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Abstract. The generating rank is determined for several GF(2)-embeddable geometries and it is demonstrated
that their generating and embedding ranks are equal. Specifically, we prove that each of the two generalized
hexagons of order(2, 2) has generating rank 14, that the central involution geometry of the Hall-Janko sporadic
group has generating rank 28, and that the dual polar space DU(6,2) has generating rank 22. We also include a
survey of all instances in which either the generating or embedding rank of an embeddable GF(2) geometry is
known.
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1. Introduction

An incidence systemis a triple(P, L , I ) consisting of a setP whose elements are called
points, a setL whose members are calledlines, and a symmetric relationI ⊂ (P× L) ∪
(L × P). If p∈ P, l ∈ L and(p, l )∈ I then we sayp is incident or onl . (P, L , I ) is said to
be alinear incidence systemor apoint-line geometryif two points are incident with at most
one line. In this case we may identify each line with the set of points with which it is incident
and replaceI with the symmetrization of the relation∈ and then we will write(P, L) in
place of(P, L , I ). (P, L) is a said to be angeometry of order 2or, alternatively for the
purpose of this paper, a GF(2) geometry if every one of its lines has three points. For a finite
GF(2)-geometry a projective embedding is an injective mappinge: P→ PG(n−1, 2) = 5
such that

(1) 〈e(P)〉F2
= 5 and

(2) for any linel = {x, y, z}, e(x)+ e(y)+ e(z) = 0.

The latter condition is equivalent to〈e(l )〉F2
is a projective line of5. Assume that(P, L)

is a GF(2)-geometry. Let [P] be the vector space over GF(2) with basisP. For a line
l = {x, y, z} let l̄ = x+ y+ z ∈ [ P] and set [L] = 〈l̄ | l ∈ L〉 a subspace of [P]. Let U (P)
be the quotient [P]/[L] and for x ∈ P set ē(x) = x + [L]. Then an embedding exists
for (P, L) if and only if the the map̄e is injective. In this case this embedding is called
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the universal embedding. For such a geometry we define theembedding rankof (P, L),
er(P, L), equal to be the dimension ofU (P).

By a subspaceof an incidence system0 = (P, L) we mean a subsetX of the point
set P with the property that if a line meetsX in at least two points then the line is en-
tirely contained inX. Clearly the intersection of subspaces is a subspace. Consequently,
for an arbitrary subsetX of P we can define thesubspace generatedby X to be the in-
tersection of all subspaces containingX and will be denoted by〈X〉0. This is the unique
minimal element among the collection of subspaces which containX. We will say that
a subsetX generates Pif 〈X〉0 = P and we define thegenerating rankof (P, L),
gr(P, L) to be the size of a generating set of minimal cardinality. It is an immediate con-
sequence of these definitions that if0 = (P, L) is an embeddable GF(2)-geometry then
gr(0) ≥ er(0).

This paper is part of a larger project to determine the generating rank of highly regular
geometries with three points on a line and more generally to investigate the relationship
between the embedding and generating rank. Elsewhere we conjectured the generating and
embedding ranks are equal for GF(2) geometries but that has been shown to be false ([20]).
His counterexample, however, is not a common geometry so the question remains whether
for Lie type geometries or geometries for sporadic groups the embedding and generating
ranks are equal. Here we will determine the generating rank of four GF(2) embeddable
geometries which are all generalized hexagons or near polygons. By a near-2n gon we
mean a geometry(P, L) in which the collineairity graph has diametern and which has
the property that for each point line pair(p, l ) there is a unique closest point top on
l . ([25]). A generalized hexagonis a near hexagon (6-gon) with the additional property that
for two points at distance two there is a unique common neighbor. ([8]). The particular
geometries studied here are the smallest Lie geometries for which the generating rank was,
heretofore, unknown. For each we will determine its generating rank and, in particular, show
that it is equal to the previously determined embedding rank. Specifically, we prove the
following

Theorem A
(a) The usual G2(2) generalized hexagon has generating rank14.
(b) The dual G2(2) generalized hexagon has generating rank14.
(c) The involution geometry of the Hall-Janko simple group has generating rank28.
(d) The unitary dual polar spaceDU(6, 2) has generating rank22. In each instance the

generating rank is equal to the universal embedding rank.

By the “usual”G2(2) generalized hexagon we mean the duality class which has an em-
bedding inPG(5, 2). The outline of this paper is as follows: In Section two we determine
the generating rank of the usualG2(2) generalized hexagon. Section three is devoted to its
dual. Section four treats the involution geometry of the Hall-Janko group. In Section five
we study the last of our four geometries, the dual polar space of unitary type,DU(6, 2).
Finally, in Section six we include a survey of generating and embedding ranks of GF(2)
embeddable geometries.
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2. The usualG2(2) generalized hexagon

The purpose of this section is to prove the following

Proposition 2.1 The usual G2(2) generalized hexagon has generating rank 14.

Let DSP(2n,q) denote the dual polar space of symplectic type in dimension 2n over the
field Fq (see [12]) for a description of this geometry.

It is well known that the usualG2(2) generalized hexagon is a geometric hyperplane of
DSP(6, 2) ([24]). We describe this inclusion: Let(P,L) be the dual polar spaceDSP(6, 2)
and fori ≤ 3 let1i denote the pairs of points at distancei and letd(, ) denote the distance
function. For a pointa ∈ P denote byHa the geometric hyperplane consisting of all points
at distance at most two froma:

Ha = 1≤2(a) = {b ∈ P | d(a, b) ≤ 2}.
Then for any pair of pointsa, b ∈ 13 the sum

Ha ⊕ Hb = [Ha ∩ Hb] ∪ [(P\Ha) ∩ (P\Hb)]

is a geometric hyperplane isomorphic to the usualG2(2) generalized hexagon.
In ([15]) the following method for constructing a new GF(2) geometry from a given

GF(2) geometry0 = (P, L) is introduced:

Let I = {1, 2, 3}. SetY = I × P, Z = {σ : I → P | Im(σ ) ∈ L}. ThenP̃ = Y ∪ Z is the
new set of points.

The lines are of four types:

(i) For i ∈ I , l ∈ L , {i } × l ∈ L̃;
(ii) For x ∈ P, I × {x} ∈ L̃;
(iii) For (i, x) ∈ Y, σ 6= τ ∈ Z; {(i, x), σ, τ } ∈ L̃ if Im(σ ) = Im(τ ), σ (i ) = τ(i ) = x;

and
(iv) {σ1, σ2, σ3} ⊂ Z is in L̃ if the Im(σi ) are distinct and if eachi

{σ1(i ), σ2(i ), σ3(i )} ∈ L .

It is further shown in ([15]) that if0 = (P, L) is a generalized quadrangle of order 2 then0̃ =
(P̃, L̃) isDSP(6, 2). We will make use of this model. Before doing so, however, we also need
a useable description of a generalized quadrangle of order 2. Thus, letV = 〈x1, x2, y1, y2〉be
a four dimensional symplectic space over GF(2) and assume thatx1 ⊥ x2 ⊥ y2 ⊥ y1 ⊥ x1.

Let a1= x1,a2= y2,a3= x1+ y2, b1= x2, b2= y1, b3= x2+ y1 and seta= (1,a1), b =
(2,a2) so thatd0̃(a, b) = 3. We first enumerate the points in(Ha⊕Hb)∩Y which we shall
denote byA:

A = (Ha ⊕ Hb) ∩ Y

= (1,a2), (1, b1), (1,a2+ b1), (1, b2), (1,a2+ b2), (1, b3), (1,a2+ b3),
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(2,a1), (2, b1), (2,a1+ b1), (2, b2), (2,a1+ b2), (2, b3), (2,a1+ b3),

(3,a3), (3, b1), (3,a3+ b1), (3, b2), (3,a3+ b2), (3, b3), (3,a3+ b3).

This set of 21 points is generated by the following nine points:

(1,a2), (2,a1), (3,a3), (i, bj ), i = 1, 2; j = 1, 2, 3.

Now we claim thatHa ⊕ Hb is generated by these nine points together with the following
five points from(Ha ⊕ Hb) ∩ Z:

σ1 = (a1, b1,a1+ b1), σ2 = (b2,a2,a2+ b2), σ3 = (a3,a3+ b3, b3),

σ4 = (a2+ b3,a1+ b2,a3+ b1), σ5 = (a2+ b1,a1+ b3,a3+ b2).

Let X denote the subspace of0̃ generated by these 14 points so thatX contains(Ha ⊕
Hb)∩Y.

Z∩ (Ha⊕Hb) has 42 points and each of these is of the form(x, y, z)where{x, y, z} is a
line of0. There are, of course, 15 lines in0 and 9 of them are of the form{ai , bj ,ai +bj } for
i, j ∈ I . For eachl in this latter set there are exactly twoσ ∈ Z∩(Ha⊕Hb)with Im(σ ) = l .
Moreover, if one suchσ is in X then there will be a unique point inA collinear withσ and
then the third point,τ on the line joining these two will also haveIm(τ ) = l and hence also
τ ∈ X. For eachl among the remaining six lines there are fourσ ∈ Z ∩ (Ha ⊕ Hb) with
Im(σ ) = l . In fact, for each such linel there is a uniqueσ ∈ Z with Im(σ ) = l such that
(i, σ (i )) ∈ A for i = 1, 2, 3. If we setτi equal to the third point on the line joiningσ and
(i, σ (i )) thenτi ∈ Z∩ (Ha⊕ Hb) andIm(τi ) = l . It therefore suffices to show that for each
line l of 0 there is someσ ∈ X such thatIm(σ ) = l .

For a permutationπ ∈ S3 and aσ ∈ Z we shall denote byπσ the effect of permutating
the three entries ofσ by π . Whenπ is a transposition,(ij) then the resulting point ofZ
is the point on the line joiningσ to (k, σ (k)) where{1, 2, 3} = {i, j, k}. So, for example,
(13)σ1 = (a1 + b1, b1,a1) is the point ofZ on the line joiningσ1 to (2, b1). Since these
are both inX it follows that (13)σ1∈ X. In each of the cases below the permutations of the
σi are obtained by joiningσi to a point ofA. We shall also indicate that two points ofP̃
are collinear by writingx∼ y and in this case the third point on the line will be denoted by
x + y.

σ1 ∼ σ2 andσ1+ σ2 = (a1+ b2,a2+ b1,a3+ b3).

(13)σ1 ∼ (12)σ3 and(13)σ1+ (12)σ3 = (a2+ b2,a3+ b1,a1+ b3).

(13)σ1 ∼ (23)σ4 and(13)σ1+ (23)σ4 = (a3+ b2,a3, b2).

σ1 ∼ (12)σ5 andσ1+ (12)σ5 = (b3,a2,a2+ b3).

(23)σ2 ∼ σ3 and(23)σ2+ σ3 = (a3+ b2,a1+ b1,a2+ b3).

σ2 ∼ (12)σ4 andσ2+ (12)σ4 = (a1, b3,a1+ b3).

(23)σ2 ∼ (13)σ5 and(23)σ2+ (13)σ5 = (a3,a3+ b1, b1).

σ3 ∼ (13)σ4 andσ3+ (13)σ4 = (b1,a2+ b1,a2).
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(12)σ3 ∼ (23)σ5 and(12)σ3+ (23)σ5 = (a1+ b2, b2,a1).

(12)σ4 ∼ (23)σ5 and(12)σ4+ (23)σ5 = (a3+ b3,a1+ b1,a2+ b2).

These ten lines complement the five lines which are the images ofσi , 1≤ i ≤ 5. We have
therefore shown that for every linel there is aσ ∈ X such thatIm(σ ) = l . From the
above argument it then follows thatX = Ha⊕ Hb and consequently, the usual generalized
hexagon of order 2 is generated by 14 points. By ([17]) we know as well that the universal
embedding rank is 14. This completes the results of this section.

3. The dualG2(2) generalized hexagon

In this section we prove part (b) of our main theorem. Throughout this section0 = (P, L)
will be the dualG2(2) generalized hexagon and we will denote byd(, ) the distance func-
tion in the point-collinearity graph. Forx ∈ P, i ≤ 3 an integer we let1i (x) be the set
of points at distancei from x. We will also denote by1≤i (x) the collection of points
y such thatd(x, y) ≤ i . As with the usualG2(2) generalized hexagon every line con-
tains three points and every point lies on three lines and then it is trivial to compute that
|11(x)| =6, |12(x)| =24, |13(x)| =32.

The incidence system of this section can be realized as the geometry of reflection centers
for the groupG2(2) represented in a six space over the quaternions. This geometry is the
same as the long root subgroup geometry of the groupG2(2) and in this section we make this
identification. As a reference see ([11]). For the remainder of this section we letG denote
a group isomorphic toG2(2). P is then the 63 central involutions of the groupG (those
which belong to the commutator subgroup which is isomorphic toU3(3)). For a subgroup
Y of G we will let P(Y), L(Y) denote the points and lines contained inY. We remark that
P(Y) is a subspace ofP. The possible relations between a pairx, y∈ P of distinct central
involutions are as follows:

1. x andy are collinear, that is,d(x, y) = 1. In this casexy = yx ∈ P and the line onx
andy is {x, y, xy}. Forx ∈ P we denote by11(x) the points at distance one fromx.

2. d(x, y) = 2. In this case〈x, y〉 is a dihedral group of order 8 and the unique point which
is collinear to bothx andy is (xy)2 = Z(〈x, y〉) = 〈x, y〉′.

3. d(x, y) = 3= |xy| and therefore〈x, y〉 is isomorphic toS3.

We next record as a lemma the fact thatG2(2) containsSL(3, 2) as a subgroup generated
by long root involutions:

Lemma 3.1 G = G2(2) contains a single classS of subgroups isomorphic to SL(3, 2)
generated by long root involutions. The set of long root involutions contained in S form
a subhexagon with parameters(2, 1). For S such a subgroup NG(S) is isomorphic to
Aut(SL(3, 2)) and consequently there are36such subgroups.

Proof: This is easily deduced from ([10]). 2
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Lemma 3.2 Let S∈ S. Then for every x∈ P\P(S),|P(S) ∩11(x)| = 1.

Proof: Note that if y, z ∈ P(S) then〈y, z〉 ⊂ S and consequentlyP(〈y, z〉) ⊂ P(S).
Suppose now thaty, z ∈ P(S) andd(y, z) = 2. Then11(y) ∩11(z) = {(yz)2} ∈ P(S).
From this it follows that for anyx ∈ P\P(S), |11(x)∩P(S) | ≤1. On the other hand there
are 21 points inP(S). For each pointy ∈ P(S) there is a unique linel y on y which is not
contained inP(S) and each such line contains 2 points which are not inP(S). Consequently,
there are 21×2= 42 pointsx ∈ P\P(S) such thatP(S)∩11(x) 6= ∅. Since|P(S)| = 21
this accounts for all points. 2

Lemma 3.3 Let y, z ∈ P, d(y, z) = 2. Then|{S∈ S | 〈y, z〉 ≤ S}| = 4.

Proof: G is transitive on such pairs of which there are63×24
2 = 756.G is also transitive

onS. Moreover, forS ∈ S there are21×8
2 = 84 such pairs andNG(S) is transitive on the

distance two pairs contained inS. It then follows that for any such pair{y, z} the number
α(y, z) = |{S ∈ S | 〈y, z〉 ≤ S}| is independent of the pairy, z. Letting α denote this
common value we have 36× 84= 756α and henceα = 4. 2

Lemma 3.4 Let y, z ∈ P, d(y, z) = 2 and set x= (yz)2 the unique point collinear with
both y and z. Let u∈ 11(y) ∩ 12(x). Then there are precisely two S∈ S containing
u, y, x, z.

Proof: Sinced(u, x) = 2 and11(u) ∩11(x) = y = (ux)2 it follows thatd(u, y) = 3,
〈u, y, x, z〉 ∼= S4 andG2(2) is transitive on such quadruples(u, y, x, z) as can be seen from
Section 3 of ([11]). The number of such quadruples is 63× 24× 4. On the other hand the
number of such quadruples lying in an element ofS is 21× 8× 2. Since|S| = 36 it now
follows that each such quadruple is contained in two elements ofS as required. 2

Before proceeding to our main proposition we require one last lemma:

Lemma 3.5 G2(2) acts via conjugation as a rank three group onS with subdegrees14
and21. Moreover, for S 6= S′ ∈ S, S∩ S′ = 〈P(S∩ S′)〉 and is either isomorphic to D8 or
S4.

Proof: Let S∈ S. Scontains 21 two-Sylow subgroups isomorphic toD8 and 14 subgroups
isomorphic toS4. Let X be a subgroup ofS isomorphic toS4. ThenX is maximal inSand
by (3.4) there are two members ofS containingX one of which isS. In this way we
obtain 14 elementsS′ ∈ S with S∩ S′ = 〈P(S∩ S′)〉 ∼= S4. Now each two-Sylow ofS is
contained in two subgroups isomorphic toS4 and these are the unique maximal subgroups
of S containing the two-Sylow. LetT be a two-Sylow ofS. From (3.3)T is contained in
four elements ofS of which S is one. By the above there are subgroupsT1, T2

∼= S4 of S
containingT . By (3.4) each ofTi is contained in two members ofS one of which isS. In this
way we obtain two membersS1, S2 6= S∈ S containingT such thatSi ∩ T ∼= S4, i = 1, 2.
Consequently, there is one more elementS′ ∈ S containingT and for thisS′, S∩ S′ is not
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isomorphic toS4. Therefore,S∩ S′ = T ∼= D8. This accounts for 21 subgroups inS and
hence the remaining ones since 1+ 14+ 21= 36. 2

We can now prove our main proposition which is part (b) of Theorem A:

Proposition 3.6 The dual G2(2) generalized hexagon can be generated by14points.

Proof: Let y, z ∈ P, d(y, z) = 2 and setx = (yz)2. By (3.5) there areS1, S2 ∈ S with
S1 ∩ S2 = 〈y, z〉. Now we can generate each ofP(Si ), i = 1, 2 by 8 points (for example
take13(a) ∩ P(Si ) for anya∈ P(Si )). Moreover, we can take three of those points to be
y, x, z. Therefore the subspace of0= (P, L) generated byP(S1)∪ P(S2) can be generated
by 13 points. We now determine the points of this subspace. We claim that it contains all
points in1≤2(x). 2

Note that|P(Si ) ∩ 12(x)| = 8, i = 1, 2. As indicated above there are 6 points in11(x)
and 24 points in12(x). We further note that11(y) is already contained inP(S1) ∪ P(S2)

since eachP(Si ) contains two lines ony and they have in common only the lineP(〈x, y〉).
This is also true for the pointsxy, z and xz. Now supposea is one of the 8 points in
P(S1) ∩ 13(x). By (3.2) there is a unique pointb ∈ P(S2) ∩ 11(a). Sinced(a, x) = 3
b /∈ 11(x)∩ P(S2) = P(〈y, z〉)\{x}. Also,b /∈ 12(x). For if b ∈ 12(x) thenc = (bx)2 ∈
P(S2) ∩ 11(x) ⊂ P(S1) ∩ P(S2). However,b is collinear with a unique point inP(S1)

by (3.2) and this contradicts the fact thatb is collinear witha. Thusb ∈ 13(x). Then the
point ab ∈ 12(x), butab /∈ [ P(S1) ∪ P(S2)]. In this way we obtain eight points in12(x)
not contained inP(S1)∪ P(S2). This now accounts for all 24 points in12(x). Since every
point in11(x) is contained on a line containing two points of12(x) it follows that this
subspace contains11(x) and consequently,1≤2(x).

Thus, altogether this subspace containsx, the six points in11(x), the 24 points in12(x),
and 16 points from13(x). It is known (see, for example, figure 1 in [9]) that there are only
three subspaces properly containing1≤2(x): two subspaces with cardinality 47 of which
the present one is an example, and all ofP. It follows that the subspace〈P(S1), P(S2)〉0 is a
maximal subspace and therefore with one further point chosen from13(x)we can generate
all of P. Finally, we remark that in ([17]) it is shown that the universal embedding rank of
the dualG2(2) generalized hexagon is 14.

Before we move on we collect as corollaries some generation results which will prove
useful in the subsequent section.

Corollary 3.7 Let x ∈ P,S∈ S, and x∈ P(S). Then〈P(S),1≤2(x)〉 is a subspace with
47points.

Proof: As in the proof of (3.6) assume we haveS, S′ ∈ S with S∩ S′ ∼= D8 so that the
subspaceX generated byP(S)∪ P(S′) has 47 points. Now letx = Z(S∩S′). By the proof
of (3.6), X ⊃ 1≤2(x) and consequently,〈P(S),1≤2(x)〉 ⊂ X. Because we are transitive
on pairs(S, x) ∈ S × P, x ∈ P(S) it suffices to prove that we have equality. Now there are
21 points inP(S) and 31 points in1≤2(x). The intersection has 13 points and so the union
has 39 points. Now by (3.2) every point of1≤2(x)\P(S) is collinear to a unique point of
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P(S). Of the 16 points in12(x)\P(S), eight are collinear with a point inP(S) ∩ 11(x).
The remaining eight points are collinear with points inP(S) ∩ 13(x) and then the eight
points on these lines are in13(x). In this way the subspace generated byP(S) and1≤2(x)
contains at least another eight points and hence at least 47 altogether. It follows that we
have equality. 2

Corollary 3.8 Let x ∈ P and{y1,y2,y3} be points from the three different lines on x. Then
{x,y1,y2,y3} can be extended to a generating set.

Proof: As in the proof of (3.6) we construct a generating set by taking a pairS, S′ ∈ S
with S∩ S′ ∼= D8, a generating set forP(S∩ S′) and extending it to generating sets for
each ofS, S′. If x is not the center ofS∩ S′, x ∈ P(S∩ S′) then the generating set contains
representatives of each of the three lines onx. Since we are transitive on points the result
follows. 2

4. The involution geometry of the Hall-Janko group

In this section0 = (P, L) will be the central involution geometry of the Hall-Janko group,
which we denote byHJ. Thus,P consists of the 315 central involutions of theHJ group and
L is the collection of 525 elementry abelian subgroups of order 4 all of whose involutions
are central. This geometry is a near-octagon in the sense of Shult and Yanushka ([25]).
We letd(, ) denote the distance function for the point-collinearity graph of(P, L) and as
previously, we let1i (x) be the set of points at distancei from x wherei ≤ 4. Now, the
possible relations between a pairx, y ∈ P of distinct central involutions are as follows:

1. d(x, y) = 1 in which case, as defined above,xy= yx∈ P. |11(x)| = 10, there are five
lines onx and the centralizer,CHJ(x), induces the alternating groupA5 on these lines
and therefore permutes them three-transitively.

2. d(x, y) = 2. |12(x)| = 80. In this case〈x, y〉 is a dihedral group of order 8. There is a
unique point collinear to bothx andy which is(xy)2 = Z(〈x, y〉) = 〈x, y〉′.

3. d(x, y) = 3 = |xy| and therefore〈x, y〉 is isomorphic toS3. |13(x)| = 160. If y∈
13(x) then there is a unique line ony which contains elements of14(x).

4. d(x, y) = 4, |xy| = 5, 〈x, y〉 ∼= D10 a dihedral group of order 10.|14(x)| = 64.

For a subgroupX of HJ we denote byP(X) the set of central involutions contained inX.
We point out thatP(X) is a subspace ofP. We next record as a lemma the fact thatHJ
contains a subgroupU3(3) generated by central involutions:

Lemma 4.1 HJ contains a single class of subgroups isomorphic to U3(3) generated by
central involutions. The number of such subgroups is100and the action of HJ on this class
of subgroups has permutation rank three with subdegrees36 and63. If G is a subgroup of
HJ isomorphic to U3(3) then for every x∈ P(G) there is a unique G′ ∼= U3(3),G′ 6= G
such that P(G)∩ P(G′) = {x} ∪ [ P(G)∩11(x)] (this generates the subgroup21+5

¬ : A5).
Moreover, for every subgroup S of G, S= 〈P(S)〉 ≤ G, S∼= SL(3,2) there is a unique G∗

such that G∩ G∗ = S.
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Proof: This is easily deduced from ([10]). 2

We will let G denote the conjugacy class of subgroups isomorphic toU3(3).

Lemma 4.2 Let G∈ G. Then for every x∈ P\P(G),|P(G) ∩11(x)| = 1.

Proof: Note that ify, z ∈ P(G) then〈y, z〉 ⊂ G and consequentlyP(〈y, z〉) ⊂ P(G).
Suppose now thaty, z ∈ P(G) andd(y, z) = 2. Then11(y) ∩11(z) = {(yz)2} ∈ P(G).
From this it follows that for anyx ∈ P\P(G), |11(x) ∩ P(G)| ≤ 1. On the other hand
there are 63 points inP(G). For each pointy∈ P(G) there are two linesl on y which
are not contained inP(G) and each such line contains 2 points which are not inP(G).
There are therefore 63× 4= 252 pointsx ∈ P\P(G) such thatP(G)∩01(x) 6= ∅. Since
|P(G)| = 63 this accounts for all points. 2

We can now prove our main result of this section which is part (c) of Theorem A:

Proposition 4.3 The central involution geometry of HJ can be generated by28points.

Proof: Let G1 and let x ∈ P(G1). By (4.1) there is a uniqueG2 ∈ G such that
P(G1) ∩ P(G2) = [ P(G1) ∩ 1≤1(x)]. Set A = 〈P(G1), P(G2)〉0. We first show that
A contains1≤2(x). Supposey ∈ P(G1) ∩ 12(x). By (4.2), P(G2) ∩ 1(y) consists
of a single point. However,(xy)2=11(x) ∩ 11(y)∈ P(G2). It therefore follows that if
z ∈ P(G1) ∩ 13(x) then the unique point inP(G2) ∩ 1(z) has distance 3 fromx.
Thus each point ofP(G1) ∩ 13(x) is collinear with a unique point ofP(G2) ∩ 13(x)
and conversely. Now ifzi ∈ P(Gi ) ∩ 13(x), i = 1, 2 are collinear points then it must
be the case that the third point on the linez1z2 is in 12(x). Since there are 32 points
in each ofP(Gi ) ∩ 13(x) in this way we obtain 32 points in12(x) which are not in
P(Gi ) ∩ 12(x). On the other hand eachP(G1) ∩ 12(x) contains 24 points and this ac-
counts for 2× 24+ 32= 80 points, hence all of12(x). Since each point in11(x) lies on
four linesl with two points from12(x) it follows that〈P(G1), P(G2)〉0 contains1≤2(x).
SetZ1 = 〈P(G1), P(G2)〉0.

Now setÄ = {1, 2, 3, 4, 5} and set5 = Ä{3} the collection of three element subsets
fromÄ. Let x ∈ P and letl i , i ∈ Ä, be the the five lines onx. Forα ∈ 5 setYα = ∪i∈αl i .
By (4.1) there are two subgroupsG1,G2 ∈ G which containYα and for these two groups
P(G1) ∩ P(G2) = Yα. We will denote these byGα

i , i = 1, 2.
Let α = {1, 2, 3}, β = {1, 2, 4}, γ = {1, 2, 5}. Supposei, j, k ∈ {1, 2}. ThenGα

i ∩
Gβ

j ,G
α
i ∩ Gγ

k are subgroups ofGα
i
∼= U3(3) generated by root elements and isomorphic

to SL(3, 2). Moreover,P(Gα
i ) ∩ P(Gβ

j ) ∩ P(Gγ

k ) containsl1 ∪ l2 and by (3.1) we have
〈P(Gα

i ) ∩ P(Gβ

j ) ∩ P(Gγ

k )〉 ∼= S4 or D8. In either case it follows that13(x) ∩ [ P(Gα
i ) ∩

P(Gβ

j ) ∩ P(Gγ

k )] = ∅.
SetB = 〈P(Gα

1), P(Gα
2), P(Gβ

1)〉0. We claim thatP(Gδ
i ) ⊂ B for all δ ∈ {α, β, γ }, i =

1, 2. SinceB ⊃ 〈P(Gα
1), P(Gα

2)〉0 it follows by the above argument thatB ⊃ 1≤2(x).
Now 13(x) ∩ P(Gα

1) ∩ P(Gα
2) = ∅. On the other handGα

i ∩ Gγ

j
∼= SL(3, 2) and there-

fore P(Gα
i )∩ P(Gγ

j ) contains 8 points of13(x) for i, j = 1, 2. Similarly, P(Gβ

1) ∩
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P(Gγ

j ) meets13(x) in eight points and these are disjoint from the points in [P(Gα
1) ∪

P(Gα
2)] ∩ P(Gγ

j ). Since1≤2(x) is contained inB it now follows from (3.7) thatP(Gγ

j ) ⊂
B for j = 1, 2. But then by interchanging the roles ofβ, γ we also getP(Gβ

2) ⊂
B.

BecauseCHJ(x) acts 3-transitive onLx, the set of lines onx, it follows that for any
permutationπ of Ä that P(Gπ(δ)

j ) ⊂ 〈P(Gπ(α)
1 ), P(Gπ(α)

2 ), P(Gπ(β)

1 )〉0.
Setδ = {1, 3, 4} andC = 〈B, P(Gδ

1)〉0. Let T = {τ ∈ 5 | P(Gτ
i ) ⊂ C for i = 1, 2}.

Supposeτ ∈ 5 with 1 ∈ τ . We claim thatτ ∈ T . By the above argument we know that
{1, 2, 3}, {1, 2, 4}, {1, 2, 5} ∈ T . Also, by the same argument{1, 3, 4}, {1, 3, 5} ∈ T . Since
{1, 2, 4}, {1, 3, 4} ∈ T this argument also implies that{1, 4, 5} ∈ T completing the claim.

Now setγ = {2, 3, 4}andD = 〈C, P(Gγ

1 )〉0. We claim thatD contains1≤3(x). Towards
this end, setS = {σ ∈ 5 | P(Gσ

i ) ⊂ D for i = 1, 2}. By the argument of the previous
paragraph ifσ ∈ 5,σ ∩ {1, 2} 6= ∅ then P(Gτ

i ) ⊂ D for i = 1, 2. This includes allσ
except{3, 4, 5}. However, since{1, 4, 5}, {2, 4, 5} ∈ S it then follows that{3, 4, 5} ∈ S.
Consequently, for everyG ∈ G which containsx we haveP(G) ⊂ D. SinceHJ is transitive
on pairs(x, z) with z ∈ 13(x) it follows that there is aG∈G containingx andz. It then
follows thatz ∈ D.

We can now complete the proof.P(Gα
1) ∩ P(Gα

2) = Yα which can be generated by four
points:x together with one further point from each of the linesl i , i ∈ α. Now each ofP(Gα

i )

can be generated byYα together with 10 other points by (3.8). ThusA = 〈P(Gα
1), P(Gα

2)〉0
can be generated with 24 points. NowGα

i ∩Gβ

1
∼= SL(3, 2)and|P(Gβ

1)∩ [ P(Gα
1)∪ P(Gα

2)]
∩13(x)| = 16. A contains1≤2(x) and thereforeP(Gβ

1)∩1≤2(x). If z1 ∈ 13(x)∩ P(Gβ

1)

but is not contained in(P(Gβ

1)∩ [ P(Gα
1) ∪ P(Gα

2)] ∩13(x)) thenP(Gβ

1) ⊂ 〈A, z1〉0 and
then we get〈A, z1〉0 = B andB can be generated by 24+1= 25 points. Arguing similarly,
C can be generated by 26 points andD by 27 points. By what we have shown aboveD
contains1≤3(x). By ([9]),14(x) has a single connected component which implies that for
any pointu ∈ 14(x), 〈D, u〉0 = P andP can be generated by 28 points. Finally, Frohardt
and Smith ([18]) have shown that the embedding rank for the HJ central involution geometry
is 28. 2

5. The unitary dual polar space DU(6, 2)

We refer to ([13]) for a definition and properties of the dual polar spaces of unitary type and
make use of the notation introduced there. Thus, we letV be a space of dimension 6 over the
fieldF4 with basisxi , yi , i = 1, 2, 3 and leth : V×V → F4 = {0, 1, ω, ω2}be the Hermitian
form with h(xi , yj ) = δij , h(xi , xj ) = h(yi , yj ) = 0 for i, j ∈ {1, 2, 3}. We denote the set
of isotropic one spaces byP and the collection of maximal totally isotropic subspaces by
P. For a totally isotropic subspaceA we letU (A) = {m ∈ P | A ⊂ m} = P(A⊥). The set
of lines,L = {U (A) | dim A= 2, A totally isotropic}. Whenx is an isotropic point,U (x)
is a convex subspace and a generalized quadrangle (a quad of the the near hexagon formed
by the dual polar space). This generalized quadrangle is dual to the generalized quadrangle
induced onx⊥/x which is aU (4, 2) generalized quadrangle with parameters (4, 2). We
therefore have
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Lemma 5.1 For an isotropic point of the unitary space V the geometry induced on U(x)
is a (2, 4)generalized quadrangle isomorphic to the singular points and totally singular
lines in an orthogonal space O−(6, 2).

Proof: It is well known that the dual to the unitary quadrangleU (4, 2) is the orthogonal
generalized quadrangle,O−(6, 2). For example, see ([22]). 2

We require one more lemma before proceeding to our main result:

Lemma 5.2 Let l,m be two disjoint lines in a generalized quadrangle(P, L) isomorphic
to O−(6, 2). Then P can be generated by l∪m together with2 further points. In particular,
P can be generated by6 points.

Proof: A pair of opposite lines generates a grid and the automorphism group of(P, L)
is transitive on such grids. From the orthogonal geometryO−(6, 2) it is clear the subspace
generated by the grid and any other point is a (2, 2) generalized quadrangle and that there
are three such subspaces. This follows since the stablizer of a grid fixes its orthogonal
complement (an elliptic space of dimension two,O−(2, 2)), and is transitive on its three
points, whence the three hyperplanes containing the grid. Moreover, any one of these must
be maximal as follows: LetG denote the set of points of the grid. Supposel i , i = 1, 2, 3 are
three disjoint lines which coverG andx ∈ P\G. Thenx is collinear with a unique point on
eachl i and hence with precisely three (non-collinear) points ofG. Now supposex ∈ P\G
and setPx = 〈G, x〉. We claim that every pointy ∈ P\Px is collinear with 5 points ofPx.
Each point ofPx is collinear with 2× 2 = 4 points ofP\Px. On the other hand each of
the 12 points ofP\Px are collinear with at most 5 points ofPx since for such a pointy
the points inPx ∩11(y) are pairwise non-collinear and so a partial ovoid. However, since
15× 4 = 12× 5 we must have that for every pointy ∈ P\Px, Px ∩ 11(y) is an ovoid.
Now11(y) ∩ G is three points and consequentlyy is collinear with two points ofPx\G.
Without loss of generality we may assume thatx andy are collinear. Now the third pointz
on the line〈x, y〉 belongs to neitherPx or Py = 〈G, y〉. But then〈Px, y〉 containsPx, Py

andPz = 〈G, z〉 and consequently all points ofP. It now follows thatP can be generated
by 6 points. 2

We can now prove our main result which is part (d) of Theorem A:

Proposition 5.3 The dual unitary polar space DU(6, 2) can be generated by22points.

Proof: For an isotropic pointu let τu be the unique transvection with centeru and axis
u⊥ contained inG = {σ : V→V | h(σ (u), σ (v)) = h(u, v),∀u, v ∈ V}. Also, letH
denote the set of hyperbolic lines inV , that is, the setsP(A) whereA is a non-degenerate
subspace ofV of dimension two. For a subsetX of isotropic points we will denote by〈X〉H
the subspace of(P,H) spanned by this set of points.

Let U = 〈x1, x2, y1, y2〉, a non-degenerate subspace ofV of dimension four. Setu1 =
〈x1〉, u2 = 〈y1〉, u3 = 〈ω2x1 + ωy1 + ω2x2 + ωy2〉, u4 = 〈x1 + x2〉, u5 = 〈x2〉, and let
τi = τui . Now note that{u1, u2, u3, uk} is independent for eitherk = 4 or 5 and hence
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spansU . Also note that〈u1, u2, u3〉 is a non-degenerate three subspace and hence for
i 6= j ∈ {1, 2, 3} ui , u j are non-orthogonal. We now claim that〈ui | 1≤ i ≤ 5〉H = P(U ).
Let Y = 〈ui | 1 ≤ i ≤ 5〉H. The groupT = 〈τi | 1 ≤ i ≤ 5〉 leavesY invariant which can
be seen as follows: Leta ∈ Y. If ui ⊥ a thenτi (a) = a. On the other hand, ifui anda
are non-orthogonal then they span a hyperbolic line which contains three isotropic points.
Two of these area, ui . Also, τi (a) is isotropic and lies in〈a, ui 〉 and hence this is the third
point. But P(〈a, ui 〉) is the hyperbolic line ona andui and asa, ui ∈ Y if follows that
P(〈a, ui 〉) ⊂ Y. Thus,τi (a) ∈ Y andT leavesY invariant as claimed.

We next claim thatT = NG(U )∩CG(U⊥)∼=SU(4, 2). This is easily deduced from ([21]):
〈τ1, τ2, τ3〉 is a group of order 54. Then the group obtained by adjoiningτ4 is an extension
of an elementary abelian group of order 27 by the symmetric groupS4 which is a maximal
subgroup in SU(4, 2). Consequently, with the addition ofτ5 the entire group is generated.
Now sinceNG(U ) ∩ CG(U⊥) is transitive onP(U ) it follows thatY = P(U ).

Now as in section three of ([13]) ifX is a set of isotropic points then the subspace of
0 = (P,L) generated byU (x), x ∈ X is equal to∪y∈〈X〉HU (y). Now setZ = 〈U (ui ) | 1≤
i ≤ 5〉0. By what we have shownZ = ∪y∈P(U )U (y). However, supposem is a maximal
isotropic subspace. Thenm ∩ U 6= 0 and if y is a point inm ∩ U thenm ∈ U (y) ⊂ Z.
Sincem is arbitary, it follows thatZ = P. It now remains to show that we can generate
U (ui ), 1≤ i ≤ 5 with 22 points.

By (5.2) we can generate eachU (ui ), i = 1, 2, 3 with 6 points. Now considerU (u4).
u⊥4 ∩ 〈u1, u2, u3〉 = 〈u1, u3〉 is a hyperbolic line. Each ofU (〈u4, u1〉),U (〈u4, u3〉) is a line
in the generalized quadrangleU (u4) and these lines are disjoint sinceu1 is not perpendicular
to u3. Moreover, these two lines are already contained in the subspace of0 generated by
U (ui ), i = 1, 2, 3 sinceU (〈u4, u1〉) ⊂ U (u1) andU (〈u4, u3〉) ⊂ U (u3). Therefore by
(5.2) we need two further points to generateU (u4). In exactly the same fashion, inU (u5)

we have the two disjoint lines,U (〈u5, u1〉) andU (〈u5, u2〉) which are already contained in
U (u1) andU (u2), respectively. So, again by (5.2), we need two further points to generate
U (u5). Thus, altogether we can generate〈U (ui ) | 1≤ i ≤ 5〉0 by 3×6+2×2= 22 points.
However, by ([29])DU(6, 2) has a projective embedding inPG(21, 2) and consequenlty
22 is the minimal possible size for a generating set. This completes the proposition and the
proof of Theorem A. 2

6. A survey of embedding and generating ranks of GF(2) embeddable geometries

The following table summarizes many other instances in which the generating rank and/or
the embedding rank of a GF(2) geometry is known but we make no pretense to stating that
it is complete. In particular, we have only included geometries which have embeddings in
PG(n, 2) for somen and consequently have excluded geometries with affine embeddings,
e.g. those Fischer spaces which are not cotriangular spaces. We have made an attempt to
include all instances of Lie geometries which are known. The last three entries in the table
refer to the central involution geometries of the groupU4(3), and the sporadic groupsSuzand
Co1. nhU4(3) refers to the near-hexagon on which the groupU4(3) acts as automorphism and
nhM24 refers to the near-hexagon on 759 points on whichM24 acts. The notationXn,k refers
to a Lie incidence geometry arising from the groupXn acting on the parabolic subgroup
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Geometry0 Embedding rank Generating rank

An,1(2) = PG(n− 1, 2) n n

An−1,k, 2≤ k ≤ n− 2
(n

k

)
[28]

(n
k

)
[5], [16], [23]

An−1;1,n(2), n ≥ 3 n2 − 1 [27] n2 − 1 [14]

Bn,1(2), n ≥ 2 2n+ 1 [26] 2n+ 1 [14]

Bn,2(2), n ≥ 3
(2n+1

2

)
[27]

(2n+1
2

)
[14]

Bn,n(2), 2≤ n ≤ 5 (2n+1)(2n−1+1)
3 [6] (2n+1)(2n−1+1)

3 [12]
cCn(2) 2n+ 1 [19] 2n+ 1 [19]
cD±n (2) 2n [19] 2n [19]
c6n n− 1 [19] n− 1 [19]

Dn,1(2), n ≥ 4 2n [26] 2n [14]

Dn,2(2), n ≥ 4
(2n

2

)
[27]

(2n
2

)
[14]

Dn,k(2), k = n− 1, n, n ≥ 5 2n−1 [28] 2n−1 [5], [16], [23]
2Dn,1(2), n ≥ 3 2n [26] 2n [14]
2Dn,2(2), n ≥ 4

(2n
2

)
[27]

(2n
2

)
[14]

DU(6, 2) 22 [29] 22

E6,1(2) 27 [5], [16], [23] 27 [5], [16], [23]

E7,1(2) 56 [5], [16], [23] 56 [5], [16], [23]
3D4(2) 28 [18] ?

G2(2) 14 14

G2(2)d 14 14
nhM24 23 [7] ?

HJ 28 [18] 28
nhU4(3) 21 [1], [7], [29] ?

U4(3) 70 [2] ?

Suz 143 [3] ?

Co1 300 [4] ?

corresponding to removing thekth node. For example,An−1,k is the Grassmannian ofk
dimensional vector subspaces of ann dimensional vector space. BycCn(2) we mean the
co-triangular space whose points are the non-zero vectors and hyperbolic lines in a non-
degenerate symplectic space over GF(2),cDε

n(2) is the geometry of nonsingular vectors in a
non-degenerate orthogonal space of dimension 2n over GF(2) of typeε ∈ {+,−} andc6n is
the geometry whose points are the pairs fromÄ = {1, 2, . . . ,n} and whose lines are the the
triples with incidence given by inclusion. Finally,An−1;1,n−2 refers to the geometry whose
points are the full transvections groupsχ(p, H) for a given centerp and axisH acting
on ann–dimensional vector space, where two points are collinear if they have a common
center or a common axis. We have also included the geometries treated in this paper.

References

1. M.K. Bardoe, “On the universal embedding of the near-hexagon forU4(3),” Geometriae Dedicata56 (1995),
7–17.



28 COOPERSTEIN

2. M.K. Bardoe, “The universal embedding for the forU4(3) involution geometry,”Journal of Algebra186
(1996), 368–383.

3. M.K. Bardoe, “The universal embedding for the involution geometry of the Suzuki Sporadic group,”Journal
of Algebra186(1996), 447–460.

4. M.K. Bardoe, “The universal embedding for the involution geometry ofCo1,” Journal of Algebra217(1999),
555–572.

5. R.J. Blok and A.E. Brouwer, “Spanning point-line geometries in buildings of spherical type,”Journal of
Geometry62 (1998), 26–35.

6. A.E. Brouwer, personal communication.
7. A.E. Brouwer, A.M. Cohen, A.M. Hall, and H. Wilbrink, “Near polygons and fischer spaces,”Geometriae

Dedicata49 (1994), 349–368.
8. F. Buekenhout (Ed.),Handbook of Incidence Geometry, North Holland, Amsterdam, 1995.
9. A. Cohen and J. Tits, “On generalized hexagons and a near octagon whose lines have three points,”European

Journal of Combinatorics6 (1985), 13–27.
10. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and Wilson,Atlas of Finite Groups, Clarendon Press,

Oxford, 1985.
11. B.N. Cooperstein, “The geometry of root subgroups in exceptional groups, I,”Geometriae Dedicata8 (1979),

317–381.
12. B.N. Cooperstein, “On the generation of dual polar spaces of symplectic type overGF(2),” European Journal

of Combinatorics18 (1997), 741–749.
13. B.N. Cooperstein, “On the generation of dual polar spaces of unitary type over finite fields,”European Journal

of Combinatorics18 (1997), 849–856.
14. B.N. Cooperstein, “Generating long root subgroup geometries of classical groups over finite prime fields,”

Bulletin of the Belgium Mathematics Society5 (1998), 531–548.
15. B.N. Cooperstein and E.E. Shult, “Combinatorial construction of some near polygons,”Journal of Combina-

torial Theory, Ser. A78 (1997), 120–140.
16. B.N. Cooperstein and E.E. Shult, “Frames and bases of lie incidence geometries,”Journal of Geometry60

(1997), 17–46.
17. D. Frohardt and P. Johnson, “Geometric hyperplanes in generalized hexagons of order (2, 2),”Communications

in Algebra22 (1994), 773–797.
18. D. Frohardt and S.D. Smith, “Universal embedding for the3D4(2) hexagon andJ2 near-octagon,”European

Journal of Combinatorics13 (1992), 455–472.
19. J.I. Hall, “Linear representations of a cotriangular space,”Linear Algebra and its Applications49 (1983),

257–273.
20. S. Heiss, A note on embeddableF2-geometries. Preprint.
21. W.M. Kantor, “Subgroups of classical groups generated by long root elements,”Transactions of the American

Mathematical Society248(1979), 347–379.
22. S.E. Payne and J.A. Thas,Finite Generalized Hexagons, Pitman, London, 1984.
23. M. Ronan and S.D. Smith, “Sheaves on buildings and modular representations of Chevalley groups,”Journal

of Algebra96 (1985), 319–346.
24. E.E. Shult, “Generalized hexagons as geometric hyperplanes of near hexagons,” InGroups, Combinatorics

and Geometry, M.W. Liebeck and J. Saxl (Eds.), London Mathematics Society, 1992, pp. 229–239.
25. E.E. Shult and A. Yanushka,“Near n-gons and line systems,”Geometriae Dedicata12 (1980), 1–72.
26. J. Tits,Buildings of Spherical Type and Finite BN-Pairs, Springer-Verlag, Berlin, 1974.
27. H. Völklein, “On the geometry of the adjoint representation of a Chevalley group,”Journal of Algebra127

(1989), 139–154.
28. A. Wells, “Universal projective embeddings of the Grassmannian, half spinor and dual orthogonal geometries,”

Quarterly Journal of Mathematics34 (1983), 375–386.
29. S. Yoshiara, “Embeddings of flag-transitive classical locally polar geometries of rank 3,”Geometriae Dedicata

43 (1992), 121–165.


