representation which is non-trivial (since F4(1) contains
geometric hyperplanes) (cf. [13]) and contains, for instance, a 26-dimensional quotient
isomorphic to the exterior square of the natural module of �+

8 (2). Certain quotients of the
26-dimensional module provide non-flag-transitive examples.

In general, if a representation is �+
8 (2)-admissible then the corresponding c.F4(1)-

geometry is flag-transitive, if not we can obtain non-flag-transitive examples. By the way,
we do not know what is the universal representation of F4(1) and whether it is finite or
infinite.

3. Some related geometries of Fi22

In this section we review some other geometries of G ∼= Fi22 and their relationships and
characterizations (compare [7]). We start with the description of the 3-transposition graph
of G.

The group Fi22 contains a conjugacy class (2A in notation of [1]) of 3 510 involutions
possessing the property that the order of the product of any two of them is 1, 2, or 3. The
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involutions in 2A are called 3-transpositions and the 3-transposition graph of G is defined
as the graph A with vertices the set of 2A-involutions in G and edges the set of all pairs of
commuting involutions. The full automorphism group of A is Aut(A) = Ĝ ∼= Fi22.2 and
the suborbit diagram with respect to the action of Ĝ is the following.

✒✑
�✏

1
693 1 512 126✎

✍
�
✌693

180 ✎
✍

�
✌2816

567

2.U6(2).2 22+8.U4(2).2 U4(3).22

The graph A is locally the collinearity graph of the polar space P(U6(2)) of U6(2). In
particular, the maximal cliques in A are of size 22. If K is such a clique, then the involutions
in K generate an elementary abelian subgroup Q of order 210. The normalizer of Q in Ĝ
coincides with the setwise stabilizer Ĝ[K ] of K and Ĝ[K ] ∼= 210.M22.2. The action of
Ĝ[K ] preserves on K a unique Steiner system S := S(K ) of type S(3, 6, 22). If K1 and
K2 are distinct cliques with non-empty intersection then K1 ∩ K2 is a vertex, an edge, or a
6-clique which is a block in S(K1) and in S(K2).

Let F be the geometry whose elements of type 1, 2, 3, and 4 are the vertices, the edges,
the 6-cliques contained in more than one maximal clique, and the maximal cliques in A;
the incidence is defined by inclusion. Then F belongs to the following diagram.

◦ ◦ ◦ ◦c

1 4 4 2

1 2 3 4

It is easy to see that every graph which is locally the collinearity graph of P(U6(2)) leads
to a geometry with the above diagram. The following characterization was established in
[10, 11] (earlier the result was proved in [9] under the assumption of flag-transitivity).

Lemma 3.1 Up to isomorphism A is the only graph which is locally the collinearity graph
of P(U6(2)).

Let F̃ be a geometry with the above diagram. Suppose that the residue of any element
of type 1 in F̃ is isomorphic to the polar space of U6(2) and that the collinearity graph Ã
of F̃ is locally the collinearity graph of P(U6(2)). Then Ã ∼= A by (3.1). Since F can be
uniquely reconstructed from A by taking the maximal cliques (which are of size 22), the
6-cliques which are contained in more than one maximal clique, the edges and the vertices
of A as objects of F of types 4, 3, 2, 1, respectively, and defining incidence by inclusion
we also get F̃ ∼= F . This gives the following

Corollary 3.2 Up to isomorphism F is the only geometry with diagram

◦ ◦ ◦ ◦c

1 4 4 2

1 2 3 4

in which the residue of any element of type 1 is isomorphic toP(U6(2)) and whose collinear-
ity graph is locally the collinearity graph of P(U6(2)).
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Figure 4. The suborbit diagram of �, the graph on elements of type 4 in F(Fi22).

Let � be the graph on the set of elements of type 4 in F (the maximal cliques in A) in
which two of them are adjacent if they are incident to a common element of type 3 (intersect
in a 6-clique). Then � is of valency 154 = 2 · 77, every edge is in a unique triangle, and if
u ∈ � corresponds to a 22-clique K then the 77 triangles of � containing u are naturally
indexed by the blocks of the Steiner system S(K ). By [4, 2.17(iv)] the suborbit diagram of
� is the one given in figure 4.

The truncation of F by the elements of type 1 is a geometry FT with diagram

◦ ◦ ◦S3,6,22

14 4 2

1 2 3
where ◦ ◦S3,6,22

14 4

denotes the geometry on the 231 pairs and the 77 blocks of the Steiner system S(3, 6, 22)
with incidence defined by inclusion. Obviously, � is equal to the graph on the set of elements
of type 3 in FT in which two such elements are adjacent if they are incident to a common
element of type 2.

Finally, G acts flag-transitively on a geometry G which is a c-extension of the dual polar
space of the symplectic group Sp6(2), i.e., which has the diagram

(c.C∗
3 ) : ◦ ◦ ◦ ◦c1 2 3 4

1 2 2 2
.

The residue of an element of type 4 in G is the c.C2-geometry of U4(2). In the flag-transitive
case we have the following characterization of G ([7, (5.3)]).

Lemma 3.3 Let H be any flag-transitive c.C∗
3 -geometry with c.C2-residues belonging to

U4(2) and let H ≤ Aut(H) be flag-transitive. Then either H ∼= G and H ∼= Fi22 or Fi22.2
or H ∼= 3.G and H ∼= 3 · Fi22 or 3 · Fi22.2 (non-split extensions).

Let � be the collinearity graph of G, i.e., the graph with vertices V (�) = G1 and edges
E(�) = G2. By [4, 2.17(v)] the suborbit diagram of � is as in figure 5.
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Figure 5. The suborbit diagram of �, the collinearity graph of G(Fi22).

The characterization of G in [7] was achieved by recovering the geometry FT and the
graph � from G and we will partly follow those lines here. On a first step, we will construct
a c.C∗

3 -geometry G with c.C2-residues belonging to U4(2) from the geometry E we actually
want to determine. Then we will show that we can recover a geometry with the same diagram
as FT from G. However, since in our case neither this geometry nor G must necessarily be
flag-transitive this will not suffice to determine G (or E). We will even have to reconstruct
the geometry F resp. the graph A, so that finally we can appeal to (3.1) resp. (3.2).

Most of our constructions will require far more subtle arguments than the flag-transitive
case. A crucial role in the determination of some of the graphs and geometries constructed in
the sequel will be played by the following characterization of not-necessarily flag-transitive
rank 3 P-geometries by Hall and Shpectorov [3].

Lemma 3.4 Suppose P is a P-geometry with diagram

◦ ◦ ◦P1 2 3

1 2 2

such that
(1) any two different elements of type 2 are incident to at most one common element of

type 3;
(2) any three elements of type 3 which are pairwise incident to a common element of type

2 are all incident to a common element of type 1.
Then P is either the 2-local geometry of the group M22 or the geometry of the group
3·M22.

Throughout the rest of the paper we denote the Petersen geometries for M22 and 3·M22

by P22 and 3P22, respectively.
For any P-geometry P , the derived graph of P is defined as the graph on the set of

elements of type 1 in P in which two elements are adjacent if they are incident to a common
element of type 2 (see e.g. [8, p. 27, 308]). We denote the derived graphs of P22 and 3P22

by �22 and 3�22, respectively. The intersection arrays of �22 and 3�22 are presented in
[8, p. 27].
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4. The reduction from E to G

In this section we achieve the first step in our characterization of c.F4(1)-geometries E , i.e.,
we show how to construct a c.C∗

3 -geometry G with c.C2-residues belonging to U4(2) from
E . For this purpose it will be useful to define three graphs on the sets of objects of E of
types 2, 3, and 5, respectively.

The first graph is the analogue of the graph 	̃ described in the introduction and it will
be denoted by the same letter. So 	̃ is the graph with vertices V (	̃) := E2 and edges all
the pairs {x, y} ⊆ E2 such that x and y are incident to a common element of type 3 but
not to a common element of type 1. Similary, �̃ is the graph with vertices V (�̃) := E3 and
edges all the pairs {x, y} ⊆ E3 with x, y incident to a common element of type 4 but not
to a common element of type 1. (Equivalently, in terms of the collinearity graph � of E ,
x, y are two disjoint 4-cliques which come from elements of type 3 and whose union is an
8-clique coming from an element of type 4 in the residue of both of them.) Finally, � is the
graph with vertices V (�) := E5 and edges all the pairs {x, y} ⊆ E5 such that x and y are
incident to a common element in E4.

For x ∈ E2 (resp. E3) let 	̃x (resp. �̃x ) denote the connected component of 	̃ (resp. �̃)
containing x . It will be convenient later to introduce also the subgraphs 	x and �x of �

induced on the sets of vertices of � which are incident in E to vertices of 	̃x resp. �̃x .

Lemma 4.1 Let �̃x , x ∈ E3, be a connected component of �̃. Then |V (�̃x )| = 4. For
i = 4, 5, set �̃x,i := {y ∈ E i | y ∈ res(z) for some z ∈ V (�̃x )}. Then |�̃x,4| = 6,

|�̃x,5| = 4, and the subgraph of � with vertices �̃x,5 and edges �̃x,4 is the complete graph
on 4 vertices.

Proof: By the diagram of E we can write res(x) ∩ E4 = {y1, y2, y3} and res(x) ∩ E5 =
{z1, z2, z3} where the numeration is chosen in such a way that yi , y j ∈ res(zk) for all
triples {i, j, k} = {1, 2, 3}. Let xi , i = 1, 2, 3, be the unique neighbour of x in �̃ de-
termined by yi . Then we see in res(zk) that y3+k := xi ∪ x j is an element in E4. Let
z4 ∈ E5 ∩ res(y4) ∩ res(y5) (z4 exists by the structure of res(x3)). Then x1, x2 ∈ res(z4), too,
and there must be an element in y ∈ E4 incident to x1, x2, and z4. But x1, x2 are both already
incident to three elements in {y1, . . . , y6}. So y = y6 and this easily implies the assertion
(cf. the picture below).
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Now we can define the geometry G. The sets of objects of G are the four sets

G1 := E5, G2 := E4, G3 := {�̃x | x ∈ E3}, and G4 := {	̃x | x ∈ E2}.

The incidence relation on G is defined as follows: Between elements of G1,G2 we take
the incidence relation induced from E . An element x ∈ G1 ∪G2 is incident to an element
y ∈ G3 ∪G4 if y = �̃z (resp. 	̃z) for some z ∈ resE (x). Finally, x ∈ G3, y ∈ G4 are incident
if there are x1 ∈ E3, x2 ∈ E2 ∪ resE (x1) such that x = �̃x1 , y = 	̃x2 . Notice that � is just
the collinearity graph of G (where elements of type 1 are considered as points and elements
of type 2 as lines).

Lemma 4.2 LetG be a geometry constructed as above from a c.F4(1)-geometry E satisfying
(I ). Then G has the diagram

◦ ◦ ◦ ◦c1 2 3 4

1 2 2 2
,

and if x ∈ G4, then resG(x) is isomorphic to the c.C2-geometry related to U4(2).

Proof: For x ∈ G1 = E5 we get from (1.7)(i) that resG(x) is the symplectic (dual) polar
space related to the group Sp6(2) and for x ∈ G3 we get from (4.1) that res−

G (x) is the
geometry of vertices and edges of the complete graph on 4 vertices, i.e., res−

G (x) has the
diagram

◦ ◦c

1 2

1 2
.

Let y ∈ res−
G (x) and z ∈ resG(x) ∩ G4 (where still x ∈ G3). Then by the definition of the

incidence relation inG, there is some y1 ∈ resE (y) with x = �̃y1 ; on the other hand, there are
also yi ∈ E i , i = 2, 3, such that x = �̃y3 , z = 	̃y2 , and y2 and y3 are incident in E . It follows
from the definition of �̃ and 	̃ that we may assume y3 = y1 in which case y2 ∈ resE (y1).
Now the string diagram of E implies that y2 ∈ resE (y) and so z = 	̃y2 ∈ resG(y). Together
with the above this shows that the diagram of G is as stated.

The only thing that remains to be shown is that the c.C2-geometry in resG(y), y ∈ G4, is
the one related to U4(2). Let y = 	̃x for some x ∈ E2. From (1.2)(i) we know that 	̃x has
40 vertices and that it is the graph related to U4(2) with suborbit diagram as in that lemma.
Let z ∈ resG(y) ∩ G1. Then |resE (z) ∩ V (	̃x )| = 10 by (1.7)(ii) and counting the number
of pairs (z, u), z ∈ resG(y) ∩ G1, u ∈ V (	̃x ) ∩ resE (z) in two ways we calculate that

|resG(y) ∩ G1| = |V (	̃x )| · |resE (x) ∩ E5|
|V (	̃x ) ∩ resE (z)| = 40 · 9

10
= 36.

Now [2, (1.3)] yields the assertion.

Before now turning to the determination of G in the general, i.e., not necessarily flag-
transitive case we prove some properties of G which will turn out to be very useful.
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Lemma 4.3 Let G be as in (4.2). Then G satisfies the following properties.
(i) Any two different elements of G3 are incident to at most one common element

in G4.
(ii) Any three elements of G4 which are pairwise incident to a common element in

G3 are also incident to a common element in G1 and to a common element
in G2.

(iii) If y ∈ G1 and z ∈ G3 are incident to two common elements in G4 then y and z are
incident to each other.

Proof: (i) Let �̃1, �̃2 ∈ G3, �̃1 �= �̃2, 	̃1, 	̃2 ∈ G4 with �̃i ∈ resG(	̃ j ), 1 ≤ i, j ≤ 2.
Since �̃i consists of 4 pairwise disjoint 4-cliques of � we have |�i | = 16 and as �̃i ∈
resG(	̃ j ) we have �i ⊆ 	 j . Further as �̃1 �= �̃2 also �1 �= �2 and hence |	1 ∩ 	2| ≥
|�1 ∪ �2| > 16. Now (1.4) yields 	1 = 	2 and 	̃1 = 	̃2.

(ii) Let 	̃1, 	̃2, 	̃3 ∈ G4, �̃1, �̃2, �̃3 ∈ G3 with 	̃i , 	̃ j ∈ resG(�̃k) for {i, j, k} =
{1, 2, 3}. Then �k = 	i ∩ 	 j . Suppose first there exists some x ∈ �1 ∩ �2 ∩ �3. Then by
[5, (7.12)] there exist yi with 	̃i = 	̃ei for ei := {x, yi } and such that there are di ∈ E3 (i.e.,
4-cliques in �) with ei , e j ⊆ dk , {i, j, k} = {1, 2, 3}. In terms of resE (x) ∼= F4(1) this means
that e1, e2, e3 correspond to three pairwise collinear points. Hence there exists z ∈ E5 = G1

which is incident to all of them and also to d1, d2, d3. This implies 	̃i , �̃i ∈ resG(z) for
all i . Now resG(z) is isomorphic to the dual of the symplectic polar space P(Sp6(2)). So in
resG(z) we can identify 	̃1, 	̃2, 	̃3 with three pairwise collinear points which implies that
they are incident to a common element in G2.

So all we have to do is to find some x ∈ �1 ∩ �2 ∩ �3.
Suppose �1 ∩ �2 = ∅; let ¯̃�k := 	̃i ∩ 	̃ j . Then ¯̃�1, ¯̃�2 correspond to two disjoint

8-cliques in the graph 	̃3. It is easy to see from the distribution diagram of 	̃3 that there must
be di ∈ ¯̃	i , i = 1, 2 such that (d1, d2) ∈ E(	̃3). By (1.3) any vertex outside an 8-clique is
adjacent to some vertices in the 8-clique. So there is d3 ∈ ¯̃�3 such that (d2, d3) ∈ E(	̃1).
Let u ∈ d3, v ∈ d2, x ∈ d1.

If u ∈ �(x) then {u, v, x} is a 3-clique in �, hence must be incident to an element z ∈ E5

which implies 	̃i ∈ resG(z) for all i and we are done. If u �∈ �(x) then d�(u, x) = 2
and v ∈ �(u, x). If v /∈ 	1 ∩ 	2, then by [5] the path u, v, x must be of D6-type, i.e.,
iv(u) ∈ �3(iv(x)). But by the above diagram there is d4 �= d1, d4 ∈ ¯̃�1 which is adjacent
to d3 and d2. Let w ∈ d4. Then iv(w) ∈ �1(iv(x)) and w ∈ �(u) which contradicts
iv(u) ∈ �3(iv(x)).

(iii) Let x1, x2 ∈ G4, y ∈ G3, and z ∈ G1 such that x1, x2 ∈ resG(y) ∩ resG(z). Then in
res(z), x1, x2 correspond to two points in the symplectic polar space for Sp6(2). So there
exists x3 ∈ G4 ∩ res(z) such that xi , x3 ∈ res(yi ) for some yi ∈ G3, i = 1, 2. Now by (ii) there
is w ∈ G2 such that w is incident to all of y, y1, y2, x1, x2, x3. Then z, w ∈ res(y1)∩ res(y2)
and it follows from the definition of the graph �̃ and the geometry G that either z ∈ res(w)
or y1 = y2. Since in the latter case also y = y1 = y2 and because the diagram of G is a
string, both possibilities yield the assertion.

As we will show at the beginning of Section 5 the condition (i) follows from (iii) and the
diagram of G.
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5. The characterization of G

In this section we characterize the geometry G. Our characterization is more or less inde-
pendent from the question whether G is obtained from a geometry like E or not. We just
require a few properties of G which hold in our case by the results of the previous section
(Lemmas 4.2 and 4.3). Precisely, we consider any geometry G with diagram

◦ ◦ ◦ ◦c1 2 3 4

1 2 2 2

and which satisfies the following assumptions.

(II) (a) If x ∈ G1 then res(x) is the (dual) polar space related to the symplectic group
Sp6(2).

(b) If x ∈ G4 then res(x) is the c.C2-geometry (on 36 points) related to the group
U4(2) ∼= �−

6 (2).
(c) Any two different elements of G3 are incident to at most one common element of

G4.
(d) Any three different elements ofG4 which are pairwise incident to a common element

of G3 are all incident to a common element of G2 (equivalently of G1).
(e) If two different elements x1, x2 ∈ G4 are incident to common elements y ∈ G1 and

z ∈ G3 then y and z are incident.

Condition (c) is not really needed; it follows easily from (e) and the diagram: Let a, b ∈ G3

be incident to x1, x2 ∈ G4, x1 �= x2. Choose any z ∈ res(a)∩G1. Then by (e) also z ∈ res(b)
and the structure of res(z) implies that a = b. Nevertheless we state (c) seperately because
it will be needed later.

As already mentioned, flag-transitive c.C∗
3 -geometries with c.C2-residues belonging to

U4(2) have been determined in [7] (see (3.3)). Here we do not assume the existence of any
group of automorphisms acting on G.

As in the previous section, by � we denote the collinearity graph of G, i.e., the graph
with V (�) := G1 and E(�) := G2, and we will often identify the objects of G with the
corresponding vertices, edges (or 2-cliques), 4-cliques, and certain 36-vertex subgraphs of
�.

The determination of G will be achieved in a series of steps which we present in several
subsections. In the first subsection we define a graph � and we show that each of its
connected components is isomorphic to one of the derived graphs �22 and 3�22 of the
P-geometries P22, 3P22. In the second subsection we define another graph B (the analogue
of the graph � defined in Section 3) which will help us to show that any two connected
components of � are isomorphic. Furthermore, we will use B to define a geometry B. In
Section 6 we will show that at least if we impose a more or less natural condition on B resp.
B then B is isomorphic to the truncation FT of the geometry F for Fi22.
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5.1. The graph � and the geometry P

The graph � is constructed from G in the same way as the graph 	̃ was constructed from
E , i.e., � is the graph with vertices V (�) := G2 and edges

E(�) := {{x, y} | x, y ∈ G2, x ∪ y ∈ G3 (and so x ∩ y = ∅)}

(where again we identify the objects of G2 and G3 with the corresponding edges and 4-
cliques in �). If {x, y} ∈ E(�) then by definition x ∪ y is a uniquely determined element
in G3. So we can define a map

α : E(�) → G3

{x, y} → x ∪ y.

The fibers of α are of size 3. We will call two edges of � α-equivalent if they are in the
same fiber of α.

For x ∈ G2, similarly as before, we denote by �x the connected component of � con-
taining x , and for q ∈ G4 we denote by �q the subgraph of � with vertices V (�q ) :=
V (�) ∩ res(q) and edges {x, y} such that x , y, and x ∪ y are contained in resG(q).
The following lemma shows that �q is actually the subgraph of � induced on the set
V (�q ).

Lemma 5.1 If q ∈ G4 and x, y ∈ V (�q ) with {x, y} ∈ E(�) then x ∪ y ∈ res(q).

Proof: Let z := x ∪ y ∈ G3. Then z, q ∈ res(x) ∩ res(y) and so r ∈ res(x) ∩ res(y) for
any r ∈ res(z) ∩ G4. Choose some r �= q. Since res+(x) and res+(y) are projective planes
there exist z1, z2 ∈ G3 which are incident to x, q, r resp. y, q, r . Assumption (II)(c) yields
that z1 = z2. So z, z1 = z2 are incident to x, y and r and we see in res(r ) that z1 = z which
implies the assertion.

Now part (i) of the next lemma follows from the properties of the c.C2-geometry for
U4(2) (see [7, (6.2)]), (ii) is just a consequence of (i) for �.

Lemma 5.2
(i) If q ∈ G4 then �q is a disjoint union of 27 Petersen graphs. If �0 is a connected

component of �q and x, y ∈ V (�0), x �= y, then x ∩ y = ∅.
(ii) If �1 is a connected component of�and q ∈ G4 then�1 ∩ �q = ∅ if res(q) ∩ V (�1) =

∅ and �1 ∩ �q is a disjoint union of Petersen subgraphs of �1 if res(q) ∩ V (�1) �= ∅
where �1 = �x for some x ∈ res(q).

We note that in the known examples �1 ∩ �q is a single connected component and we
will prove in (5.6) that under our assumptions this is also true at least if �1 ∼= �22.
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Lemma 5.3
(i) If x1, x2 ∈ V (�), x1 �= x2, and d�(x1, x2) ≤ 2 then x1 ∩ x2 = ∅.

(ii) If x1, x2 ∈ V (�), x1 �= x2, d�(x1, x2) ≤ 4 and there is some q ∈ G4 incident to both
of x1 and x2 then x1 ∩ x2 = ∅.

Proof: (i) If d�(x1, x2) = 1 the assertion is trivial since then x1 ∪ x2 ∈ G3. So assume
d�(x1, x2) = 2 and let z ∈ �(x1) ∩ �(x2). Let e := {x1, z}, f := {z, x2} ∈ E(�) be
the corresponding edges. Then by definition α(e), α( f ) ∈ res(z) ∩ G3. Since res+(z) is the
projective plane over GF(2) there exists q ∈G4 with q ∈ res(z) ∩ res(α(e)) ∩ res(α( f )). By
the diagram of G then also x1, x2 ∈ res(q) and (x1, z, x2) is a path in (a connected component
of) the subgraph �q . Now the assertion follows from Lemma 5.2.

(ii) Let xi , q be as assumed and suppose there exists a ∈ x1 ∩ x2. Since d�(x1, x2) ≤ 4
there is z ∈ V (�) with d�(z, xi ) ≤ 2 for i = 1, 2. As in (i) we see that there are qi ∈
G4 ∩ res(z) ∩ res(xi ), i = 1, 2, such that there is a path from xi to z in a connected
component �i of �qi . By (5.2) we must have q1 �= q2. On the other hand, q and qi are
incident to xi and we see in res+(xi ) that there is an element li ∈ G3 which is incident to
q, qi and xi . Since a ∈ xi , by the diagram of G then a must be incident to l1, l2, q1, q2, q.
Further, in res(z) we see that there is l ∈ G3 ∩ res(qi ), i = 1, 2, and by assumption (II)(e)
a must also be incident to l. Now l and li determine two edges {z, zi } and {xi , x ′

i } of the
Petersen graph �i and a ∈ l ∩ xi . Lemma 5.2 shows that this is only possible if zi = xi

(since a �∈ z). In particular, we must have d�(z, xi ) = 1 for i = 1, 2 and so d�(x1, x2) ≤ 2
in contradiction to (i).

Let us now fix some x ∈ G2 and let us consider the connected component �x of � which
contains x . In order to identify the isomorphism type of the graph �x we define a rank 3
geometry P := P x whose objects of type 1, 2, 3 are respectively the vertices and the edges
of �x and the Petersen subgraphs induced by elements of G4 and contained in �x ; more
formally,

P1 := V (�x ),

P2 := E(�x ),

P3 := {(q, �0) | q ∈ G4 such that �x ∩ �q �= ∅
and �0 is a connected component of �x ∩ �q}.

The incidence relation on P is defined in the obvious way, i.e., Petersen subgraphs of �x

are incident to its edges and vertices, and the edges of �x are incident to its vertices.
The following map β : P → G (which maps P i into Gi+1) will be useful.

β(y) := y, for y ∈ P1,

β(y) := α(y), for y ∈ P2,

β(q, �0) := q, for (q, �0) ∈ P3.

Obviously, the map β is incidence preserving and hence the image P̄ := β(P) induces a
connected subgeometry of G (consisting of objects of G of types 2, 3, and 4).
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Lemma 5.4 P has the diagram

◦ ◦ ◦P1 2 3

1 2 2
.

Proof: By definition of the incidence relation the diagram of P is a string and by (5.2)
resP (y) is the rank-2 geometry of vertices and edges of the Petersen graph if y ∈ P3.
Finally, if y ∈ P1 then the restriction βy := β|resP (y) induces an isomorphism

βy : resP (y) → res+
G (y).

This yields the assertion.

Lemma 5.5 P ∼= P22 or 3P22 and �x ∼= �22 or 3�22, respectively.

Proof: We want to apply (3.4). So we have to show that conditions (1) and (2) from (3.4)
hold in P .

Let first x1, x2 ∈ P2, x1 �= x2, be incident to y1, y2 ∈ P3. Then β(xi ) ∈ resG(β(y j )) for
{i, j} = {1, 2} and as α-equivalent edges of � are never contained in the same Petersen
subgraph we have β(x1) �= β(x2). Now (II)(c) implies β(y1) = β(y2) =: q for some q ∈ G4.
So y1 �= y2 would imply that y1 and y2 are two different Petersen subgraphs in �q . But then
y1 and y2 would be disjoint subgraphs of �q which in terms of P means that they cannot
be incident to any common element in P2. Hence y1 = y2 and (1) holds.

Similarly, if yi ∈ P3, i = 1, 2, 3, are pairwise incident to a common element in P2 then
their images β(yi ) ∈ G4, i = 1, 2, 3, are pairwise incident to a common element of G3

and (II)(d) shows that they are incident to a common element z ∈ G2. If �x = �z then
z ∈ P1 ∩ res(yi ), i = 1, 2, 3, and we are done. So suppose z �∈ �x . Let xi = {ei , fi } ∈ P2

such that xi ∈ res(yi ) ∩ res(y3), i = 1, 2. Then z ∈ resG(α(xi )), i = 1, 2, which since z �∈ �x

implies that e1 ∩ e2 �= ∅ (as subgraphs of �). As x1, x2 are edges of the Petersengraph y3

we must have x1 = x2. Hence y1, y2 and y3 are all incident to x1 and by the diagram of P
then also to e1, e2, i.e., (2) holds in this case as well.

Notice that from (5.5) we just know that any connected component of � is isomorphic
either to �22 or to 3�22. But, in principle, (5.5) allows the possibility that one connected
component of � is isomorphic to �22 and another one to 3�22. Again, such a degeneracy
does not occur in the known examples: all connected components of � are isomorphic
to �22 if � is constructed from G(Fi22) and all connected components are isomorphic to
3�22 if � is constructed from G(3 · Fi22). In the next subsection, we will see that if � is
constructed from a geometry G which satisfies (II) then also all connected components of
� are isomorphic. But first, we prove one more lemma which will be quite important.

Lemma 5.6 If �x ∼= �22 then the map β : P x → G is injective and hence the image
β(P x ) is a subgeometry of G isomorphic to P x ∼= P22.
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Proof: Let P := P x . By definition β|P1 is injective. Suppose there are ei ∈ P2 with
β(e1) = β(e2) =: e ∈ G3. Let ei = {xi , yi }, i = 1, 2. Then x1 ∩ x2 �= ∅. On the other hand,
x1, x2 ∈ resG(e) and so x1, x2 ∈ resG(q) for any q ∈ G4 ∩ resG(e). Since the diameter of
�22 is equal to 4 by [8, p. 27] this contradicts (5.3). So β|P2 is injective, too.

Finally suppose there exists q ∈ G4 such that �x ∩�q consists of at least two connected
components �1, �2. Then it follows from (5.2) and the fact that |resG(q) ∩ G1| = 36 that
there are xi ∈ V (�i ), i = 1, 2, with x1 ∩ x2 �= ∅. Since x1, x2 ∈ resG(q) we get again a
contradiction to (5.3).

So injectivity of β is proved and, since the map β is incidence preserving, β(P) induces
an isomorphism of geometries.

5.2. The graph B and isomorphism of the �x

The main goal of this subsection is to show that all connected components of � are iso-
morphic. The idea to prove this is to define a graph B on the set of connected components
of �, to show that any two adjacent vertices of B are isomorphic, and finally, that B is
connected. As already mentioned at the beginning of this section the graph B will also play
an important role in Section 6.

We first recall a well-known property of the P-geometries of M22 and 3·M22. Let P be a
P-geometry isomorphic to P22 or 3P22. Then P contains a set H(P) of 77 subgeometries
consisting of elements of type 2 and 3 inP . Each H ∈ H(P) is isomorphic to the generalized
Sp4(2)-quadrangle GQ(2, 2) if P ∼= P22 and to its unique flag-transitive 3-fold cover
3GQ(2, 2) if P ∼= 3P22. Each element of type 2 in P is contained in a unique subgeometry
H ∈ H(P) and all the three elements of type 3 incident to it in P then also belong to H
(but any element of type 3 belongs to 5 subgeometries). There exists a bijection between
the set of subgeometries H(P22) and the set of blocks of the Steiner system S(3, 6, 22) with
the property that if H ∈ H(P22) is the subgeometry corresponding to the block h then the
elements of type 3 of P22 which belong to H are the pairs contained in h and the elements
of type 2 of P22 which belong to H correspond to the partitions of h into three disjoint pairs.

We define B as the graph with vertex set V (B) := {�x | x ∈ G2} and edge set

E(B) := {{�1, �2} | �i ∈ V (B), there are ei ∈ E(�i ), i = 1, 2,

with α(e1) = α(e2)}.

In other words, the vertices of B are the connected components of � and two such connected
components are adjacent in B if they arise from α-equivalent edges.

Notice that there might exist edges {�1, �2} ∈ E(B) with �1 = �2 but that (5.6)
immediately implies

Lemma 5.7 If {�1, �2} ∈ E(B) and �1 = �2 then �1 ∼= �2 ∼= 3�22.

Let us fix an edge {�1, �2} ∈ E(B) and, for i = 1, 2, let Pi be the P-geometry related
to �i . For a subgeometry H ∈ H(Pi ) and for j = 2, 3, let H j := H ∩ P j

i be the set of
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objects of Pi of type j which are contained in H . Further we set

E1 := {e ∈ E(�1) | there is f ∈ E(�2) with α(e) = α( f )}.

Lemma 5.8 Let e ∈ E1 and let He ∈ H(P1) be the subgeometry of P1 containing e. Then
H 2

e ⊆ E1. Moreover, there is a subgeometry H ∈ H(P2) such that

H 2 = {
f ∈ E(�2) | α( f ) = α(e1) for some e1 ∈ H 2

e

}
.

Proof: Let (y, �0) ∈ H 3
e ∩ resP1 (e) and let f ∈ E(�2) with α(e) = α( f ) =: x . Then

x ∈ resG(y), �0 is a connected component of �1 ∩ �y , and e ∈ E(�0). Let �′
0 be the

connected component of �2 ∩�y with f ∈ E(�′
0) and let {e, e1, e2} = resHe (y, �0). Then

by definition of (3)GQ(2, 2)-subgeometries in P-geometries, e, e1, e2 are three pairwise
opposite edges of the Petersen subgraph �0. On the other hand, it follows from resG(y) that
if f1, f2 ∈ E(�′

0) are the edges opposite to f then (up to numeration) α(ei ) = α( fi ) holds
for i = 1, 2 (cf. [7]). Hence e1, e2 ∈ E1 and H 2

e ⊆ E1 follows by connectivity of He. The
last assertion is clear from this and the proof of the lemma.

Applying (5.7) and (5.8) to the case �1 = �2 = �x we get

Corollary 5.9 Let �x be a connected component of � and suppose there are e, f ∈ E(�x ),
e �= f, with α(e) = α( f ). Then �x ∼= 3�22 and if He, H f ∈ H(P x ) are the subgeometries
containing e and f, respectively, then for any e1 ∈ H 2

e there is f1 ∈ H 2
f with α(e1) = α( f1).

Lemma 5.10 If {�1, �2} ∈ E(B) then �1 ∼= �2.

Proof: For i = 1, 2, we define maps βi : Pi → G similarly as the map β was defined in
the previous subsection. Let e, He be as in (5.8).

If �1 ∼= �22 then by (5.6) β1(He) ∼= He induces a GQ(2, 2) subgeometry in G. Again
as in (5.8), let f ∈ E(�2) with α(e) = α( f ) =: x and let H f ∈ H(P2) with f ∈ H 2

f .
Then β2(H f ) = β1(He) by (5.8), connectivity of He, H f , and definition of β. If �2 ∼= 3�22

we would have H f
∼= 3GQ(2, 2) which would imply that |β−1

2 (x)| = 3. But β−1
2 (x) =

α−1(x) ∩ E(�2), the fibers of α are of size 3, and we also have α(e) = x . So this it not
possible and the assertion follows.

Lemma 5.10 implies that we also have a set H(G) of pairwise isomorphic subgeometries
of G consisting of elements from G3 and G4. If all connected components of � are type
�22 then each H ∈ H(G) is isomorphic to GQ(2, 2). But so far we have not determined the
isomorphism type for the case 3�22.

For q ∈ G4, by Bq we denote the subgraph of B with vertices

V (Bq ) := {�y | �y ∈ V (B), �y ∩ �q �= ∅}
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and edges

E(Bq ) := {{�1, �2} | �i ∈ V (Bq ), there are ei ∈ E(�i ), i = 1, 2, such that

α(e1) = α(e2) ∈ resG(q)}.

Notice that Bq is not necessarily the induced subgraph of B on V (Bq ).

Lemma 5.11 The graph B is connected; in particular, �1 ∼= �2 for any two connected
components �1, �2 of �.

Proof: By (5.10) it suffices to show that B is connected. So let �1, �2 be two arbi-
trary vertices of B. Let ei ∈ E(�i ) and set xi := α(ei ), i = 1, 2. If x1 = x2 then
{�1, �2} ∈ E(B) and we are done. Otherwise, by connectedness of G there exists a path
y1 := x1, q1, y2, q2, . . . , yk, qk, yk+1 := x2 with yi ∈ G3, qi ∈ G4, and yi , yi+1 ∈ resG(qi )
for all i . Since the graph on Petersen subgraphs in �q1 in which two such subgraphs are
adjacent if they are constructed from equivalent edges is connected there exists a path in
Bq1 (and hence also in B) from �1 to any �z ∈ V (B) with α(z) = y2. Now the assertion
follows by induction on k.

The graph on Petersen subgraphs in �q1 mentioned in the above proof is isomorphic to the
dual of the collinearity graph of the generalized U4(2)-quadrangle. The latter is commonly
known as the Schläfli graph and we will also adopt this name in the following.

To get a better understanding of the graph B it might be useful to consider also the
“coloured” graph B̃ which we define as the graph with the same set of vertices as B and
whose edges are indexed by the set H(G), i.e.,

E(B̃) := {{�1, �2}H | {�1, �2} ∈ E(B), H ∈H(G), β−1
i (H ) ∈H(Pi ) for i = 1, 2

}
.

For q ∈ G4, B̃q then denotes the coloured graph with vertices V (Bq ) and edges

E(B̃q ) := {{�1, �2}H | β−1
i (H ) ∩ resG(q) �= ∅, i = 1, 2

}
.

We will call a triangle {�1, �2, �3} ⊆ B short if the three edges of the corresponding
triangle in B̃ are all of the same colour, i.e., are indexed by the same subgeometry H ∈ H(G).
Other triangles (if they exist) are called long. Observe that in the known (flag-transitive)
examples all triangles are short.

The next little corollary is just the reformulation of (5.7) and (5.9) in terms of the graphs
B and B̃.

Corollary 5.12 If there exists a vertex �1 ∈ B (resp. B̃) such that {�1, �1} ∈ E(B) (resp.
{�1, �1}H ∈ E(B̃) for some H ∈ H(G)) then �1 ∼= 3�22.

However, even in the case of �22, (5.7) and (5.9) do not exclude the possibility that the
uncoloured graph underlying B̃ contains multiple edges, i.e., that there are �1, �2 ∈ B and
subgeometries H1, H2 ∈ H(G) such that H1 �= H2 and {�1, �2}Hi ∈ E(B̃) for both i .
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For some of the results of subsections 5.1 and 5.2 we can get stronger versions or shorter
proofs under the presence of a flag-transitive action on G (even without knowing the precise
structure of the flag-transitive group acting). For the interested reader we include them in
the Appendix A. But they are not needed in the rest of the paper.

5.3. Definition of the geometry B

In this subsection we use the graph B to define a geometry B. For the determination of B
in Section 6 the following assumption will be useful.

(III) The intersection of any two different Schläfli subgraphs of B is either empty, or a
vertex, or a triangle.

Let us first assume that all connected components of � are isomorphic to the derived
graph �22 of the P-geometry P22 belonging to the Mathieu group M22. By (5.6), for any
x ∈ G2 and P := P x the corresponding P-geometry, we can identify the set P3 of objects
of type 3 in P with the set {�x ∩ �q | q ∈ G4, �x ∩ �q �= ∅} or just with the set

{q ∈ G4 | �x ∩ �q �= ∅} = {q ∈ G4 | resG(q) ∩ V (�x ) �= ∅}.

Furthermore, we have

Lemma 5.13 If {�1, �2}H , {�1, �2′}H ′ ∈ E(B̃q ) and H �= H ′ then �2 �= �2′
; in parti-

cular, Bq
∼= B̃q and both graphs are isomorphic to the Schläfli graph. In particular, all

triangles in Bq are short.

Proof: Let β1 : P1 → G be the map β defined for P = P1. Then, in the considered
situation, β−1

1 (H 2) ∩ E(�1 ∩ �q ) and β−1
1 (H ′2) ∩ E(�1 ∩ �q ) are different triples of

pairwise opposite edges of �1 ∩�q . In resG(q) we see that therefore �2 ∩�q �= �2′ ∩�q .
So �2 �= �2′

.
Since Bq and B̃q are both isomorphic to the graph on the set of connected components of

�q in which two such components are adjacent if they are constructed from α-equivalent
edges contained in resG(q), as already remarked in the proof of (5.11), we have the Schläfli
graph. The last statement is just a property of that graph.

Let B be the rank 3 geometry whose objects of types 1, 2, 3 are respectively the Schläfli
subgraphs, the short triangles, and the vertices of B with incidence defined by inclusion.

Lemma 5.14
(i) B has the diagram

◦ ◦ ◦S3,6,22

14 4 2

1 2 3
.

(ii) If B satisfies (III) then B satisfies hypothesis (IV) from Section 6.
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Proof: By definition, the diagram of B is a string and, for Bq ∈ B1, the diagram of
resB(Bq ) follows from the fact that Bq is the Schläfli graph. For �1 ∈ B3, the elements
of resB(�1) are the Schläfli subgraphs and the short triangles through �1 in B. In the
P-geometry P1 corresponding to �1 these can be identified with the set P3

1 of objects of
type 3 of P1 and the set H(P1) of GQ(2, 2)-subgeometries of P1, i.e., with the pairs and
the hexads of the Steiner system S(3, 6, 22), in such a way that a subgeometry h ∈ H(P1)
contains an element q ∈ P3

1 (i.e., a hexad contains a pair) if and only if the triangle
indexed by β1(h) in B̃ is contained in the Schläfli graph B̃q . This gives resB(�1) and (i) is
shown.

For (ii) notice that (IV)(a) is just a reformulation of (III) in terms of B and that (IV)(b)
follows from the construction of B and the results of the present section, especially
(5.8).

Now we assume that �x ∼= 3�22 for all x ∈ G2. For a fixed connected component �x

and Px the corresponding P-geometry, let us call two elements �x ∩ �p, �
x ∩ �q ∈ P3

x
x-equivalent and write �x ∩�p ∼x �x ∩�q if their images under the associated covering
�x → �22 are equal.

Lemma 5.15 If �x ∩ �p ∼x �x ∩ �q then Bp = Bq.

Proof: If �x ∩ �p ∼x �x ∩ �q then there exist exactly five subgeometries Hx ∈ H(Px )
such that �x ∩ �p, �

x ∩ �q ∈ H 3
x . Each of these subgeometries determines a triangle

through �x in both graphs Bp, Bq . Hence the sets of neighbours of �x in Bp and Bq are
the same. Furthermore, if �y is such a neighbour and Hy ∈ H(Py) is the subgeometry with
βy(Hy) = βx (Hx ) for one of those Hx then �y ∩ �p and �y ∩ �q must be at maximal
distance in the collinearity graph of Hy since the same holds for �x ∩ �p, �x ∩ �q , and
Hx . This means that the images of �y ∩ �p and �y ∩ �q under the natural covering from
�y → �22 are also equal, i.e., �y ∩ �p ∼y �y ∩ �q . So we can replace x by y and the
assertion follows by the first part of the proof and connectivity of Bp and Bq .

Notice that in spite of the fact that now �x ∼= 3�22 for all x the short triangles through a
given vertex �x of B can still be identified with the blocks of the Steiner system S(3, 6, 22)
because now the corresponding subgeometries of Px are isomorphic to 3GQ(2, 2). Fur-
thermore, (5.15) implies that a similar statement also holds for the Schläfli subgraphs of
B through �x , i.e., they can be identified with the pairs of S(3, 6, 22). So we can de-
fine the geometry B exactly as in the case of �22 and the assertions of (5.14) will hold
again.

6. Identification of B with FT

In this section we consider geometries B with diagram

◦ ◦ ◦S3,6,22

14 4 2

1 2 3
.
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Again we do not assume the existence of any automorphisms of B. The diagram of B is the
same as that of the truncation FT of the geometry F = F(Fi22) with diagram

◦ ◦ ◦ ◦c

1 4 4 2

1 2 3 4

described in Section 3 and our goal is to identify B with FT . In contrast to the flag-
transitive case, we do not know any characterization of geometries like B and, therefore,
we will reconstruct the geometry F and then apply (3.1) resp. (3.2) to identify B. Since the
elements of type 1 in F are the 3-transpositions of the group Fi22 this means that we have
to reconstruct the 3-transpositions of Fi22 just using information from the geometry B.

By definition of B, with any x ∈ B3 there is associated a Steiner system Sx
∼= S(3, 6, 22)

in such a way that the elements of res(x) ∩ B1 can be identified with the pairs of different
points of Sx , the elements of res(x) ∩ B2 can be identified with the blocks of Sx , and
a ∈ res(x) ∩ B1 and t ∈ res(x) ∩ B2 are incident in B if and only if the pair of Sx

corresponding to a is contained in the block corresponding to t . In order to simplify notation
we will sometimes identify elements of B1 ∩ res(x) and B2 ∩ res(x) with the corresponding
pairs and blocks of Sx , in particular, we will use notations like a ∩ b, a ∪ b, and a ⊆ t ,
where a, b ∈ B1 ∩ res(x), t ∈ B2 ∩ res(x).

The elements of F1 in the residue of an element from F4 = (FT )3 correspond to the 22
points of the corresponding Steiner system. Clearly, for any x ∈ B3, we can define the 22
points in Sx locally but, to reconstruct F , we must know when to identify points in different
residues. For this it will be useful to assume the following.

(IV) (a) Any two different elements of type 1 in B are incident to at most one common
element of type 2.

(b) If t ∈ B2, x, y ∈ res(t) ∩ B3, and a, b ∈ res(t) ∩ B1 then the pairs corresponding
to a, b in Sx intersect in a point of Sx if and only if the same holds in Sy .

For t ∈ B2, let ∼t be the relation defined on B1 ∩ res(t) by a ∼t b if a ∩ b is a point of
Sx for some (and so for all by (IV)) x ∈ res(t) ∩ B3. Set

Yt := {{a, b}t | a, b ∈ B1 ∩ res(t), a ∼t b},
Y :=

⋃

t∈B2

Yt ,

∼ :=
⋃

t∈B2

∼t ,

and Yx :=
⋃

t∈B2∩res(x)

Yt for x ∈ B3.

Let ϒ be the graph with vertices V (ϒ) := Y in which two vertices {a, b}t , {c, d}s are
adjacent if t, s ∈ res(x) for some x ∈ B3 and a ∩ b = c ∩ d is the same point of Sx . For
t ∈ B2 let ϒt be the subgraph of ϒ induced on Yt and for x ∈ B3 let ϒx be the subgraph
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with vertices Yx and edges all the pairs {a, b}t , {c, d}s , t, s ∈ res(x), with a ∩ b = c ∩ d in
Sx .

By the properties of S(3, 6, 22) and the diagram of B we have

Lemma 6.1
(i) If x ∈ B3 then the cliques of maximal size in ϒx are of size 21·20

2 = 210, there
are 22 such cliques, and they correspond bijectively to the points of the Steiner
system Sx .

(ii) If t ∈ B2 then the cliques of maximal size in ϒt are of size 5·4
2 = 10, there are 6 such

cliques, and they correspond bijectively to the points of Sx contained in the block t for
any x ∈ res(t) ∩ B3.

(iii) If x ∈ B3 and C ⊆ ϒx is a 210-clique corresponding to the point p of Sx then C is the
disjoint union of 21 10-cliques Ct ⊆ ϒt , where t ∈ res(x) ∩ B2 runs over the blocks
of Sx containing p.

We will call the cliques as in Lemma 6.1 special cliques, and for i = 2, 3, we denote by
Ci the set of special cliques induced by elements of Bi . We define maps p : C2 ∪ C3 → B1

and b : C3 → B2 by

p(C) := {a ∈ B1 | {a, b}t ∈ V (C) for some b ∈ B1, t ∈ B2},
b(C) := {t ∈ B2 | {a, b}t ∈ V (C) for some a, b ∈ B1}.

Here, “p” stands for “pair” and “b” stands for “block”, and the following holds.

Lemma 6.2
(i) |p(C)| = 5 if C ∈ C2 and |p(C)| = |b(C)| = 21 if C ∈ C3.

(ii) If C ∈ Ci then there exists a unique z ∈ Bi such that C ⊆ ϒz . In particular, the
element t ∈ B2 in the definition of p(C) is uniquely determined if C ∈ C2.

(iii) If C ∈ C3 and C1, C2 ∈ C2 with C1, C2 ⊆ C and C1 �= C2 then |p(C1) ∩ p(C2)| = 1.

Proof: (i) and (iii) follow from well-known properties of S(3, 6, 22). If C ∈ C2 and
C ⊆ ϒt for some t ∈ B2 then by definition all vertices of C are of shape {a, b}t for suitable
a, b ∈ B1. So t is uniquely determined by C and (ii) holds in this case.

Let C ∈ C3 and suppose C ⊆ ϒx ∩ϒy for some x, y ∈ B3. Consider the map b. We have
|b(C)| = 21 and b(C) ⊆ res(x) ∩ res(y). Further, if a ∈ p(C) then |b(C) ∩ res(a)| = 5
since a is contained in 5 blocks of Sx as well as of Sy . So x and y are incident to more than
one common element of type 2 in res(a) and the structure of res(a) implies x = y.

By (6.2)(ii) there exists a well-defined map γ : Ci → Bi , i = 2, 3, such that γ (C) := z
where z is the unique element of Bi with C ⊆ ϒz .

Let C be the graph with vertices V (C) := C3 and edges

E(C) := {{C1, C2} | Ci ∈ C3, C1 ∩ C2 ∈ C2}
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and let B be the graph with vertices V (B) := B3 and edges

E(B) := {{x, y} | x, y ∈ B3, x, y ∈ res(t) for some t ∈ B2}.

For a ∈ B1 and i = 2, 3, we set

Ci
a := {C ∈ Ci | a ∈ p(C)}

= {C ∈ Ci | {a, b}t ∈ C for some b ∈ B1, t ∈ B2}.

We define Ca as the subgraph of C with vertices V (Ca) := C3
a and edges

E(Ca) := {{C1, C2} | C1 ∩ C2 ∈ C2
a

}

and Ba as the subgraph of B with V (Ba) := res(a) ∩ B3 and

E(Ba) := {{x, y} | x, y ∈ res(t) for some t ∈ B2 ∩ res(a)}.

Lemma 6.3 Every 2-path and every triangle of C is contained in a subgraph Ca for some
a ∈ B1 and every triangle consists of three 210-cliques which intersect in the same 10-
clique.

Proof: Let (C1, C2, C3) be a 2-path and set Di := Ci ∩Ci+1 for i = 1, 2. Then D1, D2 ⊆
C2 and by (6.2) (iii) there is some a ∈ p(D1) ∩ p(D2). So there are bi ∈ B1, ti ∈ B2 such
that {a, bi }ti ∈ Di , i = 1, 2. But this just means that the path (C1, C2, C3) is a path in the
subgraph Ca .

Now assume that also D3 := C1 ∩ C3 ∈ C2. Then by the same argument as before
there is also some a1 ∈ p(D1) ∩ p(D3). Hence a, a1 ∈ p(Ci ) for i = 1, 2, 3. If a = a1

then {a, b3}t3 ∈ D3 for suitable b3, t3, and so the triangle {C1, C2, C3} is a triangle of the
graph Ca . Furthermore, {γ (C1), γ (C2), γ (C3)} is a triangle of Ba with edges determined by
t1, t2, t3. From the structure of res(a) it follows that Ba is isomorphic to the Schläfli graph
and by the properties of that graph we must have t1 = t2 = t3. Then also D1 = D2 = D3

and {C1, C2, C3} is as stated.
If a �= a1 then in each of the Steiner systems Sγ (Ci ), a and a1 correspond to two different

pairs which intersect in the point determined by the clique Ci . Therefore, in each of the
Steiner systems they must be contained in a common block, i.e., for each i = 1, 2, 3, there
exists an element ti ∈ B2, such that {a, a1}ti ∈ Ci . Since a �= a1, by (IV) (a) we must have
t1 = t2 = t3 in which case C1 ∩ C2 ∩ C3 must be the unique 10-clique determined by t1 and
so the triangle {C1, C2, C3} is a triangle in both graphs Ca and Ca1 .

Lemma 6.4
(i) The map γ : C2 ∪ C3 → B2 ∪ B3 induces a covering from C to B.

(ii) If a ∈ B1 then Ca is the disjoint union of two Schläfli graphs.
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Proof: It is straightforward from the definitions that γ maps adjacent vertices of C onto
adjacent vertices of B and adjacent vertices of Ca onto adjacent vertices of Ba if a ∈ B1.
So (i) holds, and if a ∈ B1, then the restriction of γ to Ca induces a covering onto Ba . From
the structure of res(a) it follows that Ba is isomorphic to the Schläfli graph.

Further, if x ∈ res(a) ∩B3 then there are precisely two special cliques C1, C2 ⊆ ϒx with
C1, C2 ∈ Ca and we have C1 ∩ C2 = ∅. Now any of the 5 elements t ∈ B2 ∩ res(x) ∩ res(a)
determines a unique special subclique Ct,i ⊆ Ci , i = 1, 2, and also two neighbours y, z
of x in Ba . Then Ct,1, Ct,2 are special subcliques of size 10 of the graphs ϒy and ϒz . So
each of them is contained in unique special 210-clique in each of ϒy and ϒz and by the
properties of S(3, 6, 22) and (6.2) (i) those special 210-cliques are all pairwise different. In
particular, the 10 neighbours of x in Ba determine 2 · 10 = 20 special 210-cliques which
divide into two disjoint sets of 10 neighbours of each of C1, C2 in Ca .

From (6.3) it follows that every triangle or quadrangle in Ca maps isomorphically onto
a triangle or quadrangle, respectively, in Ba . Hence there are exactly 10·8

5 = 16 vertices at
distance 2 from Ci in Ca and no vertices at distance 3. This proves the lemma.

Lemma 6.5 If Sa ⊆ Ca and Sb ⊆ Cb are two different Schläfli subgraphs of C (where a, b ∈
B1) then |Sa ∩ Sb| ∈ {0, 1, 3}. Moreover, |Sa ∩ Sb| = 3 holds iff C1 ∩ C2 ∩ C3 ∈ C2

a ∩ C2
b

where {C1, C2, C3} = Sa ∩ Sb.

Proof: Suppose there are Cx , Cy ∈ C3 (corresponding via γ to x, y ∈ B3) such that
Cx , Cy ∈ Sa ∩ Sb.

Then by (6.4) a �= b and by definition of Ca , Cb, we have a, b ∈ p(Cx ) ∩ p(Cy).
So a and b correspond to intersecting pairs in both Steiner systems Sx and Sy . Notice
that the point a ∩ b is uniquely determined inside Sx respectively Sy through the clique
Cx respectively Cy . In particular, there exist t ∈ res(x) ∩ B2 and s ∈ res(y) ∩ B2 such
that {a, b}t ∈ Cx , {a, b}s ∈ Cy . Since t, s ∈ res(a) ∩ res(b) and a �= b, (IV) (a) yields
t = s and so Ct ⊆ Cx ∩ Cy where Ct ∈ C2 is the unique special 10-clique containing
{a, b}t . As Ct is contained in exactly three special 210-cliques which by construction must
belong to Sa and Sb we have |Sa ∩ Sb| ≥ 3 and Sa ∩ Sb contains a triangle of both of
them.

Arguing in the same way for any two vertices in the intersection and using the facts that
maximal cliques in the Schläfli graph are of size 3 and that there is only one class of such
cliques (namely those determined by elements of B2) we see that the intersection cannot be
larger than 3 and the lemma is proved.

Now let C0 be a connected component of C, C3
0 := V (C0),

C2
0 := {

C ∈ C2 | C ⊆ C ′ for some C ′ ∈ C3
0

}

LetH0 be the geometry whose objects of types 3, 2, 1 are respectively the vertices, triangles,
and the connected components of C0 ∩ Ca , a ∈ B1, (which are isomorphic to the Schläfli
graph) with incidence defined as usual by inclusion.
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The crucial point of the identification B ∼= FT is the following

Proposition 6.6
(i) C0 has intersection array

✒✑
�✏ ✎

✍
�
✌

✎
✍

�
✌

✎
✍

�
✌1 42 336 512

42 1

1

40 5

5

32 21

21

(ii) H0 has the diagram

◦ ◦ ◦1 2 3

4 4 2

and H0 is isomorphic to the polar space of the unitary group U6(2).

Proof: By definition of H0 the diagram of H0 is a string and the residue of any element
of type 1 is the generalized U4(2)-quadrangle. If C ∈ H3

0 then resH0 (C) can be identified
with the geometry whose objects are the sets p(C) and b(C) and whose incidence relation
is inherited from B. By the properties of Sγ (C) this geometry is isomorphic to the projective
plane over GF(4). So the diagram of H0 follows.

By (6.5) any two different elements of H1
0 are incident to at most one common ele-

ment of H2
0. In terms of [12, Chapter 7] this means that the “Intersection Property” holds

in H0 or, equivalently, that H0 “has a good system of lines”. We can therefore use [12,
(7.38), (7.39)] to deduce that H2

0 is a polar space. Then, by the diagram, it must be the
polar space P(U6(2)) of the group U6(2). This implies that (i) also holds and we are
finished.

For convenience of the reader who is unfamiliar with the notation in [12], in the appendix
we also provide an elementary proof calculating first the intersection array of C2

0 and then
deducing the isomorphism with P(U6(2)) from it.

Notice that instead of the triangles in C0 we could also take the elements of C2
0 as objects of

type 2 in H0. So the map γ defined after (6.2) induces a map γ : H2
0 → B2, γ : H3

0 → B3.
Let us extend γ to H1

0 by setting γ (S) := a where a is the (unique) element in B1 such that
S is a connected component of Ca .

Lemma 6.7 The map γ : H0 → B is injective; in particular, B contains a class of
subgeometries isomorphic to the polar space of U6(2).

Proof: Suppose first, γ |H1
0

is not injective; i.e., there exists some a ∈ B1 such that both
connected components of Ca are contained in C0. Let us denote them by S1, S2. Clearly
S1 ∩ S2 = ∅. But by the structure of the collinearity graph of H0 there must be some b ∈ B1

and a connected component S of Cb with S1 ∩ S, S2 ∩ S ∈ H2
0. Now γ (S1 ∩ S) and γ (S2 ∩ S)
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must be different elements of B2 which are both incident to a and b and this contradicts
(IV)(a). So γ |H1

0
is injective and for each a ∈ B1 there is at most one connected component

of Ca contained in C0.
Now let x ∈ B3 and let C1, C2 ∈ C3 be two different 210-cliques in C with γ (C1) =

γ (C2) = x . Then the subsets p(C1) and p(C2) of res(x) ∩ B1 correspond via px to two
different collections of 21 pairs of Sx containing a common point. So we see in Sx

∼=
S(3, 6, 22) that |p(C1) ∩ p(C2)| = 1. Let a ∈ p(C1) ∩ p(C2). Then C1, C2 ∈ Ca . It follows
from the proof of (6.4) that the restriction of γ to a connected component of Ca is injective.
Hence C1 and C2 must be in different connected components of Ca and only one of them
can belong to H1

0 by the first paragraph.
So we have shown that γ |H1

0
and γ |H3

0
are both injective and it is easy to see that this

implies injectivity of γ |H2
0
. Since the definition of γ also implies that it is an incidence

preserving map the assertion follows.

Proposition 6.8 Let B be a geometry with diagram

◦ ◦ ◦S3,6,22

14 4 2

1 2 3

and assume that B satisfies hypothesis (IV). Then B ∼= FT where F is the geometry with
diagram

◦ ◦ ◦ ◦c

1 4 4 2

1 2 3 4

related to the sporadic simple group Fi22.

Proof: Let H be the rank 4 geometry whose objects of type 1 are all the images γ (H0)
(where for a connected component C0 of C, H0 denotes as above the corresponding U6(2)-
geometry) and whose objects of type i , i > 1, are just the sets Hi := Bi−1. The incidence
between objects of types i and j is the same as inB if both i, j > 1. An element γ (H0) ∈ H1

is incident to some z ∈ Hi , i > 1, if z ∈ γ (H0). Since any element a ∈ B1 corresponds to
two Schläfli subgraphs in C, by (6.6) we have a ∈ γ (H0) for exactly two geometries H0. As
by definition the diagram of H must be a string we get that H has the desired diagram. In
other words, H is an extension of the polar space of U6(2). So we can use (3.2) to identify
H with F = F(Fi22).

7. The group-free characterizations

In this final section we establish our group-free characterizations of the geometries E and
G. In particular, we prove a group-free version of Theorem 1. Since we would like to apply
(6.8) we need a uniform way to construct the geometries G and E from F = F(Fi22) or
from its truncation FT .
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7.1. From F to G

In this subsection we assume that F = F(Fi22) and we reconstruct G(Fi22) from F . Then
we state and prove Theorem 2.

Recall that the objects of F are the vertices, the edges, certain 6-cliques, and the maximal
cliques of the 3-transposition graph A of the group G = Fi22. In particular, the set F1 of
objects of type 1 in F can be identified with the conjugacy class of involutions in G
possessing the property that the order of the product of any two of them is 1, 2, or 3.

By [1] G contains a unique conjugacy class of subgroups isomorphic to 26.Sp6(2). Let
H ≤ G be such a subgroup. Then H has a unique conjugacy class, say H 1, of length
126 consisting of involutions which are 3-transpositions (i.e. H 1 ⊆ F1). If x ∈ H 1 then
Hx = CH (x) ∼= 21+4.21+4.Sp4(2). In particular, |O2(H ) : O2(H ) ∩ Hx | = 2. Let H 2

be the set of orbits of O2(H ) on H 1. Then |H 2| = 63, |O| = 2 for each O ∈ H 2, H
acts transitively on H 2 with kernel O2(H ) and stabilizer HO

∼= 26.21+4.Sp4(2), and the
elements of H 2 correspond bijectively to the points of the 6-dimensional symplectic polar
space or, equivalently, to the transvections in the symplectic group Sp6(2) ∼= H/O2(H ). If
g ∈ O2(H ) and {x, xg} ∈ H 2 then 1 �= xxg = [x, g] ∈ O2(H ). So the order of xxg is 2
and {x, xg} is an edge of A. Hence H 2 ⊆ F2 = (FT )1.

Let H be the graph on H 2 in which two orbits O1, O2 ∈ H 2 are adjacent if the corre-
sponding transvections in Sp6(2) commute, i.e., if the corresponding points of the symplectic
polar space are perpendicular. In this case, O1 ∪ O2 is contained in a 6-clique of A which
is an object of type 3 in F (of type 2 in FT ). So H is a subgraph of the graph, say AT ,
which we define as the graph on the set of objects of F2 = (FT )1 in which two such
objects are adjacent if they are incident to a common element of F3 = (FT )2. Since two
transvections of Sp6(2) which correspond to non-perpendicular points generate a subgroup
isomorphic to �3 we see that any two orbits O1, O2 ∈ H 2 whose union is contained in a
clique of A must correspond to perpendicular points. HenceH is the induced subgraph of AT

on H 2.
Let Hv be the set of vertices of H, Hl the set of triangles corresponding to lines, and Hp

the set of 7-cliques corresponding to planes of the symplectic polar space. Then the cliques
in Hp are the cliques of maximal size in H and the triangles in Hl can be distinguished
from other triangles in H by the fact that the transvections corresponding to a triangle in Hl

generate a fours group while other triangles will generate an elementary abelian subgroup
of order 8 in Sp6(2). The 3-transpositions of G in the corresponding orbits of O2(H ) on A
will generate subgroups of H isomorphic to 22+2, 23+3, respectively.

Let G1 be the set of all subgraphs like H which can be obtained varying H over the
conjugacy class of 26Sp6(2)-subgroups of G, set

G2 :=
⋃

H∈G1

Hp,

G3 :=
⋃

H∈G1

Hl ,

G4 :=
⋃

H∈G1

Hv = (FT )1 = F2,
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and define an incidence relation on G by inclusion. It follows from the remark preceeding
the definition of G that if H1,H2 ∈ G1 and C ∈ Gi , i > 1, such that C ⊆ H1 ∩ H2 then
C ∈ H x

i for i = 1, 2 and a suitable x ∈ {v, l, p}. This implies that the diagram of G is a
string, that the residue of any element H ∈ G1 is isomorphic to 6-dimensional symplectic
polar space, and that the stabilizer H of H acts flag-transitively on it.

Let C ∈ Hp be a clique of size 7 in H. Then C is an element of type 2 in the residue of
H in G and HC

∼= 26.26.L3(2). Let C0 := ⋃
O∈C O . Then C0 is a clique of size 14 in A. So

it is contained in a unique maximal clique CA in A, i.e., it corresponds to a unique maximal
element of F4 = (FT )3, and therefore HC ≤ GCA . Recall that GCA

∼= 210.M22. Since HC

does not possess a trivial composition factor on O2(HC ) we see that |HC ∩ O2(GCA )| = 29.
Furthermore, the 3-transpositions in CA generate the elementary abelian group O2(GCA ),
so O2(GCA ) ≤ GC . On the other hand, O2(GCA ) is an irreducible GCA -module, so GCA �≤
GC . Since 23.L3(2) is a maximal subgroup of M22 this implies GC = O2(GCA )HC and
|GC : HC | = 2. Let g ∈ GC\HC and let Hg be the subgraph corresponding to H g . Then C
is also in (Hg)p. Furthermore, if C ⊆ H f for some f ∈ G then by the above we must have
H f

C ≤ GC and so H f = H or H g . Hence C is incident to exactly two objects from G1 and
these two objects are conjugate by an element in GC .

Notice that together with the flag-transitivity of stabilizers of objects from G1 on the
corresponding residues this implies flag-transitivity of G on G.

Let O ∈ Hv ⊆ G4 = F2. Then HO
∼= 26.21+4.Sp4(2) and G O

∼= (2×21+8.U4(2))2. From
the action of HO on O2(HO ) and O2(G O ) we see that O2(G O ) ≤ HO and HO/O2(G O ) ∼=
2 × Sp4(2). Considering the isomorphism U4(2) ∼= �−

6 (2) this means that the objects of
G1 ∩ resG(O) correspond to the nonsingular points in the 6-dimensional orthogonal GF(2)-
space of minus type on which G O/O2(G O ) acts. Let C ∈ Hv be such that O ∈ C , i.e., C ∈
resG(O). Then HO ∩ HC

∼= 26.[28].�3, (HO ∩ HC )/O2(G O ) ∼= 2×(2×�4), and the images
of the 3-transpositions in the orbits in C generate the fours group Z ((HO ∩ HC )/O2(G O )).
Since a subgroup 2× (2×�4) of O−

6 (2) ∼= �−
6 (2).2 is contained in a subgroup 2×21+4.�3

we see that (G O ∩ GC )/O2(G O ) ∼= 2 × 21+4.�3. So |G O ∩ GC : HO ∩ HC | = 4 and there
are exactly 4 elements in resG(C) ∩ G1. Since |res(C) ∩ res(H) ∩ G2| = 3 any of these 4
elements are incident to a common element of type 2 in res(C). By transitivity the same
should hold for any element of type 1 and so the diagram of G follows.

Now we can state and prove Theorem 2.

Theorem 2 Let G be a c.C∗
3 -geometry with c.C2-residues belonging to U4(2) and satisfying

condition (II). Assume that the graph B defined from G as in Section 5 satisfies (III). Then
G is either the c.C∗

3 -geometry belonging to Fi22 or its triple cover belonging to 3 · Fi22.

Proof: By the results of Sections 5 and assumption we can construct a geometry B from
G such that B satisfies (IV). By Proposition 6.8 we have that B ∼= FT for F = F(Fi22). In
particular, there exists a flag-transitive action of the group G = Fi22 on B.

Construct a c.C∗
3 -geometry G̃ from B as described above. Then G̃ ∼= G(Fi22) and G acts

flag-transitively on G̃. Furthermore, by definition of G̃ the objects of type 4 in G̃ are just
the objects of type 1 in B, i.e., the Schläfli subgraphs in the graph B. Recall from Section
5 the graph � and its relation with B. If all connected components of � are isomorphic
to �22 then each Schläfli subgraph of B corresponds to a unique object in G4 while in the
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case of 3�22 by (5.15) there are three such objects. In any case, there exists a well-defined
surjection

ϕ : G4 → B1 → G̃4

q → Bq → q̃

which is bijective in the case of �22 and has fibers of size three otherwise. Let us show that
ϕ extends to a morphism of geometries ϕ : G → G̃.

If p, q ∈ G4, p �= q , are incident to a common element t ∈ G3 then Bt := Bp ∩ Bq is a
short triangle in B. So Bp and Bq are incident to a common element of type 2 in B. Hence
{ p̃, q̃} ∈ E(D) (where D ∼= AT denotes the graph on B1 defined as AT ) and so p̃, q̃ are
incident to a common element t̃ ∈ G̃3. By (II)(c) an element t ∈ G3 is uniquely determined
by any pair of elements in G4 ∩ resG(t) and by flag-transitivity the same holds in G̃. So the
above implies that ϕ extends to a map

ϕ : G3 → G̃3

which preserves the incidence relation between objects of types 3 and 4.
Since the c.C3-diagram implies that objects of types 1 or 2 are uniquely determined by

the sets of objects of types 3 and 4 in their residues we can identify any x ∈ G1 ∪ G2 with
the set resG(x) ∩ (G3 ∪G4) and in this way extend ϕ to an incidence preserving map from G
onto G̃ whose restriction to any residue will be an isomorphism. So ϕ is indeed a morphism
of geometries. Now |G4| = 3 j |G̃4| with j ∈ {0, 1} and by (II)

|G4| · |resG(x) ∩ Gi | = |Gi | · |resG(y) ∩ G4|

for i = 1, 2, 3. So calculating the number of objects of each type in G and G̃ we see that ϕ is
either an isomorphism or has fibers of size 3. Since by (3.3) the universal cover of G(Fi22)
is G(3 · Fi22) this proves the theorem.

7.2. From G to E

In this subsection we assume that G = G(Fi22) or G(3 · Fi22) and we reconstruct the
geometry E(Fi22) respectively E(3 · Fi22) from G. Then we prove Theorem 3.

Let � be the collinearity graph of G, i.e., the graph with vertices V (�) = G1 and edges
E(�) = G2. Then the elements of types 4 and 5 in E are just the edges and vertices of �;
in other words

E5 = G1 and E4 = G2.

For x ∈ G3 ∪ G4 let �x be the subgraph of � with V (�x ) = res(x) ∩ G1 and E(�x ) =
res(x) ∩ G2.

If x ∈ G3 then �x is the complete graph on 4 vertices and so �x contains exactly 4
triangles. For p ∈ res(x) ∩G1 let �x,p denote the triangle in �x which does not contain the
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vertex p. Then we define

E3 := {�x,p | x ∈ G3, p ∈ res(x) ∩ G1}.

If x ∈ G4 then (as res(x) belongs to U4(2)) �x has the intersection array

✒✑
�✏

1
15 1 8 6✎

✍
�
✌15

6 ✎
✍

�
✌20

9

If p, q ∈ res(x) ∩ G1 and p, q are at distance two in �x then p and q have exactly 6
common neighbours in �x and there is exactly one other vertex r ∈ �x which is at distance
two from both p and q and adjacent to all their common neighbours. Let �x,p,q,r be the
subgraph of �x induced on p, q, r and their 6 common neighbours in �x . Then �x,p,q,r is
isomorphic to the complete 3-partite graph K3,3,3 which has intersection array

✒✑
�✏

1
16 2 6✎

✍
�
✌6

3 ✎
✍

�
✌2

Let

E2 := {�x,p,q,r | x ∈ G4, p, q, r ∈ res(x) ∩ G1,

p, q, r are pairwise non-adjacent vertices of �x }.

Finally, the objects in E1 are certain connected components on the subgraphs of � fixed by
an outer involution of Fi22.2 and their stabilizer in G is isomorphic to �+

8 (2) : �3 of G and
the incidence relation on E is again defined by inclusion.

We leave it to the reader to verify for himself that E is as desired and that G acts flag-
transively on E and we turn to the proof of Theorem 3.

Theorem 3 Let E be a c.F4(1)-geometry satisfying (I). Suppose that the geometry G con-
structed from E as in Section 4 satisfies the conditions of Theorem 2. Then E ∼= E(Fi22) or
E(3 · Fi22).

Proof: By Theorem 2 we have that G ∼= G(Fi22) or G(3 · Fi22). In particular, there exists
a flag-transitive action of the group G on G where G = Fi22 or 3 · Fi22.

Construct a c.F4(1)-geometry Ẽ from G as described above. Then Ẽ ∼= E(Fi22) or
E(3 · Fi22) and G acts flag-transitively on Ẽ . Furthermore, by definition of Ẽ the objects of
types 4 and 5 in Ẽ are just the objects of types 2 and 1 in G, i.e., the edges and the vertices of
the graph �, and the incidence relation between them is the one inherited from G. Since the
same holds also holds for E and G there exists a well-defined incidence preserving bijection

ϕ : E4 → G2 → Ẽ4

ϕ : E5 → G1 → Ẽ5.

Let us show that ϕ extends to an isomorphism of geometries ϕ : E → Ẽ .
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Recall from (1.1) and the remark thereafter that the objects of E can be identified with
certain cliques of size 1, 2, 4, 8, and 36 in the collinearity graph � = �(E). From the diagram
of E and condition (I) it follows that the cliques corresponding to objects of types 1, 2, or 3
are uniquely determined as the intersections of the cliques corresponding to the objects of
types 4 and 5 in their residue. Hence there is a well-defined way to extend ϕ to an incidence
preserving map from E onto Ẽ whose restriction to any residue is an isomorphism. So ϕ is
indeed a morphism of geometries. Now |E i | = |Ẽ i | for i ∈ {4, 5} and by the same counting
argument as in the proof of Theorem 2 this also holds for i ∈ {1, 2, 3}. This implies that ϕ

is an isomorphism and the theorem is shown.

Finally we can prove Theorem 1.

Proof of Theorem 1: We want to deduce Theorem 1 from Theorem 3; so we have to
show that the existence of a flag-transitive action on E implies that the graph B defined in
Section 5 satisfies the condition (III).

Let E be a flag-transitive automorphism group of E . First we show

(1) E acts flag-transively on the c.C∗
3 -geometry G.

Recall the definition ofG from Section 4. AsG1 = E5 andG2 = E4 and the incidence relation
between objects of type 1 and 2 in G is the one inherited from E , E acts flag-transitively
on the truncation of G consisting only of the objects of types 1 and 2. Furthermore, flag-
transitivity of E on E implies that E acts vertex- and edge-transitively on the graphs 	̃

and �̃ defined at the beginning of Section 4 and so it permutes transitively their connected
components, i.e., the sets of objects of types 3 and 4 in G. Finally, any maximal flag of
G is of the shape {x1, x2, �̃

x3 , 	̃x4} where xi ∈ E6−i and {x1, x2, x3, x4} is a flag in E . So
flag-transitivity of E on E implies that E is transitive on the set of maximal flags in G. One
can also easily see from this that any flag of G is contained in a maximal one; so (1) follows.

Now flag-transitivity of E on G implies that E acts transitively on the set of connected
components of the graph � defined in Section 5.1 and that the (setwise) stabilizer EX of
a connected component X of � acts flag-transitively on the associated P-geometry P(X ).
Hence by (5.4) and [6] EX induces an action containing M22 or 3·M22 on P(X ) and on X .
Since this group acts transitively on the set H(P(X )) of subgeometries of P(X ) defined
in Section 5.2 and because by (5.8) the short triangles of the graph B correspond to those
subgeometries, we see that E acts transitively on the sets of vertices and short triangles of
B and EX acts transitively on the set of short triangles through X . Furthermore, the Schläfli
subgraphs of B correspond to the elements in G4. So E is also transitive on the set S of
Schläfli subgraphs of B and the (setwise) stabilizer ES of a Schläfli graph S ∈ S is transitive
on the sets of vertices and triangles contained in S. Let KS be the kernel of the action of ES

on S. Then by [14] this implies

(2) U4(2) ≤ ES/KS .

Now let S1, S2 ∈ S be two different Schläfli graphs and X , Y two different connected
components of � such that X, Y ∈ S1 ∩ S2. Set E1 := ES1 , K1 := KS1 , let T be the set of
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short triangles of B through X , and denote by K X ≤ EX the kernel of the action EX on T .
Then independently from the isomorphism type of X we have

(3) M22 ≤ EX/K X ≤ M22.2 and the action of EX on T is similar to the action of M22 on
the set of cosets of a subgroup 24.A6 (respectively M22.2 on 24.�6).

Set

U := {(T, Z ) | T ∈ T , X �= Z ∈ T },
T1 := {T ∈ T | T ⊆ S1},
U1 := {(T, Z ) | (T, Z ) ∈ U, T ∈ T1}.

Then |U | = 77 · 2 = 154, |T1| = 5, and |U1| = 10. Furthermore, from (2) and the action of
U4(2) on the Schläfli graph we can deduce

(4) 24.A5 ≤ E1 ∩ EX/K1, the action of E1 ∩ EX on T1 involves an action similar to that
of 24.A5 on the set of cosets of a subgroup 24.A4, and the action of E1 ∩ EX on U1

involves an action similar to that of 24.A5 on the set of cosets of a subgroup 23.A4.

Notice that (4) and transitivity of EX on T implies transitivity of EX on U . Next we show

(5) K X �= 1.

Assume K X = 1. Then we deduce from (3) and the fact that 24.A6 does not possess a
subgroup of index 2 that we must have EX

∼= M22.2 (so the action of EX on T is similar to
the action of M22.2 on the set of cosets of a subgroup 24.�6) and that the action of EX on
U must be similar to the action of M22.2 on the set of cosets of a subgroup 24.A6. But then
E1 ∩ EX

∼= 24(Z2 × �5) and the action of E1 ∩ EX on U1 must be similar to the action of
24.(Z2 × �5) on the set of cosets of a subgroup 24.�4 where the irreducible 4-dimensional
submodule in O2(E1 ∩ EX ) acts trivially on U1. This contradicts the statement in (4) about
the action of a subgroup 24.A5 ≤ E1 ∩ EX . So (5) holds.

The proof of (5) shows even more. Let (T, Z ) ∈ U , let EXTZ be its stabilizer in EX , and
denote by E0 the full preimage in E1 ∩ EX of the subgroup 24.A5 ≤ E1 ∩ EX/K1 and by
K0 the full preimage in E0 of O2(E0/K1). Then

(6) (i) EXTZ K X/K X
∼= 24.A6 or 24.�6 (depending on EX/K X

∼= M22 or M22.2), |K X :
K X ∩ EXTZ| = 2, and there exists k ∈ K X such that T = {X, Z , Zk}.

(ii) K0 = K1 K X .

Notice that since K X stabilizes each triangle in T it must preserve each Schläfli graph
through X as a set; in particular, K X ≤ E1 ∩ ES2 . Hence we deduce from (6)(i)

(7) If there exists some T ∈ T1 such that (T, Y ) ∈ U1 then T ⊆ S1 ∩ S2.
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By (7) and the fact that maximal cliques in the Schläfli graph are just triangles it suffices
to show that X and Y cannot be at distance 2 in S1. But if this is the case then by the action
of U4(2) on the Schläfli graph there are 16 conjugates of Y under E1 ∩ EX in S1 and these
form an orbit under K0. So by (6)(ii) they are all conjugate to Y in K X and hence they all
belong to S2. Repeating the argument for other pairs of vertices in S1 ∩ S2 we now easily
get the contradiction S1 = S2.

This proves that (III) holds for B and so Theorem 1 follows from Theorem 3.

Appendix A: Some remarks on the flag-transitive case

Here we establish flag-transitive versions for some of the results of Sections 5.1 and 5.2.
Our assumptions are as in Section 5. Furthermore, we assume that E ≤ Aut(G) acts flag-
transitively on G. However, we do not use any information about the precise structure of E .
In particular, we do not use (3.3). For any object x of G we denote by Ex the stabilizer of
x in E and by Kx the kernel of the action of Ex on resG(x).

First of all, flag-transitivity of E on G implies that E acts vertex- and edge-transitively
on the graph �, that it permutes the connected components of � transitively, and that the
(setwise) stabilizer in E of a connected component �x , x ∈ G2, acts vertex- and edge-
transitively on �x . Notice also that the stabilizer Eq of any q ∈ G4, involves U4(2) on
resG(q) by [7, (6.1)] and that the stabilizer Ea of any a ∈ G1 acts as Sp6(2) on resG(a) by
[14]. From this we get

Lemma A.1 (5.2) If �x , x ∈ G2, is a connected component of � and q ∈ G4 then either
�x ∩ �q is connected or � is connected.

Proof: Set X := �x and denote by EX the setwise stabilizer of X in E . Suppose X ∩ �q

contains two connected components X1, X2. Since the stabilizer in U4(2) of a Petersen graph
is a maximal subgroup of U4(2) (isomorphic to 24.A5) and the stabilizers of two different
Petersen graphs are different, we then get

Eq = Kq
〈
Eq ∩ EX1 , Eq ∩ EX2

〉 ≤ Kq EX∩�q ≤ EX .

On the other hand, we also have Ex ≤ EX and as we may assume x ∈ resG(q) we deduce
that EX ≥ 〈Ex , Eq〉 acts flag-transitively on G. Hence � = X .

Lemma A.2 (5.3) If x,y ∈ G2, x �= y, such that �x = �y then either x ∩ y = ∅ or � is
connected.

Proof: Set X := �x . Suppose a ∈ x ∩ y, a ∈ G1. Then in resG(a) the objects x and y
correspond to two maximal totally isotropic subspaces in the symplectic space related to
Sp6(2). Since the stabilizer of such a subspace is maximal subgroup of Sp6(2) (isomorphic to
26.L3(2)) and the stabilizers of two different subspaces are different we can argue as before:

Ea = Ka〈Ea ∩ Ex , Ea ∩ Ey〉 ≤ EX .

Hence EX ≥ 〈Ea, Ex 〉 is flag-transitive on G and � = X .
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As already mentioned in the proof of Theorem 1, the definition of the P-geometry P x

associated with X := �x implies that EX acts flag-transitively on P x and so (5.4) and [6]
imply that EX involves M22 or 3·M22. Since none of them contains a subgroup isomorphic to
U4(2) and Ex ∩ Eq acts non-trivially on X ∩�q if X ∩�q �= ∅ we see that � is disconnected
and so the first alternatives of (A.1) and (A.2) hold.

Lemma A.3 (5.6) The map β : P x → G is injective.

Proof: This can be proved similarly as (5.6) but using (A.1) and (A.2) instead of (5.2)
and (5.3).

Lemma A.4 (5.7) If {�1, �2} ∈ E(B) then �1 �= �2.

Proof: By definition of the adjacency in B we have �1 = �x , �2 = �y for some
x, y ∈ G2 with |x ∩ y| = 1. Hence the assertion follows from (A.2).

Appendix B: An elementary proof of Proposition 6.6

Here we prove the explicit calculation of the graph C0. The notation is as in Section 6.

Proof of Proposition 6.6: For C ∈ C3
0 = V (C0) and i ≥ 0 we denote by Di (C) the set of

vertices at distance i from C in C0. We fix some C0 ∈ C3
0 , and we set for short, Di := Di (C0);

so D0 = {C0}. We will determine the sizes of Di , i ≥ 1, and the intersection array in a
series of steps.

(a) |D1| = 42 and |D1 ∩ D1(C)| = 1 for any C ∈ D1.

By (6.1)(ii) there are exactly 21 cliques from C2
0 contained in C0 and by the diagram of B

each of them is contained in exactly two other cliques as C0 from C3 which by connectedness
of C0 must be in C3

0 . This gives |D1| ≤ 42 and |D1 ∩ D1(C)| ≥ 1 for any C ∈ D1.
On the other hand, let C1, C2 ∈ D1 with C1 ∩ C0 �= C2 ∩ C0. Then by (6.2)(iii) there is

exactly one element a ∈ B1 such that a ∈ p(C1) ∩ p(C2) ∩ p(C0). By (6.4) we have that
(γ (C1), γ (C0), γ (C2)) is a path in the Schläfli graph Ba . But γ (C1 ∩ C0) �= γ (C2 ∩ C0)
as C1 ∩ C0 �= C2 ∩ C0. So γ (C1) and γ (C2) are distinct and non-adjacent vertices of Ba .
This implies that also C1 �= C2 and {C1, C2} �∈ E(C0). Hence we have equality in both cases.

(b) |D2| = 336 and |D1 ∩ D1(C)| = |D2 ∩ D1(C)| = 5 for any C ∈ D2.

If C ∈ D2 then as in (a) there are a ∈ B1 and C1 ∈ D1 such that (C0, C1, C) is a path
of length two in one of the Schläfli graphs in Ca . This implies that |Di ∩ D1(C)| ≥ 5 for
i = 1, 2. On the other hand, if C2 ∈ D1(C) ∩ D1 and (C0, C2, C) is the corresponding
2-path in some Schläfli graph Sb ⊆ Cb then (6.5) implies that a = b because C0 and C are
contained in a triangle. So C2 must be one of the already discovered five neighbours and
|D1 ∩ D1(C)| = 5 and |D2| = 42·40

5 = 336 holds.
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(c) If a ∈ p(C0) and C ∈ C0, C �∈ D0 ∪ D1 ∪ D2, then there exists some C̃ ∈ C0 ∩ Ca such
that C̃ and C0 are in the same connected component of Ca and C̃ ∈ D1(C).

Let C1, C2, . . . , Ck := C be a shortest path in C0 between C and a vertex C1 which is in
the same connected component of Ca as C0. Suppose k ≥ 3.

As before there exists b ∈ B1 such that (C1, C2, C3) is a 2-path in Cb. Then a, b ∈ p(C1);
hence {a, b}t is a vertex of C1 for a suitable t ∈ B2 and t determines a unique special 10-
clique Ct ⊆ C1 with {a, b}t ∈ Ct . Now Ct determines a triangle containing C1 in Cb and the
structure of the Schläfli graph shows that one of the other two vertices in this triangle must
be at distance one from C3. In other terms, there exists some C̃ ∈ C0 ∩Cb with C̃ ∩C1 = C̄1

and C̃ ∈ D1(C3). But as a ∈ p(Ct ) we see that C̃ ∈ Ca and, in fact, C̃ lies in the same
connected component as C1, hence also as C0. So we can replace our path by the shorter
path C̃, C3, . . . , Ck and have a contradicton.

(d) D4 = ∅, |D3| = 512, and |D2 ∩ D1(C)| = |D3 ∩ D1(C)| = 21 for any C ∈ D3.

The first statement follows from (c) and the fact that the Schläfli graph has diameter 2.
Now let a ∈ p(C0) and let C1, C2 ∈ D2 ∩ Ca such that C1 and C2 are also at distance

two from C0 in Ca and suppose C1, C2 ∈ D1(C) for some C ∈ D3. Then there is b ∈ B1

such that C1, C, C2 is path in Cb and again by (6.5) either a = b or C1, C2 are contained
in a triangle. The first case is not possible since C ∈ D3 and the diameter of the Schläfli
graph is 2. In the second case (6.5) also implies that, on the one hand, the triangle through
C1 and C2 must be in Ca , on the other hand that the third vertex of it is C . So C ∈ D3

yields again a contradiction and we have shown that any two different vertices at distance
two from C0 in Ca cannot be adjacent to a common vertex in D3. Since there are exactly 16
such vertices we get by (b) and (c) that |D3| = 16 · 32 = 512, |D2 ∩ D1(c)| = 336·32

512 = 21,
and |D3 ∩ D1(c)| = |D1(C)| − |D2 ∩ D1(c)| = 21. This completes the proof of (i).

Now let D be the graph on the set of planes of the 6-dimensional unitary polar space
P(U6(2)) in which two planes are adjacent if they intersect in a line. Then D has the same
intersection array as C0. Furthermore, each point or line P(U6(2)) is uniquely determined
as the intersection of the planes containing it, i.e., as the subgraph of D induced on its
residue (which is either a Schläfli graph or a triangle). Since the objects of H0 are just the
vertices, triangles, and Schläfli subgraphs of C0 it is now easy to deduce the isomorphism
H0

∼= P(U6(2)) from (i) and the diagram.

References

1. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Clarendon Press,
Oxford, 1985.

2. H. Cuypers, “Finite locally generalized quadrangles with affine planes,” Europ. J. Comb. 13 (1992), 439–453.
3. J. Hall and S.V. Shpectorov, “Rank 3 P-geometries,” Geom. Dedicata. 82 (2000), 139–169.
4. A.A. Ivanov, S.A. Linton, K. Lux, J. Saxl, and L.H. Soicher, “Distance-transitive representations of the

sporadic groups,” Comm. Algebra 23(9) (1995), 3379–3427.
5. A.A. Ivanov, D.V. Pasechnik, and S.V. Shpectorov, “Extended F4-buildings and the Baby Monster,” Invent.

Math. 144 (2001), 399–433.



150 IVANOV AND WIEDORN

6. A.A. Ivanov and S.V. Shpectorov, “The flag-transitive tilde and Petersen-type geometrics are all known,” Bull.
Amer. Math. Soc. New Ser. 31(2) (1994), 172–184.

7. A.A. Ivanov, “On geometries of the Fischer groups,” Eur. J. Comb. 16(2) (1995), 163–183.
8. A.A. Ivanov, Geometry of Sporadic Groups I. Peterson and Tilde Geometries, Cambridge University Press,

Cambridge, 1999.
9. T. Meixner, “Some polar towers,” European J. Combin. 12 (1991), 397–451.

10. D.V. Pasechnik, “Geometric characterization of the sporadic groups Fi22, Fi23, and Fi∗
24,” J. Comb. Th. (A)

68 (1994), 100–114.
11. D.V. Pasechnik, “Extended polar spaces of rank at least 3,” J. Comb. Th. (A) 72(2) (1995), 232–242.
12. A. Pasini, Diagram Geometries, Oxford University Press, Oxford, 1994.
13. M. Ronan, “Embeddings and hyperplanes of discrete geometries,” European J. Combin. 8 (1987), 179–185.
14. G. Seitz, “Flag-transitive subgroups of Chevalley groups,” Ann. Math. 97 (1973), 27–56.
15. J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, 386, Springer, Berlin,

1974.


