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Abstract. We study the four-weight spin models (W1, W2, W3, W4) introduced by Eiichi and Etsuko Bannai
(Pacific J. of Math, to appear). We start with the observation, based on the concept of special link diagram, that
two such spin models yield the same link invariant whenever they have the same pair (W1, W3), or the same pair
(W2, W4). As a consequence, we show that the link invariant associated with a four-weight spin model is not
sensitive to the full reversal of orientation of a link. We also show in a similar way that such a link invariant is
invariant under mutation of links.

Next, we give an algebraic characterization of the transformations of four-weight spin models which preserve
W1, W3 or preserveW2, W4. Such “gauge transformations” correspond to multiplication ofW2, W4 by permutation
matrices representing certain symmetries of the spin model, and to conjugation ofW1, W3 by diagonal matrices.
We show for instance that up to gauge transformations, we can assume thatW1, W3 are symmetric.

Finally we apply these results to two-weight spin models obtained as solutions of the modular invariance
equation for a given Bose-Mesner algebraB and a given duality ofB. We show that the set of such spin models
is invariant under certain gauge transformations associated with the permutation matrices inB. In the case where
B is the Bose-Mesner algebra of some Abelian group association scheme, we also show that any two such spin
models (which generalize those introduced by Eiichi and Etsuko Bannai inJ. Alg. Combin.3 (1994), 243–259)
are related by a gauge transformation. As a consequence, the link invariant associated with such a spin model
depends only trivially on the link orientation.
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1. Introduction

Spin models are basic data for a certain construction of invariants of oriented links in
3-space. They are given in terms of matrices (satisfying certain equations) which are used
to compute the link invariant on link diagrams. The original construction by Jones [18]
involved a pair of symmetric matrices, which we call here a symmetric two-weight spin
model. This was generalized by the two-weight spin models of Kawagoe, Munemasa,
Watatani [21] which consist of a pair of not necessarily symmetric matrices. Finally Eiichi
and Etsuko Bannai [2] introduced the much more general four-weight spin models which
involve four matricesW1, W2, W3, W4.

So far, research on spin models has been mostly devoted to two-weight spin models,
which exhibit nice connections with association schemes: the spin model matrices belong
to some Bose-Mesner algebra and define a duality on this algebra via the so-called modular
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invariance equation (see [3, 14, 16, 24]). We study here four-weight spin models, also
obtaining some new results on two-weight spin models whose proof apparently involves
the concept of four-weight spin model in an essential way.

The content of this paper can be summed up as follows.
In Section 2 we give the necessary preliminaries on link diagrams, link invariants and

spin models.
Then Section 3 deals with special link diagrams. Our starting point is the observation that

for such link diagrams, the computation of the link invariant associated with a four-weight
spin model can be done using only the matricesW1, W3, or only the matricesW2, W4. Every
link can be represented by a special diagram, and hence if two four-weight spin models
have the same matricesW1, W3, or the same matricesW2, W4, they yield the same link
invariant. This is used to show that the link invariant associated with any four-weight spin
model is invariant under simultaneous orientation reversal of all components. We also use
the concept of special link diagram to show that link invariants associated with four-weight
spin models are invariant under mutation of oriented links. This is a strong restriction on
such invariants, since for instance many quantum group invariants (as defined for instance
in [25]) can distinguish mutant links [23].

In Section 4 we describe algebraically the transformations of four-weight spin models
which preserveW1, W3 or preserveW2, W4. We call them gauge transformations to point out
their similarity with transformations of spin models as considered in statistical mechanics
(they have also been considered independently in [10] under the same name). These gauge
transformations belong to the following two types: multiplication ofW2, W4 by permutation
matrices representing certain symmetries of the spin model, and conjugation ofW1, W3 by
diagonal matrices. We show for instance that up to gauge transformations, we can assume
thatW1, W3 are symmetric. We have no similar result forW2, W4. However, some power
of W2 must be symmetric (and likewise forW4).

In Section 5 we consider two-weight spin models obtained as solutions of the modular
invariance equation for a given Bose-Mesner algebraB and a given duality ofB. We show
that the set of such spin models is invariant under certain gauge transformations associated
with the permutation matrices inB. In the case whereB is the Bose-Mesner algebra of
some Abelian group association scheme, we also show that any two such spin models
(which generalize those introduced in [1]) are related by a gauge transformation. As a
consequence, since one of these spin models is symmetric, the link invariant associated
with such a spin model depends only trivially on the link orientation.

We conclude in Section 6 with some directions for future research.

2. Spin models for link invariants

For a more complete survey on this topic, see [12].

2.1. Links and link diagrams

For more details on this section the reader can refer to [7, 8, 20].
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Figure 1.

A link consists of a finite collection of disjoint simple closed curves smoothly embedded
in R3 (these curves are thecomponentsof the link). If each component has received an
orientation, the link is said to beoriented. (Oriented) links can be represented by (oriented)
diagrams. A diagram of a link is a generic plane projection (there is only a finite number
of multiple points, each of which is a simple crossing), together with an indication at each
crossing of which part of the link goes over the other. For oriented diagrams, the orientations
of the components are indicated by arrows. See figure 1 for examples. An oriented diagram
L has two kinds of crossings, characterized by asignas shown on figure 2. TheTait number
(or writhe) of L, denoted byT(L), is the sum of signs of its crossings.

A diagram L will be considered as a graph embedded in the planeR2, with sets of
vertices and faces denoted byV(L), F(L) respectively. The vertices ofL correspond to
the crossings, the edges are the connected components ofL − V(L), and the faces are
the connected components ofR2 − L. We allow a special kind of edge called afree loop

Figure 2.
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which is embedded as a simple closed curve disjoint from the remaining part of the graph.
All edges of an oriented diagram will be directed in agreement with the orientation of the
corresponding link component.

(Oriented) diagrams are considered up to isomorphism of (directed) plane graphs (pre-
serving the crossing information at each vertex).

2.2. Link invariants and Reidemeister moves

Two links areambient isotopicif there exists an isotopy of the ambient 3-space which carries
one onto the other (for oriented links, this isotopy must preserve the orientations). This
natural equivalence of links is described in terms of diagrams by Reidemeister’s Theorem,
which asserts that two diagrams represent ambient isotopic links if and only if one can
be obtained from the other by a finite sequence of elementary local transformations, the
Reidemeister moves. These moves belong to three basic types described for the unoriented
case in figure 3.

A move is performed by replacing a part of diagram which is one of the configurations of
figure 3 by an equivalent configuration without modifying the remaining part of the diagram.
For the oriented case, all local orientations of these pairs of equivalent configurations must
be considered.

Figure 3. Reidemeister moves.
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Reidemeister’s Theorem allows the combinatorial definition of alink invariant as an
assignment of values to diagrams such that the value of any diagram is preserved by
Reidemeister moves. As shown in [18], one may use partition functions of statistical me-
chanical models, and in particular of spin models, to define such assignments.

2.3. Spin models: Generalities

Link invariants associated with spin models are defined as follows. Given a link diagram
L, we first color its faces with two colors, black and white, in such a way that adjacent
faces receive different colors and the unbounded face is colored white. LetX be a finite
non-empty set ofspins. Let B(L) be the set of faces ofL colored black. A state ofL is a
mapping fromB(L) to X. Loosely speaking, aspin modelwill be a certain prescription for
associating with every stateσ and vertexv of L a complex number〈v, σ 〉 called thelocal
weight ofσ at v. Then theweightof a state will be the product of local weights over all
vertices (this product will be set to 1 if there are no vertices). Finally thepartition function
Z(L) will be the sum of weights of all states. Thus

Z(L)=
∑

σ :B(L)→X

∏
v∈V(L)

〈v, σ 〉. (1)

One can write down natural conditions on the spin model (calledinvariance equations)
which will guarantee that the partition function, multiplied by a suitablenormalization
factor, is not modified by Reidemeister moves and hence defines a link invariant. This nor-
malization factor consists of two terms. The first one (needed to accomodate Reidemeister
moves of type I) necessarily involves an orientation ofL, and is equal toµ−T(L), where
µ is some non-zero complex number called themodulusof the spin model. The second
one is, assuming thatL is connected as a graph,D−|B(L)|, whereD is some square root of
the number of spins (this connectivity restriction is not significant since every link can be
represented by a connected diagram).

To sum up, if a spin model satisfies the invariance equations, the assignment of the
quantityµ−T(L)D−|B(L)|Z(L) to every connected oriented diagramL defines an invariant of
oriented links.

Clearly the link invariantµ−T(L)D−|B(L)|Z(L) takes the valueD if L consists of one free
loop, andD is called theloop variableof the spin model.

2.4. Spin models: Definitions

Let us now describe spin models more precisely.
The initial definition of [18] was given in terms of a pair of symmetric matrices. Then

it was generalized to non symmetric matrices in [21]. Finally it was further generalized
in [2] under the name offour-weight spin modelsby using four matrices. To simplify the
exposition we shall begin with this last generalization, which will be the main topic of the
present paper.

A four-weight spin model is given by four matricesW1, W2, W3, W4 with rows and
columns indexed by the set of spinsX. Given a stateσ and vertexv of the oriented diagram
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Figure 4. Local weights of a four-weight spin model.

L, the local weight〈v, σ 〉 is defined on figure 4, wherex andy denote the values ofσ on
the black faces incident tov andWi (x, y) denotes the entry of the matrixWi (i = 1..4)
corresponding to rowx and columny. Note thatx andy are distinguished by reference to
the orientation of the upper part of the link atv. We shall say that the vertexv is of type
Wi (i = 1..4) if figure 4 prescribes the use ofWi to compute〈v, σ 〉.

Let us now present briefly the invariance equations (see [2]).
The study of Reidemeister moves of type II (there are four oriented versions of the

unoriented move depicted on figure 3, and two local black and white face-colorings for
each of these) forces the introduction of the normalization termD−|B(L)| (whereD2= |X|)
and leads to the equations (to be satisfied for alla, b in X):∑

x∈X

W1(a, x)W3(x, b) = |X| δ(a, b), (2)

W1(a, b)W3(b,a) = 1, (3)∑
x∈X

W2(a, x)W4(x, b) = |X| δ(a, b), (4)

W2(a, b)W4(b,a) = 1, (5)

whereδ is the Kronecker symbol.
Note that (3), (5) imply that the matricesWi (i = 1..4) have non-zero entries.
A similar study of Reidemeister moves of type III leads in [2] to sixteen equations (in

that paper the mirror image of the Reidemeister move of type III depicted on figure 3 is also
considered, but this is unnecessary since both versions are equivalent under Reidemeister
moves of type II). However it is shown in Theorem 1 of [2] that, assuming (2), (3), (4), (5),
these sixteen equations can be separated into two groups of eight in such a way that all equa-
tions in one group are mutually equivalent. Thus, to obtain the invariance ofD−|B(L)|Z(L)
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under oriented Reidemeister moves of types II and III, it is enough to impose one equation
in each group, together with (2), (3), (4), (5). There is another way to see this: it is shown
in [26] that any oriented version of the Reidemeister move of type III depicted on figure 3
(there are eight of them) can be replaced by any other one combined with suitable oriented
Reidemeister moves of type II. Thus, assuming invariance under oriented moves of type II,
we can reduce the invariance under oriented moves of type III to the case of one arbitrarily
chosen such move. For reasons which will become clear later, we shall choose the following
invariance equations for Reidemeister moves of type III, to be satisfied for alla, b, c in X:∑

x∈X

W2(a, x)W2(b, x)W4(x, c)= DW1(b,a)W3(a, c)W3(c, b) (6)

∑
x∈X

W2(x,a)W2(x, b)W4(c, x)= DW1(a, b)W3(b, c)W3(c,a). (7)

These correspond to the two local black and white face-colorings of the move of type III
depicted on figure 3, oriented in such a way that the triangle in the left-hand side becomes
an anticlockwise circuit. In the terminology of [2], (6) and (7) are equations III6 and III12

respectively.
We observe that the exchange ofa andb in (6) does not modify the left-hand side and

transforms the right-hand side into the right-hand side of (7). Thus we may replace (6),
(7) by∑

x∈X

W2(a, x)W2(b, x)W4(x, c) = DW1(b,a)W3(a, c)W3(c, b)

=
∑
x∈X

W2(x,a)W2(x, b)W4(c, x)

= DW1(a, b)W3(b, c)W3(c,a). (8)

Finally, takingc= b in (6), (7) and using (3), (5), we obtain:∑
x∈X

W2(a, x) =
∑
x∈X

W2(x,a) = DW3(b, b) for all a, b in X.

Hence there exists a non-zero complex numberµ such that

W3(a,a) = µ−1,
∑
x∈X

W2(a, x) =
∑
x∈X

W2(x,a) = Dµ−1 for all a in X. (9)

It then easily follows from (3) and (4) that

W1(a,a) = µ,
∑
x∈X

W4(a, x) =
∑
x∈X

W4(x,a) = Dµ for all a in X. (10)

Eqs. (9) and (10) imply the invariance ofµ−T(L)D−|B(L)| Z(L) under oriented Reidemeister
moves of type I. Moreover, assuming (2), (3), (4), (5), (8), this quantity is still invariant
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under oriented Reidemeister moves of type II and III, since the Tait number is also invariant
under these moves.

We now sum up the above discussion in the following definition.

Definition 1 A four-weight spin modelon a finite non-empty setX is a 5-tuple (W1, W2,
W3, W4, D), whereD2= |X| andW1, W2, W3, W4 are complex matrices with rows and
columns indexed byX which satisfy the following equations for alla, b, c in X:∑

x∈X

W1(a, x)W3(x, b) = |X| δ(a, b), (2)

W1(a, b)W3(b,a) = 1, (3)∑
x∈X

W2(a, x)W4(x, b) = |X| δ(a, b), (4)

W2(a, b)W4(b,a) = 1, (5)∑
x∈X

W2(a, x)W2(b, x)W4(x, c) = DW1(b,a)W3(a, c)W3(c, b)

=
∑
x∈X

W2(x,a)W2(x, b)W4(c, x)

= DW1(a, b)W3(b, c)W3(c,a). (8)

These equations imply that there exists a non-zero complex numberµ, called themodulus
of the spin model, such that, for alla in X,

W3(a,a)=µ−1,
∑
x∈X

W2(a, x)=
∑
x∈X

W2(x,a)= Dµ−1, (9)

W1(a,a)=µ,
∑
x∈X

W4(a, x)=
∑
x∈X

W4(x,a)= Dµ. (10)

Theassociated link invariantis defined for every connected oriented diagramL byµ−T(L)

D−|B(L)| Z(L), where

Z(L) =
∑

σ :B(L)→ X

∏
v∈V(L)

〈v, σ 〉

and the local weights〈v, σ 〉 are defined on figure 4.

We shall be interested in the following special cases.

Definition 2 A two-weight spin modelon a finite non-empty setX is a triple (W+,W−, D),
where D2= |X| and W+,W− are complex matrices with rows and columns indexed by
X, such that (W+,W+,W−,W−, D) is a four-weight spin model. It is calledsymmetric
if the matricesW+,W− are symmetric. The modulus of (W+,W−, D) is the modulus of
(W+,W+,W−,W−, D), and similarly for the associated link invariants.
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It can be shown that the above definitions are equivalent to the definitions given for
“generalized spin models” in [21] or for “two-weight spin models of Jones type” in [2].
Moreover, symmetric two-weight spin models are exactly those introduced in [18]. These
symmetric models have the property that the corresponding partition function can be com-
puted on unoriented diagrams (see figure 4) and hence the associated link invariant depends
only trivially on the link orientation via the normalization termµ−T(L).

We shall make use of the following immediate consequences of (2), (3), (9), (10). For
every two-weight spin model (W+,W−, D) on X of modulusµ, and for alla, b in X:∑

x∈X

W+(a, x)W−(x, b) = |X| δ(a, b), (11)

W+(a, b)W−(b,a) = 1, (12)

W−(a,a) = µ−1,
∑
x∈X

W+(a, x) =
∑
x∈X

W+(x,a) = Dµ−1, (13)

W+(a,a) = µ,
∑
x∈X

W−(a, x) =
∑
x∈X

W−(x,a) = Dµ. (14)

2.5. Exchanging black and white

Recall that to define the link invariant associated with a spin model we have chosen arbitrarily
to color the unbounded face of every connected oriented diagram white (and then the color
of every face is determined). If we had chosen to color the unbounded face black (then
black and white are exchanged for all faces), we would also have obtained a link invariant.
We shall need the basic (and not surprising) fact that this link invariant is the same as the
first one. The proof for four-weight spin models is an immediate extension of the one given
for symmetric two-weight spin models in [18] (Proposition 2.14). So from now on we shall
choose freely the black and white face-coloring to evaluate the link invariant associated
with a four-weight spin model.

2.6. A remark on normalization

It is clear from Definition 1 that if (W1, W2, W3, W4, D) is a four-weight spin model, the
same holds for (λW1, λ−1W2, λ−1W3, λW4, D), whereλ is any non-zero complex number.
We shall say that these spin models areproportional. Given a connected oriented diagram
L, replacing the first spin model by the second one multiplies the weight of each state, and
hence the partition function, byλT(L) (see figures 2 and 4). On the other hand, if the first spin
model has modulusµ, the second one has modulusλµ. Hence proportional four-weight
spin models yield the same link invariant.

Thus the concept of modulus for four-weight spin models might appear to be redundant.
However it is essential for the study of two-weight spin models.
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Figure 5.

3. Special diagrams and applications

3.1. Special diagrams

Let L be an oriented link diagram. If we “smoothe out” each crossing as shown on figure 5,
we obtain an oriented link diagram consisting only of free loops. These free loops are
called theSeifert circlesof L and can be identified with some directed circuits of the
directed graphL. Clearly every vertex ofL is incident to exactly two distinct Seifert circles.
The diagramL will be calledspecialif no Seifert circle lies in the interior of another.

We shall give the proof of the following Proposition 13.15 in [7] since we shall need later
some extension of it.

Proposition 1 Every oriented link can be represented by a connected special diagram.

Proof: Let us start with some connected oriented diagramL of the given linkL . For
every Seifert circleC of L we introduce a disk with boundaryC, and for every vertex
incident with the two Seifert circlesC1,C2 we introduce an appropriately twisted band
with ends attached to the disks corresponding toC1 andC2, thus obtaining a connected
surfaceSwith boundaryL . This surface is easily seen to be orientable. We embedS in R3

in such a way that the disks are disjointly embedded in the planeR2, the twisted bands are
pairwise disjoint, and the projection of each band ontoR2 is disjoint from all disks except
for its two ends. We may assume that the projection of the boundaryL of S ontoR2 is
generic and hence yields a diagramL ′ of L . We may arrange so that all crossings ofL ′

occur either between two opposite sides of the same band, or in groups of four according to
the two situations depicted on figure 6 or to the oppositely oriented ones (these situations
correspond to the crossing of two distinct bands, or of two separate sections of the same
band). We replace all configurations depicted on figure 6(i) by the configuration of figure 7,
and perform similar replacements for the oppositely oriented configurations. It is then easy
to see that the resulting diagram ofL is special. 2

3.2. Four-weight spin models with the same associated link invariant

Let us call a special diagrameven(respectively:odd) if it is endowed with a black and
white face-coloring such that the unbounded face is white (respectively: black). Clearly in an
even special diagramL the interior of every Seifert circle is a black face, and consequently
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Figure 6. Crossings ofL ′ as in Proposition 1.

Figure 7. Link diagram modification as in Proposition 1.

to compute onL the partition function of a four-weight spin model (W1, W2, W3, W4, D)
only the matricesW2, W4 are used (see figure 4). Similarly, in an odd special diagramL
only the matricesW1, W3 are used.

Proposition 2 Let (W1, W2, W3, W4, D) and(W′1, W′2, W′3, W′4, D) be four-weight spin
models on the same set of spins X. If W2 = W′2,W4 = W′4, these two spin models have the
same associated link invariant, and similarly if W1 = W′1,W3 = W′3.

Proof: By Proposition 1, we may represent any oriented link by a connected even (re-
spectively: odd) special diagram. The partition functions of (W1, W2, W3, W4, D) and (W′1,
W2, W′3, W4, D) (respectively: (W1, W′2, W3, W′4, D)) will coincide on this diagram. The
same holds for the associated link invariants since by (9) the modulus of a four-weight spin
model (W1, W2, W3, W4, D) is determined either byW3 or by W2 andD. 2
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Remark By (3), (5) the two equalitiesW2 = W′2,W4 = W′4 are equivalent, and similarly
for W1 = W′1,W3 = W′3.

3.3. Invariance under orientation reversal

Thereverseof an oriented link is obtained by reversing the orientations of all its components.
So far the following result was only known for the trivial case of symmetric two-weight

spin models.

Proposition 3 A link invariant associated with a four-weight spin model does not distin-
guish between an oriented link and its reverse.

Proof: We denote bytM the transpose of a matrixM . Let (W1, W2, W3, W4, D) be a
four-weight spin model. We claim that (tW1, W2, tW3, W4, D) and (W1, tW2, W3, tW4, D)
are also four-weight spin models. Indeed Eqs. (3), (5), (8) are obviously invariant under
transposition ofW1, W3 or of W2, W4. The same holds for Eqs. (2) and (4) since they can
be written asW1W3 = |X|I andW2W4 = |X|I respectively, whereI denotes the identity
matrix. Hence (tW1, tW2, tW3, tW4, D) is a four-weight spin model which by Proposition 2
has the same associated link invariant as (W1, W2, W3, W4, D). But on the other hand it is
clear from figures 2 and 4 that computing the link invariant associated with (tW1, tW2, tW3,
tW4, D) on some oriented link amounts to compute the link invariant associated with (W1,
W2, W3, W4, D) on the reverse of that link. 2

3.4. Changing signs

Proposition 4 Let (W1,W2,W3,W4, D) be a four-weight spin model. Then(−W1,W2,

−W3,W4,−D) and(W1,−W2,W3,−W4,−D) are also four-weight spin models. For any
oriented linkL , the link invariant associated with any of these two models differs from the
link invariant associated with(W1,W2,W3,W4, D) by a sign factor(−1)c(L), where c(L)
denotes the number of components ofL .

Proof: It is clear from Definition 1 that (−W1,W2,−W3,W4,−D) and (W1,−W2,W3,

−W4,−D) are four-weight spin models (see also Proposition 3 of [2]). Since they are pro-
portional, they have the same associated link invariant. Let us represent the oriented linkL
by the connected even special diagramL . The partition functions of (W1,W2,W3,W4, D)
and (−W1,W2,−W3,W4,−D) on L are equal. Since these two spin models have oppo-
site moduli and opposite loop variables, the associated link invariants differ by a factor
(−1)−T(L)−|B(L)| = (−1)|V(L)|+|B(L)|. It is well known (and easy to prove by induction
using the smoothing operation of figure 5) that, for any oriented diagram, the numbers of
components of the corresponding link, of crossings, and of Seifert circles, add up to an even
number. SinceL is an even special diagram, it has|B(L)| Seifert circles, and this shows
that(−1)|V(L)|+|B(L)| = (−1)c(L). 2
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Remarks

(i) The above result shows that in the definition of spin models we could ask without loss
of generality thatD be positive.

(ii) Let i 2 = −1 and let (W1,W2,W3,W4, D) be a four-weight spin model. Then (iW1, iW2,

−iW3,−iW4,−D) is also a four-weight spin model proportional to (W1,−W2,W3,

−W4,−D). Hence we obtain a new proof of Proposition 12 of [15]. Note as a spe-
cial case that if (W+,W−, D) is a two-weight spin model, (iW+,−iW−,−D) is also a
two-weight spin model, and the two associated link invariants differ by the sign factor
(−1)c(L) for every oriented linkL .

3.5. Invariance under mutation

The following definitions are essentially taken from [22].
Let L be a link inR3 such that there is a 2-sphere which meetsL transversely in ex-

actly four points. Up to ambient isotopy, we may assume that this 2-sphere is{(x, y, z) ∈
R3/x2 + y2 + z2 = 2}, that its intersection withL consists of the four points (1, 1, 0),
(−1, 1, 0), (−1,−1, 0), (1,−1, 0), and thatL is orthogonal to the sphere at each of these
points. We now apply to the interior of the sphere a rotation through angleπ about one of
the coordinate axes. The union of the part ofL situated outside the sphere with the rotated
part of L situated inside yields a new linkL ′. If L is oriented, we keep its orientation
outside the sphere, and inside the sphere either we keep it or we reverse it in order to obtain
a consistent orientation forL ′. The new linkL ′ is said to be obtained fromL by amutation.
If we assume that the projection ofL onto the (x, y)-plane is generic, the same holds for
L ′, and we can easily describe mutations in terms of the corresponding diagrams: rotations
through angleπ about thex- or y-axis are replaced by plane reflections with respect to
the same axis, rotation about thez-axis becomes rotation about the origin (0, 0), and the
indications of crossing structure at vertices are transferred in the obvious way. See figure 8
for an (unoriented) example.

The following result generalizes Proposition 5 of [14].

Proposition 5 Any link invariant associated with a four-weight spin model is invariant
under mutation.

Proof: We consider a four-weight spin model (W1,W2,W3,W4, D) and we want to show
that the associated link invariant takes the same value on two oriented linksL , L ′ related
as above by a mutation. We may assume that this mutation corresponds to a rotation
about thex- or y-axis since the composition of these two mutations will yield a mutation
corresponding to a rotation about thez-axis. We consider diagramsL, L ′ which we may
assume to be connected, obtained from generic projections ofL , L ′ onto the (x, y)-plane.
The plane reflection (restricted to the disk{(x, y) ∈ R2/x2 + y2 ≤ 2}) which transforms
L into L ′ defines a bijection from the set of vertices (respectively: faces) ofL to the set
of vertices (respectively: faces) ofL ′ and we denote byv′ (respectively: f ′) the image of
the vertexv (respectively: facef ) of L under this bijection. We choose a black and white
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Figure 8. Examples of mutation.

face-coloring forL such that the points of intersection of the reflection axis with the circle
C = {(x, y) ∈ R2/x2 + y2 = 2} lie inside black faces which we denote byf1, f2. We
have a similar black and white face-coloring forL ′ such that for every facef of L , f and
f ′ have the same color. Drawing the reflection axis as vertical and exchanging the roles
of L , L ′ if necessary we can restrict our attention to one of the three situations depicted in
figure 9(i) and (ii) or (iii) (this figure describes symbolically the effect of the plane reflection
on the relevant part of the diagramL; to obtainL ′ all orientations must be reversed in the
right-hand sides of (ii) and (iii)).

We define a bijection between the states ofL and the states ofL ′ by associating with every
stateσ of L the stateσ ′ of L ′ such thatσ ′( f ′)= σ( f ) for every black facef of L. Let us
consider a stateσ and a vertexv of L. Clearly, ifv lies outside the circleC, 〈v′, σ ′〉 = 〈v, σ 〉.
On the other hand, ifv lies inside the circleC, examination of figure 4 shows that (i) ifv is of
typeWi for i = 1 ori = 3, and if〈v, σ 〉=Wi (x, y), then〈v′, σ ′〉 =Wi (y, x) if the orientation
of the part ofL insideC is reversed to obtainL ′ from L, and〈v′, σ ′〉 =Wi (x, y) otherwise;
(ii) if v is of typeWi for i = 2 ori = 4, and if〈v, σ 〉=Wi (x, y), then〈v′, σ ′〉 =Wi (x, y) if the
orientation of the part ofL insideC is reversed to obtainL ′ from L, and〈v′, σ ′〉 =Wi (y, x)
otherwise.
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Figure 9. Reflections in the proof of Proposition 5.

Hence if in the situation of figure 9(i) all verticesv of L lying insideC are of typeW1

or W3, thenZ(L) = Z(L ′). The same holds in the situations of figure 9(ii) and (iii) if all
verticesv of L lying insideC are of typeW2 or W4. Since clearlyL andL ′ have the same
number of black faces and the same Tait number, this will imply that the link invariant
associated with (W1,W2,W3,W4, D) takes the same value onL andL ′.

Thus to finish the proof it is enough to show that if we complete the configurations
appearing in the left-hand sides of figures 9(i)–(iii) into link diagrams by the addition of
two edges in the exterior ofC as shown in figures 10(i)–(iii) respectively, we can obtain
special diagrams representing the same links without modifying the exterior ofC. This is
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Figure 10. Complexing the proof of Proposition 5.

clear from the following adjustment of the proof of Proposition 1. Let us call a Seifert circle
externalif it meets the exterior ofC and let us call itinternal otherwise. Clearly there are
at most two external Seifert circles and if there are two of them, no one lies in the interior
of the other. Thus we may embed disjointly in the plane some disks whose boundaries are
the Seifert circles without modifying the external Seifert circle(s) and in such a way that
internal Seifert circles lie in the interior ofC. 2

4. Gauge transformations

In this section we give a more intrinsic description of transformations of four-weight spin
models (W1,W2,W3,W4, D) which preserve (W1,W3, D) or (W2,W4, D). It turns out that
these transformations are analogous to somegauge transformationsconsidered in statistical
mechanics and also introduced independenty for 4-weight spin models in [10].

In this section all spin models are defined on a given setX, andMX denotes the set of
complex matrices with rows and columns indexed byX.

4.1. Odd gauge transformations

Proposition 6 Let (W1,W2,W3,W4, D) be a four-weight spin model and let W′1,W
′
3 be

matrices in MX. The following properties are equivalent:
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(i) (W′1,W2,W′3,W4, D) is a four-weight spin model,
(ii) there exists an invertible diagonal matrix1 in MX such that W′1 = 1W11

−1,W′3 =
1W31

−1.

Proof: Assume first that (ii) holds. As already observed, Eq. (2) can be written as
W1W3 = |X|I and hence is preserved by the replacement ofWi byW′i =1Wi1

−1(i = 1, 3).
Eq. (3) is also preserved by this replacement sinceW′1(a, b)=1(a,a)W1(a, b)(1(b, b))−1,

W′3(b,a)=1(b, b)W3(b,a)(1(a,a))−1. One sees similarly thatW′1(b,a)W
′
3(a, c)W

′
3

(c, b)=W1(b,a)W3(a, c)W3(c, b) andW′1(a, b)W
′
3(b, c)W

′
3(c,a)=W1(a, b)W3(b, c)W3

(c,a), so that Eq. (8) is preserved. Hence (W′1,W2,W′3,W4, D) is a four-weight spin model.
Conversely, assume that (W′1,W2,W′3,W4, D) is a four-weight spin model. Then by

(8), W′1(a, b)W
′
3(b, c)W

′
3(c,a) = W1(a, b)W3(b, c)W3(c,a) for every a, b, c in X, or

equivalently

W′1(a, b) = W3(c,a)(W
′
3(c,a))

−1W1(a, b)W3(b, c)(W
′
3(b, c))

−1. (15)

Let us fix the elementc of X and define the diagonal matrices1,1′ in MX by1(x, x) =
W3(c, x)(W′3(c, x))−1,1′(x, x) = W3(x, c)(W′3(x, c))

−1 for everyx in X. Then (15) can
be written as the equalityW′1 = 1W11

′.
For everya in X we haveW′1(a,a) = 1(a,a)W1(a,a)1′(a,a) and this together with

(10) shows that1 and1′ are inverse matrices. ThusW′1 = 1W11
−1 and the equality

W′3 = 1W31
−1 follows from (2). 2

When the equivalent properties (i), (ii) of Proposition 6 hold we shall say that the two
four-weight spin models (W1,W2,W3,W4, D) and (W′1,W2,W′3,W4, D) are related by an
odd gauge transformation. In this case they have the same associated link invariant by
Proposition 2. Actually one can easily see directly that a stronger property holds (see
[10]). Consider a stateσ of an oriented link diagramL. Replacing (W1,W2,W3,W4, D)
by (W′1,W2,W′3,W4, D) multiplies the weight ofσ by a product of terms of the form
1(σ( f1), σ ( f1))1(σ( f2), σ ( f2))

−1 (with 1 as in (ii) of Proposition 6). There is one such
term for each vertex of typeW1 or W3 where the two incoming edges are incident with the
black facef1 and the two outcoming edges are incident with the black facef2 (see figure 4).
Then clearly for every black facef the total exponent of1(σ( f ), σ ( f )) in this product of
terms is zero. Thus an odd gauge transformation preserves the weight of each state.

Proposition 7 Let (W1,W2,W3,W4, D) be a four-weight spin model.
(i) There exists an invertible diagonal matrix1 in MX such thattW1 = 1W11

−1, tW3 =
1W31

−1.
(ii) There exists a four-weight spin model(W′1,W2,W′3,W4, D) such that W′1,W

′
3 are sym-

metric.

Proof: We have seen in the proof of Proposition 3 that (tW1,W2,
tW3,W4, D) is a four-

weight spin model, and hence (i) is an immediate consequence of Proposition 6.
To prove (ii), we look for an invertible diagonal matrix1′ in MX such thatW′1 =

1′W11
′−1 is symmeric (then by (2)W′3 = 1′W31

′−1 will also be symmetric). This can be
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written as1′−1t W11
′ = 1′W11

′−1, or equivalentlytW1 = 1′2W11
′−2, which will hold

by (i) whenever1′2 = 1. 2

Thus to classify four-weight spin models (W1,W2,W3,W4, D) up to odd gauge trans-
formations we may restrict our attention to the case whereW1,W3 are symmetric. Then,
by Theorem 1 of [28], the problem can be reformulated in terms of symmetric two-weight
models, for which some general classification results are known (see [14, 16, 24] and
Section 5.1 of the present paper).

We also note that the number of four-weight spin models (W′1,W2,W′3,W4, D) which
appear in Proposition 7(ii) is finite. Indeed, sinceW1 has non-zero entries, any diagonal
matrix which commutes withW1 is a scalar multiple of the identity. Hence the equation
tW1 = 1′2W11

′−2 (with notations as in the proof of Proposition 7) defines1′2 up to scalar
multiplication.

4.2. Even gauge transformations

Proposition 8 Let (W1,W2,W3,W4, D) be a four-weight spin model and let W′2,W
′
4 be

matrices in MX. The following properties are equivalent:
(i) (W1,W′2,W3,W′4, D) is a four-weight spin model,

(ii) there exist permutation matrices P, Q in MX such that W′2 = PW2 = W2Q,W′4 =
W4

tP = tQW4,

(iii) there exist a permutation matrix P and an invertible diagonal matrix1 in MX such
that PW1P−1 = 1W11

−1 and W′2 = PW2,W′4 = W4
tP,

(iv) there exist a permutation matrix Q and an invertible diagonal matrix1 in MX such
that Q−1W1Q = 1W11

−1 and W′2 = W2Q,W′4 = tQW4.

Proof: (i) implies (ii): Four everya, b, c in X let pc
ab =

∑
x∈X W2(x,a)W2(x, b)W4(c, x)

=∑x∈X W′2(x,a)W
′
2(x, b)W

′
4(c, x) (this is well defined by (8)). LetA be a complex vector

space with basis{Ax, x ∈ X} indexed byX. Define a bilinear product onA by the following
rule for basis elements: for everya, b in X, Aa Ab =

∑
c∈X Pc

abAc. We introduce for every
i in X the elementEi = |X|−2∑

a∈X W4(a, i )Aa of A. SinceW4 is invertible by (4) (which
can be written asW2W4 = |X|I ), {Ei , i ∈ X} is a basis ofA. Then

Ei Ej = |X|−4

(∑
a∈X

W4(a, i )Aa

)(∑
b∈X

W4(b, j )Ab

)

= |X|−4
∑
a∈X

∑
b∈X

W4(a, i )W4(b, j )

(∑
c∈X

Pc
abAc

)

= |X|−4
∑
c∈X

∑
a∈X

∑
b∈X

W4(a, i )W4(b, j )

(∑
x∈X

W2(x,a)W2(x, b)W4(c, x)

)
Ac

= |X|−4
∑
c∈X

∑
x∈X

∑
a∈X

∑
b∈X

W2(x,a)W4(a, i )W2(x, b)W4(b, j )W4(c, x)Ac
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= |X|−2
∑
c∈X

∑
x∈X

δ(x, i ) δ(x, j )W4(c, x)Ac (by (4))

= δ(i, j )|X|−2
∑
c∈X

W4(c, i )Ac = δ(i, j )Ei .

HenceA is a semisimple commutative associative algebra with basis of orthogonal idem-
potents{Ei , i ∈ X}. Let E′i = |X|−2∑

a∈X W′4(a, i )Aa for everyi in X. The same proof
shows that{E′i , i ∈ X} is a basis of orthogonal idempotents ofA. But such a basis is
unique and hence there exists a permutationπ of X such thatE′i = Eπ(i ) or equivalently∑

a∈X W′4(a, i )Aa =
∑

a∈X W4(a, π(i ))Aa for everyi in X. ThenW′4(a, i ) = W4(a, π(i ))
for everya, i in X. Let P be the permutation matrix inMX defined byP(x, y) = δ(y, π(x))
for everyx, y in X. We obtain the equationW′4 = W4

tP, and the equationW′2 = PW2 is
then obtained from (4). To establish the existence of the permutation matrixQ such that
W′2 = W2Q,W′4 = tQW4, we transpose the matricesW2,W′2,W4,W′4 in the above proof.

(ii) implies (iii): With the same notations as in the above proof, we haveW′2(x, y) =
W2(π(x), y) andW′4(x, y)=W4(x, π(y)) for all x, y in X. Let θ be the permutation ofX
such thatQ(x, y) = δ(x, θ(y)) for all x, y in X. We also haveW′2(x, y) = W2(x, θ(y)),
W′4(x, y) = W4(θ(x), y). Then, by (8),for everya, b, c in X,

DW1(π(a), π(b))W3(π(b), π(c))W3(π(c), π(a))

=
∑
x∈X

W2(π(a), x)W2(π(b), x)W4(x, π(c))

=
∑
x∈X

W′2(a, x)W′2(b, x)W′4(x, c)

=
∑
x∈X

W2(a, θ(x))W2(b, θ(x))W4(θ(x), c)

=
∑
x∈X

W2(a, x)W2(b, x)W4(x, c).

Let W′1 = PW1P−1,W′3 = PW3P−1. The above equations, together with obvious verifica-
tions of Eqs. (2) and (3), show that (W′1,W2,W′3,W4, D) is a four-weight spin model. The
result now follows from Proposition 6.

(ii) implies (iv): The proof is exactly similar to the previous one.
(iii) implies (i): It is easy to check that Eqs. (4) and (5) are preserved by the replacement of

W2 by W′2 = PW2 and ofW4 by W′4 = W4
tP. Now letW′1 = PW1P−1 = 1W11

−1,W′3 =
PW3P−1, so thatW′3 = 1W31

−1 by (2). By Proposition 6, (W′1,W2,W′3,W4, D) is a
four-weight spin model. Introducing again the permutationπ of X such thatP(x, y) =
δ(y, π(x)) for everyx, y in X, we get from Eq. (8):∑

x∈X

W′2(a, x)W′2(b, x)W′4(x, c)

=
∑
x∈X

W2(π(a), x)W2(π(b), x)W4(x, π(c))

= DW1(π(a), π(b))W3(π(b), π(c))W3(π(c), π(a))
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= DW′1(a, b)W
′
3(b, c)W

′
3(c,a)

=
∑
x∈X

W2(a, x)W2(b, x)W4(x, c).

Moreover∑
x∈X

W′2(x,a)W
′
2(x, b)W

′
4(c, x) =

∑
x∈X

W2(π(x),a)W2(π(x), b)W4(c, π(x))

=
∑
x∈X

W2(x,a)W2(x, b)W4(c, x).

Thus (8) is preserved by the replacement of (W2,W4) by (W′2,W
′
4) and (W1,W′2,W3,W′4,

D) is a four-weight spin model.
(iv) implies (i): The proof is exactly similar to the previous one. 2

When the equivalent properties (i) to (iv) of Proposition 8 hold we shall say that the
two four-weight spin models (W1,W2,W3,W4, D) and (W1,W′2,W3,W′4, D) are related
by aneven gauge transformation. Then they have the same associated link invariant by
Proposition 2. In contrast with the case of odd gauge transformations, we have no direct
proof of this which would work for arbitrary link diagrams. See however [10] for even
special diagrams (a special case of even gauge transformations is considered there, but the
proof is easily generalized).

Note that the number of even gauge tranformations which can be performed on a given
four-weight spin model is finite. More precisely, such transformations involve certain sym-
metries of the spin model which we consider now in detail.

We denote bySX the group of permutation matrices inMX.

Proposition 9 Let (W1,W2,W3,W4, D) be a four-weight spin model. The groups SX ∩
(W2SXW−1

2 ) and SX ∩ (W−1
2 SXW2) are both equal to the set of matrices P in SX such that

PW1P−1 = 1W11
−1 for some invertible diagonal matrix1 in MX.

Proof: The set of matricesP in SX such thatPW1P−1 = 1W11
−1 for some invertible

diagonal matrix1 in MX forms a group. Indeed ifPW1P−1 = 1W11
−1 andP′W1P′−1 =

1′W11
′−1, then(PP′)W1(PP′)−1 = (P1′P−1)1W11

−1(P1′P−1)−1. By Proposition 8,
the matrixP in SX belongs to this group iff (W1,PW2,W3,W4

tP, D) is a four-weight spin
model iff W−1

2 PW2 is some permutation matrixQ. Similarly, the matrixQ in SX belongs
to this group iff Q−1 belongs to this group iff (W1,W2Q,W3,

tQW4, D) is a four-weight
spin model iffW2QW−1

2 is some permutation matrixP. 2

Thus an even gauge transformation of the four-weight spin model (W1,W2,W3,W4, D)
corresponds to a left (or equivalently right) multiplication ofW2 by some element of the
group introduced in Proposition 9, together with the corresponding similar transformation
for W4. The “gauge transformations 2” of [10] are an interesting special case.

Note that when (W+,W−, D) is a two-weight spin model, Proposition 9 states an inter-
esting property of the matrixW+ = W1 = W2.
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For everyM in MX, theautomorphism group of M, denoted by Aut(M), is the group of
matrices inSX which commute withM . We observe that both Aut(W1) and Aut(W2) are
subgroups of the group of Proposition 9.

Proposition 10 Let (W1,W2,W3,W4, D) be a four-weight spin model.
(i) There exists a matrix P inAut(W2) such thattW2 = PW2. Hence W2

tW2 = tW2W2,

some power of W2 is symmetric, and ifAut(W2) is trivial, W2 is symmetric.
(ii) If P is a square inAut(W2), there exists a four-weight spin model(W1,W′2,W3,W′4, D)

such that W′2,W
′
4 are symmetric.

Proof:

(i) We have seen in the proof of Proposition 3 that (W1,
tW2,W3,

tW4, D) is a four-weight
spin model. By Proposition 8, there is a permutation matrixP in MX such thattW2 =
PW2. Transposing and multiplying byP on the right, we obtainW2P= tW2. The
remaining statements are clear.

(ii) If P = Q2 with Q in Aut(W2),
tW2 = Q2W2 = QW2Q and hencet(W2Q) = W2Q.

We can takeW′2 = W2Q,W′4 = tQW4. 2

4.3. Gauge equivalence of spin models

The following result is clear from Propositions 2, 6, 8.

Proposition 11 Let (W1,W2,W3,W4, D) be a four-weight spin model. Let P a permuta-
tion matrix in MX such that W−1

2 PW2 is also a permutation matrix, 1 be an invertible diag-
onal matrix in MX, andλ be a non-zero complex number. Then(λ1W11

−1, λ−1PW2, λ
−1

1W31
−1, λW4

tP, D) is also a four-weight spin model which has the same associated link
invariant as(W1,W2,W3,W4, D).

The two four-weight spin models appearing in Proposition 11 will be said to begauge
equivalent. Thus two four-weight spin models are gauge equivalent if, up to proportionality,
one can be obtained from the other by a sequence of even and odd gauge transformations.
Similarly, we shall say that the two-weight spin models (W+,W−, D) and (W′+,W

′
−, D)

are gauge equivalent if the corresponding four-weight spin models (W+,W+,W−,W−, D)
and (W′+,W

′
+,W

′
−,W

′
−, D) are gauge equivalent.

Let us illustrate Proposition 11 with a simple example. It is easy to check (see [18]) that
whenD = −α2−α−2,W+ = αDI +α−1J,W− = α−1DI +αJ,where all entries ofJ are
equal to 1, (W+,W−, D) is a (symmetric) 2-weight spin model with modulus−α3. Up to a
change of variables, the associated link invariant is the Jones polynomial introduced in [17].
Since Aut(W+) = SX, for every permutation matrixP and invertible diagonal matrix1 in
MX we obtain a four-weight spin model(−α−31W+1−1,−α3PW+,−α31W−1−1,−α−3

W−tP, D) = (−α−2DI −α−41J1−1,−α4DP−α2J,−α2DI −α41J1−1,−α−4DtP−
α−2J, D) = (W1,W2,W3,W4, D) of modulus 1 with the same associated link invariant.
The identification of this link invariant can be obtained directly as follows. LetL+, L−
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andL0 be three oriented link diagrams such thatL− is obtained fromL+ by changing the
sign of one crossing from positive to negative (see figure 2), andL0 is obtained from L+ by
smoothing out the same crossing(see figure 5). Then it is easy to show, using the equations
α4W1 − α−4W3 = (α−2 − α2)DI , α4tW4 − α−4W2 = (α−2 − α2)J, that, assumingL0

connected,α4D−|B(L+)|Z(L+)− α−4D−|B(L−)|Z(L−) = (α−2 − α2)D−|B(L0)|Z(L0). This
is precisely (for a suitable choice of variable) the defining relation for the Jones polynomial.

5. Gauge equivalence of some two-weight spin models

5.1. Two-weight spin models and Bose-Mesner algebras

Let X be a finite non-empty set. The setMX of complex matrices with rows and columns
indexed byX is considered as usual as a vector space over the complex numbers. The
Hadamard productof two matricesA, B in MX, denoted byA ◦ B, is defined by(A ◦
B)(x, y) = A(x, y)B(x, y) for everyx, y in X. The identity element for this associative
and commutative product is the matrixJ with all entries equal to 1. We shall call aBose-
Mesner algebraon X any vector subspaceB of of MX containingI andJ which is closed
under transposition, Hadamard product, and ordinary matrix product, this second product
being commutative onB.

Every Bose-Mesner algebraB has a basis{Ai , i = 0, . . . ,d} such thatAi ◦ Aj =
δ(i, j ) Ai andA0 = I . The matricesAi , called theprimitive Hadamard idempotentsof B,
can be viewed as the adjacency matrices of some relations onX which form a(commutative)
association scheme(see [4, 6] for definitions). The notions of (commutative) association
schemes and Bose-Mesner algebras are completely equivalent (the proof given in Theorem
2.6.1 of [6] for the symmetric case can easily be extended), but it is more convenient for
our purposes to work in the framework of Bose-Mesner algebras.

A duality of a Bose-Mesner algebraB on X is a linear map9 from B to itself which
satisfies the following properties:

For every matrixM in B, 9(9(M)) = |X| tM, (16)

For any two matricesM, N in B, 9(M N) = 9(M) ◦9(N). (17)

It easily follows that

For any two matricesM, N in B, 9(M ◦ N) = |X|−19(M)9(N), (18)

9(I ) = J, (19)

9(J) = |X|I . (20)

It is shown in [16] (see also [14, 24]) that if (W+,W−, D) is a two-weight spin model
on X with modulusµ, there exists a Bose-Mesner algebraB on X which containsW+,W−
and admits a duality9 given by the expression

9(M) = µt W− ◦ (W+(W− ◦ M)) for everyM in B (21)
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Remarks

(i) To obtain the expression (21), which we prefer to that given in Theorem 11 of [16]
since it is more convenient for the proof of Proposition 12 below and appears previously
in [3], we consider the two-weight spin model (tW−, tW+, D) instead of (W+,W−, D)
(this is allowed by Theorem 9 of [2] or Proposition 2 of [21]).

(ii) (21) implies thatµ is the modulus of (W+,W−, D). To see this, we apply (21) to
M = I , use (13), (12) and compare with (19).

WhenW+,W− belong toB and (21) holds we shall say that (W+,W−, D) satisfies the
modular invariance property withrespect to the pair (B,9) (see [3]).

5.2. A general equivalence result

Proposition 12 Let B be a Bose-Mesner algebra on X which admits a duality9, let
(W+,W−, D) be a two-weight spin model which satisfies the modular invariance property
with respect to(B, 9), and let P be a permutation matrix inB. There is a non-zero complex
numberλ such that(λ−1PW+, λW−tP, D) is a two-weight spin model which is gauge
equivalent to(W+,W−, D) and satisfies the modular invariance property with respect to
(B, 9).

Proof: A four-weight spin model which is gauge equivalent to (W+,W+,W−, D) is of the
form (λ1W+1−1, λ−1PW+, λ−11W−1−1, λW−tP, D),whereP is a permutation matrix
in MX such thatW−1

+ PW+ is also a permutation matrix,1 is an invertible diagonal matrix
in MX andλ is a non-zero complex number. We fixP in B, so thatW−1

+ PW+ = P is also
a permutation matrix, and we look for1 andλ as above such thatλ1W+1−1 = λ−1PW+
(the other equalityλ−11W−1−1 = λW−tP will then follow from (11)).

By (18),9(P)2 = |X|9(P ◦ P) = |X|9(P). HenceE = |X|−19(P) is an idempotent
(for the ordinary matrix product). Moreover by (20) and (17),|X|I = 9(J) = 9(JP) =
9(J) ◦9(P) = |X|I ◦9(P), hence, TraceE = |X|−1 Trace9(P) = 1 andE has rank 1.
The fact that9(P) has rank 1 implies that there exist diagonal matrices1,1′ in MX such
that9(P)(x, y) = 1(x, x)1′(y, y) for all x, y in X. Moreover sinceI ◦9(P) = I ,1 and
1′ are inverse matrices. Hence1 is invertible and1W+1−1 = 9(P) ◦W+,1W−1−1 =
9(P) ◦W−.

If we expressP in the basis of primitive Hadamard idempotents ofB, we see that exactly
one of the coefficients is equal to 1 while the others are zero. In other words,P belongs to
this basis. Letβ be the coefficient ofP in the expression ofW− in the same basis. Then
W− ◦P = βP. Now by (21),9(P) = µt W− ◦(W+(W− ◦P)) = βµt W− ◦(W+P). Hence,
by (12),1W+1−1 = 9(P) ◦ W+ = βµW+P and the required equalityλ1W+1−1 =
λ−1PW+ is satisfied whenλ2 = (βµ)−1.

Thus we have shown that, writingW′+ = λ−1PW+ = λ9(P)◦W+ andW′− = λW−tP =
λ−19(P) ◦ W−, (W′+,W

′
−, D) is a two-weight spin model which is gauge equivalent to
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(W+,W−, D). Let M be a matrix inB. Then

t W′− ◦ (W′+(W′− ◦M)) = (λPtW−) ◦ ((λ−1PW+)(W′− ◦ M))

= (PtW−) ◦ (P(W+(W′− ◦ M)))

= P(tW− ◦ (W+(W′− ◦ M)))

= P(tW− ◦ (W+(λ−19(P) ◦W− ◦ M)))

= λ−1P(tW− ◦ (W+(W− ◦ (9(P) ◦ M))))

= λ−1Pµ−19(9(P) ◦ M)) (by (21))

= (λµ)−1P|X|−192(P)9(M) (by (18))

= (λµ)−1P tP9(M) = (λµ)−19(M) (by (16)).

Hence (W′+,W
′
−, D) satisfies the modular invariance property with respect to (B,9). 2

The permutation matrices inB form an Abelian group of size at most dimB,≤ |X|. The
extremal case where this group is of size|X| is of special interest and is studied below.

5.3. Equivalence of some two-weight spin models on Abelian groups

In this section we assume thatX is an Abelian group written additively. For everyi in X
define the matrixAi in MX by Ai (x, y) = δ(i, y − x) for everyx, y in X. The complex
linear spanB of the matricesAi is easily seen to be a Bose-Mesner algebra onX, with basis
of primitive Hadamard idempotents{Ai , i ∈ X}. It is also easy to show (see for instance
[3]) that B admits dualities, all of which can be described as follows (a more explicit
classification is given in [5]). It is possible to index the characters ofX with the elements of
X in such a way that, denoting byχi the character indexed byi , the equalityχi ( j ) = χ j (i )
holds for alli, j in X. Then one defines the linear map9 from B to itself by the equalities
9(Ai ) =

∑
j∈X χi ( j )Aj . It is easy to check that9 is a duality. We now assume that such

a duality9 is given.
The spin models studied in the next result have appeared in several work: [11, 18]

(symmetric models in the cyclic group case), [1] (general cyclic group case), [3, 13]. See
also [19] for a related construction and [9, 10, 27] for some connections with physics.

The following result was motivated by information received from Eiichi and Etsuko
Bannai and Takashi Takamuki. It is related (this follows from [3]) with the result stated at
the end of [10] on the spin models of [19]. It is also related with the result of [27] that the
link invariant introduced there depends only trivially on link orientation.

Proposition 13 There are exactly2|X| two-weight spin models which satisfy the modular
invariance property with respect to(B, 9). They are mutually gauge equivalent. One of
them is symmetric and consequently the link invariant associated with these two-weight
spin models depends only trivially(i.e. via the normalization factorµ−T(L), whereµ is the
modulus) on link orientation.
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Proof: Two-weight spin models which satisfy the modular invariance property with re-
spect to (B,9) are described explicitly in [3]. To be as self-contained as possible we shall
only use here the fact that there exists at least one such spin model, say (W+,W−, D). Let
us writeW+ =

∑
j∈X t j Aj . Note that thet j are non-zero by (12) and that (W+,W−, D) has

modulust0 by (14). By (21), for everyi in X,9(tW+ ◦ tAi )= t0tW− ◦ (W+(W− ◦ tW+ ◦ tAi )).
Using (12) we get

W+ ◦9
(

tW+ ◦ tAi
) = t0W+tAi .

Now

9
(

tW+ ◦ tAi
) = 9(ti tAi

) = ti9
(

tAi
) = ti9(A−i ) = ti

∑
j∈X

χ−i ( j )Aj

and thus

W+ ◦9
(
tW+ ◦ tAi

) =∑
j∈X

ti t jχ−i ( j )Aj .

On the other hand

W+tAi = W+A−i =
∑
j∈X

t j Aj−i =
∑
j∈X

ti+ j Aj .

It follows that

ti t jχ−i ( j ) = t0ti+ j for everyi, j in X. (22)

Writing si = ti t
−1
0 this becomes

si sjχ−i ( j ) = si+ j for everyi, j in X. (23)

Let now (W′+,W
′
−, D) be another two-weight spin model which satisfies the modular in-

vaiance property with respect to (B, 9). Let us writeW′+ =
∑

j∈X t ′j Aj , where thet ′j are
non-zero, ands′i = t ′i t

′
0
−1.

We define a mapζ from X to the complex numbers byζ(i ) = s′i s
−1
i for every i in X.

We get from (23) the identityζ(i )ζ( j ) = ζ(i + j ). Henceζ is a character ofX and there
existsk in X such thatζ = χk. Then

t ′0
−1W′+ =

∑
j∈X

S′j Aj =
∑
j∈X

ζ( j )sj Aj =
∑
j∈X

χk( j )Sj Aj

=
(∑

j∈X

χk( j )Aj

)
◦
(∑

j∈X

sj Aj

)
= 9(Ak) ◦

(
t−1
0 W+

)
.
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Thus

W′+ = t ′0t−1
0 9(Ak) ◦W+.

From the proof of Proposition 12,9(Ak) ◦W+ = βµW+Ak, whereβ is the coefficient of
Ak in the expression ofW− in the basis{Ai , i ∈ X} andµ is the modulus of (W+,W−, D).
We have seen thatµ = t0, and by (12)β = t−1

−k . Hence

W′+ = t ′0t−1
0 9(Ak) ◦W+ = t ′0t−1

−k AkW+.

If follows that

∑
i∈X

t ′i = t ′0t−1
−k

∑
i∈X

ti+k = t ′0t−1
−k

∑
i∈X

ti .

On ther other hand by (13),

∑
i∈X

t ′i = Dt′−1
0 and

∑
i∈X

ti = Dt−1
0 .

Hencet ′0
−1 = t ′0t−1

−k t−1
0 . It follows thatt ′0 is one of the two square roots oft−kt0 and that we

may writeW′+ = λk9(Ak) ◦W+ = λ−1
k AkW+ with λk = t ′0t−1

0 = t ′0
−1t−k. Hence there are

at most 2|X| possibilities forW′+. SinceW+ is invertible by (11),AK ′W+ is not a scalar
multiple of AK W+ whenk′ 6= k, and we have just exhibited 2|X| distinct possibilities for
W′+. Finally it is clear from the proof of Proposition 12 that these possibilities actually
correspond to two weight spin models which satisfy the modular invariance property with
respect to (B,9) and which are gauge equivalent to (W+,W−, D).

Finally, let us show that one of the above possibilities forW′+ is symmetric. We want
to find k in X such thatAK W+ =

∑
j∈X t j Aj+k =

∑
j∈X t j−k Aj is symmetric, or equiva-

lently t j−k = t− j−k for every j in X. Using (22) this can be written:t−1
0 t j t−kχ− j (−k) =

t−1
0 t− j t−kχ j (−k), or equivalentlyt jχ− j (−k) = t− jχ j (−k) for every j in X.

Thus we want to findk in X such thatt j t
−1
− j = χ j (−k)χ− j (−k)−1 = χ j (−k)2 = χ−k( j )2

for every j in X. In other words, defining the mapη from X to the complex numbers by
η( j ) = t j t

−1
− j for every j in X, we want to show thatη is a square in the groupX∧ of

characters ofX.
By (22), η(i )η( j ) = ti t j (t−i t− j )

−1 = χ−1( j )−1t0ti+ j (χi (− j )−1t0t−i− j )
−1 = η(i + j )

and henceη is a character. Letϕ be the endomorphism ofX defined byϕ(i )= 2i for everyi in
X, letG be the subgroup of squares inX∧ and letH be the subgroup of characters ofX which
take the value 1 on Kerϕ. Sinceχ2(i ) = χ(ϕ(i )) for every characterχ , G⊆ H . Moreover
G is isomorphic to Imϕ, andH is isomorphic to the group of characters ofX/Kerϕ, so
that|G| = |H |. Now η belongs toH , since for everyi in Kerϕ, η(i ) = ti t

−1
−1 = ti t

−1
i = 1,

and henceη belongs toG. 2
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6. Conclusion

We hope to have convinced the reader that it is worthwhile to consider two-weight spin
models as a special case of four-weight spin models, because we then have at our disposal
the powerful tool of gauge transformations. However we believe that general four-weight
spin models are also interesting for their own sake. To support this belief it would be nice
to exhibit a link invariant which can be obtained from a four-weight spin model and not
from a two-weight spin model. The main difficulty here is to find a criterion to show that a
link invariant cannot be associated with some two-weight spin model, which does not show
at the same time that the link invariant cannot be associated with some four-weight spin
model. But another difficulty is the lack of known examples of four-weight spin models
(excluding of course those which can be obtained from two-weight spin models by gauge
transformations). See however [2, 15, 28].

Thus more research on explicit constructions of four-weight spin models is needed. How-
ever, some theoretical aspects are worth investigating as well. In particular the present work
paves the way to new axiomatizations of the notion of four-weight spin model, which would
bear on one of the pairs (W1,W3) or (W2,W4) alone, or even better on the 3-tensors appear-
ing in (8). Maybe such axiomatizations could lead to a better topological understanding of
the associated link invariants.

References

1. E. Bannai and E. Bannai, “Spin models on finite cyclic groups,”J. Alg. Combin.3 (1994), 243–259.
2. E. Bannai and E. Bannai, “Generalized spin models (four-weight spin models),”Pacific J. of Math.170(1995),

1–16.
3. E. Bannai, E. Bannai, and F. Jaeger, “On spin models, modular invariance, and duality,”J. Algebraic Combin.

6 (1997), 203–228.
4. Ei. Bannai and T. Ito,Algebraic Combinatorics, Vol. I: Association Schemes, Benjamin/Cummings, Menlo

Park, 1984.
5. Et. Bannai and A. Munemasa, “Duality maps of finite abelian groups and their applications to spin models,”

preprint, 1995.
6. A.E. Brouwer, A.M. Cohen, and A. Neumaier, “Distance-Regular Graphs, Springer-Verlag, Ergebnisse der

Mathematik und ihrer Grenzgebiete, 3. Folge, Band 18, 1989.
7. G. Burde and H. Zieschang,Knots, de Gruyter, Berlin, New York, 1985.
8. R.H. Crowell and R.H. Fox,Introduction to Knot Theory, Springer, Berlin, 1963.
9. E. Date, M. Jimbo, K. Miki, and T. Miwa, “Braid group representations arising from the generalized chiral

Potts models,”Pacific J. of Math.154(1) (1992), 37–66.
10. T. Deguchi, “Generalized spin models associated with exactly solvable models,” Progress in Algebraic Com-

binatorics, Mathematical Society of Japan, 1996, pp. 81–100. Advanced Studies in Pure Mathematics, Vol. 24.
11. D.M. Goldschmidt and V.F.R. Jones, “Metaplectic link invariants,”Geom. Dedicata31 (1989), 165–191.
12. F. Jaeger, “Spin models for link invariants,” inSurveys in Combinatorics 1995, Peter Rowlinson (Ed.),

Cambridge University Press 1995, pp. 71–101. London Mathematical Society Lecture Notes Series, Vol. 218.
13. F. Jaeger, “On spin models, triply regular association schemes, and duality,”J. Alg. Combin.4(1995), 103–144.
14. E. Jaeger, “Towards a classification of spin models in terms of association schemes,” Progress in Algebraic

Combinatorics, Mathematical Society of Japan, 1996, pp. 197–225. Advanced Studies in Pure Mathematics,
Vol. 24.

15. F. Jaeger, “New constructions of models for link invariants,”Pacific J. Math.176(1996), 71–116.
16. F. Jaeger, M. Matsumoto, and K. Nomura, “Bose-Mesner algebras related to type II matrices and spin models,”

J. Algebraic Combin. 8 (1998), 39–72.



268 JAEGER

17. V.F.R. Jones, “A polynomial invariant for knots via Von Neumann algebras,”Bull. Am. Math. Soc.12 (1985),
103–111.

18. V.F.R. Jones, “On knot invariants related to some statistical mechanical models,”Pacific J. of Math.137(1989)
2, 311–334.

19. V.G. Kac and M. Wakimoto, “A construction of generalized spin models,”Perspectives in Mathematical
Physics, International Press, 1994, pp. 125–150. Conf. Proc. Lecture Notes Math. Phys. III.

20. L.H. Kauffman,On Knots, Princeton University Press, Princeton, New Jersey, 1987. Annals of Mathematical
Studies, Vol. 115.

21. K. Kawagoe, A. Munemasa, and Y. Watatani, “Generalized spin models,”J. of Knot Theory and its Ramifica-
tions3 (1994), 465–476.

22. W.B.R. Lickorish and K. Millett, “A polynomial invariant of oriented links,”Topology26 (1987), 107–141.
23. H.R. Morton and P.R. CROMWELL, “Distinguishing mutants by knot polynomials,”J. of Knot Theory and

its Ramifications5 (1996), 225–238.
24. K. Nomura, “An algebra associated with a spin model,” preprint, 1994.
25. N. Yu. Reshetikhin and V.G. Turaev, “Ribbon graphs and their invariants derived from quantum groups,”

Commun. Math. Phys.127(1990), 1–26.
26. V.G. Turaev, “The Yang-Baxter equation and invariants of links,”Invent. Math.92 (1988), 527–553.
27. F.Y. Wu, P. Pant, and C. King, “New link invariant from the chiral Potts model,”Phys. Rev. Lett.72 (1994),

3937–3940.
28. M. Yamada, “The construction of four-weight spin models by using Hadamard matrices and M-structure,”

Australasian J. of Comb.10 (1994), 237–244.


