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Abstract. The ‘dollar game’ represents a kind of diffusion process on a graph. Under the rules of the game
some configurations are both stable and recurrent, and these are known as critical configurations. The set of
critical configurations can be given the structure of an abelian group, and it turns out that the order of the group
is the tree-number of the graph. Each critical configuration can be assigned a positive weight, and the generating
function that enumerates critical configurations according to weight is a partial evaluation of the Tutte polynomial
of the graph. It is shown that the weight enumerator can also be interpreted as a growth function, which leads to
the conclusion that the (partial) Tutte polynomial itself is a growth function.
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1. The main result

TheTutte polynomial[13] of a graphG can be defined as a sum taken over the set6(G) of
spanning trees ofG:

T (G; x, y) =
∑

T∈6(G)
xi (T)y j (T),

wherei (T)and j (T)are non-negative integers associated with the spanning treeT . The fun-
damental property ofT is that it satisfies a ‘deletion-contraction’ equation (see Section 7).
Partial evaluations of the Tutte polynomial occur in a wide variety of seemingly unrelated
situations: the graph-colouring polynomial and the Jones polynomial of a knot or link being
just two examples [2, 14].

Recently it has been observed [1] that the set6(G) is in bijective correspondence with
several other sets of objects associated withG. In fact all these sets are instances of an
abelian groupK (G), which has a natural presentation in terms ofG. The main result of
this paper is that the reciprocal polynomial ofT (G; 1, z) is the growth functionL(z) of
K (G) with respect to its natural presentation:

zcT (G; 1, z−1) = L(z) =
∑

g∈K (G)

zL(g),

wherec is the cycle-rank ofG andL(g) is the length ofg in K (G). It should be noted [14]
that this partial evaluation of the Tutte polynomial is precisely the one which measures the
‘reliability’ of a graph with respect to edge-failures, when the probability of an individual
failure isq = z−1.
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The basis of the proof is the observation that manipulations involving the natural set of
generators and relations forK (G) correspond to moves in the so-called ‘dollar game’ onG
[4]. The details are explained in Sections 9 and 10.

The dollar game is a version of the chip-firing game discussed by mathematicians [5, 10],
and is closely related to a model developed by physicists which uses the terminology of
‘sandpiles’ and ‘avalanches’. Gabrielov [6, 7] showed that several quantities associated
with the avalanche model satisfy an equation related to the deletion-contraction equation
and, in particular, he observed [7, p. 267] that a certain polynomial has this property. His
arguments are based on geometrical ideas.

Using graph-theoretical methods, Merino Lopez [9] has shown that the generating func-
tion C(z) for critical configurations in the dollar game is equal toT (1, z) (Theorem A).
We shall establish a correspondence between critical configurations and minimal repre-
sentations of elements of the groupK (G), which leads to the result (Theorem B) that
L(z) = zcC(z−1). The main result follows from these two theorems.

2. The dollar game

We shall consider a finite graphG consisting of a vertex-setV , an edge-setE, and an
incidence relation such that each edge is incident with one or two vertices. Thus both loops
and multiple edges are allowed. We denote byν(v) the number of loops at a vertexv, and
by ν(v,w) the number of edges joining the verticesv andw. For the avoidance of doubt,
thedegreeof v is defined to be

deg(v) = 2ν(v)+
∑
w 6=v

ν(v,w).

We shall assume, without always mentioning it explicitly, thatG is connected.
Suppose that each vertex ofG has a number of dollars, except for one vertexq, the

‘government’, which is in debt by the total amount of dollars held by the rest. The operation
which we shall callfiring a vertexv consists of transferring dollars fromv along the edges
incident withv. Two dollars are transferred around each loop atv (since we count a loop
as being twice-incident with its vertex), and one dollar is transferred along each other edge
incident withv. The former operation has no effect, since the two dollars return tov, but it
is necessary to include it for the sake of consistency. We insist that a vertexv 6= q can be
fired if and only ifv has at least as many dollars as incident edges. However, this restriction
does not apply toq, because firingq merely increases its debt. Thisdollar game[4] is a
variant of what is usually called achip-firing gameon the graph [5].

We describe briefly a few basic results from [4], which are in turn derived from [5]. The
dollar game can be defined formally as follows. Aconfigurationon (G,q) is an integer-
valued functions defined onV such that

s(v) ≥ 0 (v 6= q), s(q) = −
∑
v 6=q

s(v).

Let us say that vertexv 6= q is ready in a configurations if s(v) ≥ deg(v). If v is ready
in s, then it can befired, which results in a new configurations′ defined by

s′(x) = s(x)+ ν(x, v), if x 6= v;
s′(v) = s(v)− deg(v)+ 2ν(v).
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In particular, if the graph is simple (no loops or multiple edges), vertices adjacent tov gain
one dollar, vertices not adjacent tov are unaffected, andv itself losesdeg(v) dollars. We
denote byFv the operator which takess to s′, and whenv 6= q we say thatFv is legal for s
if and only if s(v) ≥ deg(v).

The first result we need is Lemma 3.1 in [4].

Lemma 1 Any sequence of legal firings Fv, v 6= q which starts from a given configuration
on (G,q) has finite length.

If no vertexv 6= q is ready ins, then we say thats is astableconfiguration. Lemma 1 says
that, starting from any configuration and firing vertices other thanq, we shall eventually
reach a stable configuration. In that situation, and in that situation only, we allow the firing
of q; in other words,Fq is defined to belegal for s if and only if s is stable.

3. Critical configurations

The fact that we are allowed to useFq if there is no alternative, means that firing can
continue indefinitely. But Lemma 1 tells us that an infinite sequence of legal firings
must containFq infinitely often, and consequently it must produce an infinite number
of stable configurations. Since the number of distinct stable configurations is finite, there
must be at least one, sayr , which is recurrent. In other words, there is a non-empty finite
sequence of legal firings which starts and ends with the same stable configurationr .

We say that a configuration on(G,q) iscritical if it is stable and recurrent. The preceding
remarks imply that, starting from any configuration and applying a sequence of legal firings
(including Fq if necessary), we shall eventually reach a critical configuration.

In general, not every stable configuration is critical. For example, in the complete bi-
partite graphK3,3 there are 5 verticesv 6= q and each has degree 3, so there are 35 stable
configurations. But only 34 of them are critical.

Suppose thatS is a non-empty finite sequence of (not necessarily distinct) vertices ofG,
such that starting froms, the vertices can be fired legally in the order ofS. If v occursx(v)
times, we shall refer tox as therepresentative vectorfor S. The configurations′ after the
sequence of firingsS is given by

s′(v) = s(v)− x(v)[deg(v)− 2ν(v)] +
∑
w 6=v

x(w)ν(v,w).

This is because each timev is fired it loses (effectively)deg(v) − 2ν(v) dollars, and each
time a vertexw 6= v is firedv gainsν(v,w) dollars. The relationship betweens ands′ can
be written more concisely if we define theLaplacian matrix Qas follows:

(Q)vw =
{−ν(v,w), if v 6= w;

deg(v)− 2ν(v), if v = w.

In terms ofQ the relationship betweens ands′ is then

s′ = s− Qx.
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The following lemma shows that there are severe restrictions on a sequence of firings under
which a configuration recurs.

Lemma 2 Any sequence of legal firings in which each vertex occurs the same number of
times produces a final configuration which is the same as the initial one. Conversely, in
any sequence of legal firings under which a configuration recurs, each vertex is fired the
same number of times. If such a sequence exists for a given configuration, then there is a
sequence in which every vertex is fired just once.

Proof: See [4, Sections 2 and 3]. 2

4. Critical sequences

Suppose thatG hasn vertices, and letπ : {1, 2, . . . ,n} → V be a bijection. We shall say
thatπ is acritical sequenceon (G,q) if the sequence

π(1), π(2), π(3), . . . , π(n)

of vertices ofG has the following properties:

[C1]: π(1) = q;
[C2]: for each j = 2, 3, . . . ,n there is ani < j such thatπ(i ) is adjacent toπ( j ).

A critical sequence may also be thought of as atotal orderon the vertex-setV , satisfying
the conditions thatq comes first [C1], and every other vertex is preceded by at least one
neighbour [C2]. There is at least one critical sequence on(G,q), because any total order
which is consistent with distance fromq has these properties.

The relationship between critical sequences and critical configurations is clarified in the
following lemma.

Lemma 3
(i) If the configuration c is critical, so that it recurs under a sequence of firings in which

every vertex occurs just once, then this sequence is a critical sequence.
(ii) For every critical sequenceπ there is a critical configuration cπ which recurs underπ .

Proof:

(i) Sincec is stableq must be fired first, so [C1] holds. When a vertexv is fired, it must
be ready at that stage. But initiallyv is not ready (becausec is stable), so at least one
neighbour ofv must be fired beforev. Thus [C2] holds.

(ii) Suppose thatπ is a critical sequence. DefineBπ (v) to be the set of edges which join
v to vertices which come beforev in the order defined byπ , that is,

Bπ (v) = {e∈ E | e has verticesv,w such thatπ−1(w) < π−1(v)}.



THE TUTTE POLYNOMIAL AS A GROWTH FUNCTION 119

Since condition [C2] is satisfied,Bπ (v) is not empty. Thus if we define

cπ (v) = deg(v)− |Bπ (v)| (v 6= q),

we havecπ (v) ≤ deg(v)− 1, andcπ is a stable configuration.
Suppose we try to fire the vertices in the orderπ , starting from the configurationcπ .

Firing q = π(1) first is legal, sincecπ is stable. Suppose all firings are legal until we
come to fireπ(i ) = v. The total number of dollars held byv at that stage is the initial
number,cπ (v), plus the number of edges joiningv to vertices which have been fired before
v, |Bπ (v)|. By the definition ofcπ (v) this number is equal to the degree ofv, and so it is
legal to firev. Hence we have a legal sequence of firings, containing each vertex just once,
and it follows thatcπ is recurrent. 2

The function from the setS of critical sequences to the set0 of critical configurations
defined byπ 7→ cπ is neither a surjection nor an injection. If we are given a critical
configurationc then, according to Lemma 2, there is at least one critical sequenceπ under
which c recurs, butc may not be equal tocπ . This situation will be analysed in the next
section.

Furthermore, there may be distinct critical sequencesπ andσ such thatcπ = cσ . In
other words, if we partitionS into equivalence classes by saying thatπ andσ are equivalent
if and only if cπ = cσ , then the classes may have more than one member. For example, ifσ

is obtained fromπ by transposing two vertices which are consecutive inπ but not adjacent
in G, thenσ andπ are in the same equivalence class. The following lemma is an important
step towards the characterisation of the equivalence classes.

Lemma 4 Letπ andσ be critical sequences such that cπ = cσ . Suppose there are vertices
x and y such that x comes before y inπ and x comes after y inσ . Then x and y are not
adjacent.

Proof: Suppose, for a contradiction, thatx andy are the ends of an edgee. Thene is not
in Bπ (x) but it is in Bσ (x). Sincecπ = cσ , the two sets have the same size, and there must
be an edgef which is not inBσ (x) but is in Bπ (x). In other words, there is a neighbourw
of x which comes beforex in π , and afterx in σ .

Now we can repeat the argument withx, y, ande replaced byw, x, and f ; and so on,
indefinitely. This is clearly impossible, sox andy cannot be adjacent. 2

5. The index of a configuration

For any configurations denote byM(s) the associated ‘money-supply’:

M(s) =
∑
v 6=q

s(v) = −s(q).
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If G hasn vertices andm edges, ands is stable on(G,q), we have

M(s) =
∑
v 6=q

s(v) ≤
∑
v 6=q

[deg(v)− 1] = 2m− deg(q)− n+ 1.

Whenc is critical, the following lemma provides a lower bound forM(c). It is related to
Theorem 3.3 in [5].

Lemma 5 Let G be a connected graph with m edges, l of which are loops, and let q be
any vertex of G. Then for any critical configuration c on(G,q) we have

M(c) ≥ m+ l − deg(q).

Proof: Consider a critical sequence forc: in the course of this sequence some dollars
are transferred. Think of the dollars as real dollar bills, and mark those that are transferred
according to the following rule.

• Each edgee is incident with two vertices, saya andb, where ife is a loop thena = b.
Supposea is the first of these vertices to be fired. Mark a dollar bill which is transferred
from a to b with the labele. If e is a loop ata, two dollars return immediately toa, both
labellede. If e is not a loop, the vertexb is fired subsequently, at which stage the dollar
markede is returned toa.

Since every vertex is fired just once, at the end of the process there are 2l dollar bills marked
with the labels of loops, andm− l dollar bills marked with the labels of the edges which
are not loops. That is, there arem+ l marked dollar bills altogether. However, the dollars
marked whenq was fired (which was necessarily first) have returned toq, and there are
deg(q) of these. The remaining(m+ l ) − deg(q) marked dollars are still in circulation.
The final configuration isc, and soM(c) ≥ (m+ l )− deg(q), as claimed. 2

It is convenient to denotem− deg(q) by M0 and to define theindexof a configurations to
be the integer

i (s) = M(s)− M0 = M(s)− (m− deg(q)).

Lemma 5 shows that ifc is a critical configuration theni (c) ≥ l . Sincec is stable, the
calculation preceding the lemma shows thati (c) = M(c)− M0 is at mostm− n+ 1. We
shall refer to{l , l + 1, . . . ,m− n+ 1} as thecritical rangefor the index.

Lemma 5 is a significant step towards identifying which stable configurations are critical.
It says that a stable configuration whose index lies outside the critical range is not critical. On
the other hand, it is not necessarily true that a stable configurations is critical if i (s) is in the
critical range. We can make further progress towards characterising critical configurations
by using the critical sequences defined in the previous Section. The following lemma is
equivalent to Lemma 5 in that context.
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Lemma 6 Suppose thatπ is a critical sequence and cπ is the associated critical confi-
guration defined in the proof of Lemma3. Then i(cπ )= l , where l is the number of loops
in G.

Proof: By definition,

M(cπ ) =
∑
v 6=q

cπ (v) =
∑
v 6=q

(deg(v)− |Bπ (v)|).

In other words,cπ (v) is the number of incidences betweenv and edges which do not joinv
to vertices preceding it inπ . Suppose thate is an edge with distinct verticesx, y, labelled
so thatx comes beforey in π . If x 6= q, the edgee contributes 1 toM(cπ ), by virtue of
the termcπ (x). If x = q thene makes no contribution. So the non-loops contribute in all
(m− l ) − deg(q). Every loop at a vertexv contributes 2 toM(cπ ) by virtue of the term
cπ (v), and so the contribution of the loops is 2l . Thus the total ism+ l − deg(q), and we
have

i (cπ ) = M(cπ )− M0 = (m+ l − deg(q))− (m− deg(q)) = l . 2

We can now throw some light on the structure of the set of all critical configurations.

Lemma 7 Let c be a critical configuration and let s be a stable configuration such that,

for all v 6= q, s(v) ≥ c(v). Then s is critical.

Proof: Sincec is critical, there is a critical sequence associated with it. The condition
s(v) ≥ c(v) implies that the same sequence is legal fors, and sos is critical. 2

Lemma 8 If π is a critical sequence for c, then c(v) ≥ cπ (v) for all v 6= q; and if
i (c) = l , then c= cπ .

Proof: If π is a critical sequence for the configurationsc1 andc2, it is also a critical
sequence for the configurationcm defined by

cm(v) = min{c1(v), c2(v)} (v 6= q).

In this result, takec1 = c andc2 = cπ . It follows that, sinceπ is a critical sequence forc
andcπ , π is also critical sequence forcm. If c(x) < cπ (x) for some vertexx, thencm would
be a critical configuration withM(cm) < M(cπ ) = M0+ l , contradicting Lemma 5. Hence
c(v) ≥ cπ (v) for all v 6= q. Finally, if i (c) = l we must haveM(c) = M0 + l = M(cπ )
and soc = cπ . 2

Corollary Suppose that G has no loops and c is a critical configuration of index0 on
(G,q). Then there is a vertex z such that c(z) = 0.
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Proof: By the lemma,c = cπ for some critical sequenceπ . According to the definition
of cπ , the vertexz= π(n) has the required properties. 2

Lemmas 7 and 8 provide a useful characterisation of the set0 of all critical configurations.
We can think of the configurations as points of the integer latticeZn−1, with the natural
partial order≤ defined byb ≤ c if and only if b(v) ≤ c(v) for all v 6= q. With respect to
this order there is a unique maximal elementc] of 0, given by

c](v) = deg(v)− 1 (v 6= q).

The set of minimal elements of0 is the set0l of critical configurations with indexl . The
lemmas assert that if we knowc] and0l , the entire set0 is determined:

0 = {c ∈ Zn−1 | b ≤ c ≤ c] for someb ∈ 0l }.

Thus we have a method of constructing all the critical configurations on(G,q). First, we
write down the critical sequencesπ . Lemma 8 implies that every critical configuration with
index l occurs as acπ , although (for the reasons given at the end of Section 4), there may
be repetitions. The critical configurations with index greater thanl are then obtained by
writing down the stable configurations which ‘cover’ the critical ones with indexl . An
example follows.

Example Let K3,3 be the complete bipartite graph with two classesA = {v,w, x} and
B = {q, r, s}. Herel = 0, so the critical range is 0≤ i (c) ≤ 4, corresponding to values
of M(c) between the minimumM0 = m − deg(q) = 9 − 3 = 6 and the maximum,
M0+ (m− n+ 1) = 10.

As usual we takeq to be the ‘government’. In any critical sequenceq must come first.
Of the remaining 5 vertices, 3 are in classA and 2 in classB, so there are 5!/3!2! = 10
patterns (such asAAABB) for a sequence of these 5 vertices; and each pattern gives rise to
12 vertex-sequences. Condition [C2] for a critical sequence is satisfied if and only ifq is
followed by a classA vertex. So the number of allowable patterns is six:AAABB, AABAB,
AABBA, ABAAB, ABABA, ABBAA. Transposing two vertices in the same class results in an
equivalent critical sequence, and in this graph everyA-vertex is adjacent to everyB-vertex,
so no other transpositions are allowed. Hence the number of equivalence classes of critical
sequences corresponding to the six patterns is 1, 6, 3, 6, 12, 3, respectively. Thus we get
1+ 6+ 3+ 6+ 12+ 3= 31 critical configurations.

The following table contains one critical sequenceπ and the configurationcπ , for each
of the six allowable patterns. The remaining ones can be obtained by permutingv,w, x
andr, s.
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v w x r s

AAAB B qvwxrs 2 2 2 0 0

AAB AB qvwr xs 2 2 1 1 0

AAB B A qvwrsx 2 2 0 1 1

AB AAB qvrwxs 2 1 1 2 0

AB AB A qvrwsx 2 1 0 2 1

AB B AA qvrswx 2 0 0 2 2

Note that the complete list of 31 critical configurations with index 0 does not include every
stable configuration with index 0. For example, 21111 is stable but does not occur in the
list; the Corollary to Lemma 8 confirms that it is not critical (there is no 0).

Now we can construct recursively the critical configurations with index greater than 0,
by increasing the numbers at each vertex. For example, the critical configuration 20022 is
‘covered’ by the critical configurations 21022, 20122, 21122, 22022, 20222, 22122, 21222,
and 22222. Using this method it turns out that there are 29, 15, 5, 1 critical configurations
of index 1, 2, 3, 4 respectively, giving 81 altogether.

6. Allowable orientations

Let E− be the set of edges ofG which are not loops. Anorientationof G is a functionh
which assigns to eache∈ E− one of its incident verticesh(e). We callh(e) theheadof e.
The other vertex ofe is called thetail of e and is denoted byt (e). Usually we think ofe
as being marked with an arrow which points fromt (e) to h(e); it is worth stressing that a
loop has no arrow. Given an orientationh of G, thein-degreeof a vertexv is defined to be

inh(v) = |{e∈ E− | h(e) = v}|.

We say thath is acyclic if there is noh-oriented cycle, that is, no sequence of edges
e1, e2, e3, . . . ,er such thath(e1) = t (e2), h(e2) = t (e3), . . . , h(er ) = t (e1).

The relationship between acyclic orientations and chip-firing was noted in [5]. In a
different context, the earlier paper of Greene and Zaslavsky [8] contains results equivalent
to those stated below as Lemmas 9 and 10, and the proofs of those lemmas are therefore
omitted.

Our motivation for considering orientations comes from the observation (Section 4) that
π 7→ cπ is not an injection. Following the lead provided by Lemmas 4 and 6, we shall
identify a set of orientations which is in bijective correspondence with the set of critical
configurations of minimal indexl . Specifically, we say that an orientationh is allowable
on (G,q) if it satisfies the two following conditions.

[O1]: h is acyclic.

[O2]: inh(q) = 0 andinh(v) 6= 0 for all v 6= q.
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The condition [O1] thath is acyclic implies thath defines a partial order≺ on the vertex-set
V , such thatt (e) ≺ h(e) for all e ∈ E−. We shall say that a total orderπ on V is an
extensionof h if and only if t (e) comes beforeh(e) in π , for all e ∈ E−. It is a standard
result that any partial order has an extension.

Given an allowable orientationh, define

ch(v) = deg(v)− inh(v) (v 6= q).

Lemma 9 The total orderingπ is an extension of an allowable orientation h if and only
if it is a critical sequence for ch. Furthermore, ch is a critical configuration with index l.

Lemma 10 The map h7→ ch is a bijection from the set of allowable orientations to the
set of critical configurations with index l on(G,q).

Let e be an edge ofG which is neither a loop nor aco-loop(its removal does not result
in a disconnected graph). Suppose the vertices incident withe arex andy. DefineG − e
to be the graph obtained bydeletionof e, that is, the graph with the same vertices asG and
all its edges excepte. DefineG/e to be the graph obtained bycontractionof e, that is, the
graph whose vertex-set is obtained by replacingx andy by a new vertex∗, and replacing
every edge inG incident withx or y by an edge incident with∗. Note that the edgee does
not correspond to any edge ofG/e, but if there are other edges inG joining x andy (that
is, if ν(x, y) ≥ 2) then these edges become loops incident with the vertex∗ in G/e.

Lemma 11 Suppose that G− e and G/e are the graphs formed by the deletion and
contraction of an edge e of G. Letα(G,q) be the number of allowable orientations on
(G,q). Then

α(G,q) = α(G− e,q)+ α(G/e,q).

Proof: Using Lemma 10, this follows from a more general result given in the following
section. 2

7. Counting critical configurations

For eachi ≥ 0 let0i (G,q) denote the set of critical configurations on(G,q) which have
index i , and let

γi (G,q) = |0i (G,q)|, 0(G,q) =
⋃
i≥0

0i (G,q).

We define the generating functionC(z) = C(G; z) as follows:

C(G; z) =
∑

c∈0(G,q)
zi (c) =

m−n+1∑
i=l

γi (G,q)z
i .
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For example, the calculations forK3,3 given in Section 5 yield the result

C(K3,3; z) = 31+ 29z+ 15z2+ 5z3+ z4.

Merino Lopez [9] has established an alternative characterisation ofC(G; z) (Theorem A
below). In order to state it we need to recall the definition of the Tutte polynomial.

Let G be a connected graph andT a spanning tree ofG. For each edgeg ∈ T there is
a unique cut consisting of all the edges which have one in end in each of the components
obtained by deletingg from T . We denote this by cut(T, g); it containsg itself and edges
which are not inT . For each edgeh which is not inT there is a unique cycle consisting
of h and edges which are inT ; we denote this by cyc(T, h).

Assume that the edges ofG are given a fixed orderinge1, e2, . . . ,em. Supposeei ∈ T .
Then we say thatei is internally activeif i is the least index of any edge in cut(T, ei ).
Similarly, if ej /∈ T , we say thatej is externally active ifj is the least index of any edge
in cyc(T, ej ). The internal (external) activity of T is defined to be the number of edges
which are internally (externally) active. Denoting these quantities byint(T) andext(T)
respectively, we define a polynomial in two variables∑

T

xint(T)yext(T).

It can be shown that this polynomial is independent of the edge-ordering used in its definition,
and it is known as theTutte polynomialof G, denoted byT (G; x, y). In other words,

T (G; x, y) =
∑

ti j x
i y j ,

whereti j is the number of spanning trees with internal activityi and external activityj , in
any fixed ordering of the edges.

We can now state the theorem of Merino Lopez [9].

Theorem A Let G be a connected graph with Tutte polynomialT (x, y). Then for any
vertex q of G the generating functionC(z) for critical configurations on(G,q) is given by

C(z) = T (1, z).

It follows that
∑

i ti j , the total number of spanning trees with external activityj , is equal
to the number of critical configurations with indexj . Since the set of spanning trees which
contribute to

∑
i ti j depends on the chosen ordering of the edges, we cannot expect a

‘bijective’ proof of this fact.
In Tutte’s original paper [13] it is shown thatT satisfies the deletion-contraction equation:

T (G; x, y) = T (G− e; x, y)+ T (G/e; x, y).

It follows from Theorem A that the polynomialC(z) and its coefficientsγi also satisfy this
equation. In fact, Merino Lopez [9] proves the following result.
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Lemma 12 Let e be an edge incident with q, and let q∗ be the vertex obtained by contract-
ing e. Then for all i≥ 0, the set0i (G,q) has a natural decomposition into two parts,which
are in bijective correspondence with0i (G− e,q) and0i (G/e,q∗) respectively. Thus:

γi (G,q) = γi (G− e,q)+ γi (G/e,q
∗).

Note added in Proof: The author is grateful to a referee for pointing out that the character-
isation of the minimal elements of0 obtained in Section 5, together with Theorem A,
resolves a conjecture of Stanley [12, p. 59] in the case of graphs. Roughly speaking, the
coefficients of the Tutte polynomialT (1, z) can be represented by the cardinalities of certain
sets with nice properties.

8. The critical group

Let G be a connected graph and letC0 = C0(G;Z) denote the abelian group of integer-
valued functions defined onV . Associated with the matrixQ defined in Section 3 we have
theLaplacian homomorphism Q: C0→ C0 defined by

(Q f )(v) = (deg(v)− 2ν(v)) f (v)−
∑
x∈V

ν(v, x) f (x).

If σ : C0→ Z is the homomorphism defined by

σ( f ) =
∑
v∈V

f (v),

then is it easily verified thatσQ = 0, so ImQ is a subgroup of Kerσ . The quotient group

K (G) = Ker σ/Im Q

will be called thecritical group of G. It has also been referred to as theJacobiangroup
[1, 11].

Let q be a vertex ofG. Denoting byδu the function which takes the value 1 atu and 0
at every other vertex, we see that for eachu 6= q the functionδu − δq is in Ker σ . Let
gu = [δu − δq], the coset of this function with respect to ImQ.

It can be shown [4, Theorem 8.1] that{gu | u 6= q} is a set of generators forK (G).
Furthermore, these generators satisfy a canonical set of relations, which we shall call the
Picard presentation. The reason for this name is the analogy with the Picard group in
Algebraic Geometry [1, 3]. Since the presentation of the group (but not the group itself)
depends on the choice ofq, we shall denote it byK (G,q) in this context.

Specifically, in the Picard presentationK (G,q) there is a relationRv for eachv 6= q:

Rv : deg(v) · gv = 2ν(v) · gv +
∑
w 6=q

ν(v,w) · gw.
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Adding all these relations we obtain an important consequence, which we shall callRq.

Rq :
∑
u6=q

ν(q, u) · gu = 0.

Any configurations on(G,q) corresponds to arepresentationof an elementg of K (G,q),
defined byg = ∑ s(u)gu. We say that this is aminimal representationof g if any other
representation

∑
s′(u)gu of the same elementg satisfies

∑
s′(u) ≥ ∑ s(u). The length

L(g) of g is defined to be
∑

s(u), where
∑

s(u)gu is a minimal representation.
We define thegrowth functionof K (G,q) to be the polynomial functionL given by the

formula

L(z) =
∑

g∈K (G,q)

zL(g).

Example Let K3,3 be the complete bipartite graph with the notation as in Section 5.
The Picard presentation has 5 generators which (writingr instead ofgr and so on) are
r, s, v, w, x. The relations are:

Rr : 3r = v + w + x

Rs: 3s= v + w + x

Rv: 3v = r + s

Rw: 3w = r + s

Rx: 3x = r + s.

The additional relation isRq: v + w + x = 0.
In Section 11 we shall describe a general method for listing minimal representations.

In a small case like this, elementary algebra and dogged persistence are sufficient. In the
following list, only one of each type of minimal representation is listed—that is,v stands
for any one ofv, w or x, and so on. Each type is followed by the number of minimal
representations of that type, in square brackets.

Length 0: 0 [1];
Length 1: r [2], v [3];
Length 2: 2r [2], r + s [1], r + v [6], 2v [3], v + w [3];
Length 3: 2r + s [2], 2r + v [6], r + s+ v [3], r + 2v [6], r + v+w [6], 2v+w [6];
Length 4: 2r + 2s [1], 2r + s+ v [6], 2r + v + w [6],

r + v + 2w [12], r + s+ 2v [3], 2v + 2w [3].

Observe that, for example, the typev + w + r + s does not appear in the list, because it
reduces to 2x. Counting the types we obtain:

L(z) = 1+ 5z+ 15z2+ 29z3+ 31z4.

In general, an elementg of K (G,q)may have more than one representation of lengthL(g).
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9. The dollar game and the Picard presentation

A representationg =∑ s(u)gu of an element ofK (G,q) is associated with a configuration
s for the dollar game (where the definition ofs is extended toq by definings(q) = −∑ s(u),
so thats is in Kerσ ). The coset [s] ∈ K (G,q) is justg, since

g =
∑
u6=q

s(u)gu =
∑
u6=q

s(u)[δu − δq] =
[∑

u6=q

s(u)δu −
(∑

u6=q

s(u)

)
δq

]
= [s].

There is an obvious connection between applying a relationRv to the representation∑
s(u)gu and firing the vertexv in the configurations. In this context it is helpful to

think of Rv as arewriting rule, rather than an identity:

Rv: deg(v) · gv 7−→ 2ν(v)gv +
∑
w 6=q

ν(v,w)gw.

If s(v) ≥ deg(v)we can apply the rewriting ruleRv and collect up the terms using the abelian
group laws. The result is a representation

∑
t (u)gu, and the associated configurationt is

the result of applyingFv to s.
Similarly, we can express the additional relationRq in the following way (chosen to

conform with our definition of the firingFq):

Rq: 0 7−→
∑
u6=q

ν(q, u)gu.

Lemma 13 Each element of K(G,q) has a representation
∑

s(u)gu for which s is stable;
that is, 0≤ s(u) ≤ deg(u)− 1 for all u 6= q.

Proof: Let g = ∑ f (u)gu be any element ofK (G,q), remembering that the values of
f may be negative, and definef (q) = −∑ f (u). Let l be the configuration defined on
verticesu 6= q by

l (u) =
{

deg(u)− 1 if f (u) ≥ 0,

deg(u)− 1− f (u) if f (u) < 0.

Althoughl is not necessarily stable, it follows from Lemma 1 that there is a finite sequence of
legal firings which reducesl to a stable configurationk. If this sequence has representative
vectorx, we havek = l − Qx. Let z= f + l − k, so thatz= f + Qx. Then [z] = [ f ],
and

z(u) = f (u)+ l (u)− k(u) ≥ deg(u)− 1− k(u) ≥ 0.

Hence
∑

z(u)gu is a representation of the given elementg.
If z is stable, we are finished. If not, it follows from Lemma 1 again that we can apply

the rulesRv (v 6= q) until we are forced to stop. At this stage we have a representation for
which the associated configuration is stable. 2
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10. The unique critical representative

Recall that in Section 3 we established the following result. If we start from any configura-
tion of the dollar game, and carry out a sequence of legal firings, we must eventually arrive
at a critical configuration—that is, a stable configuration which recurs. A fundamental result
about the dollar game is the following.

Lemma 14 Let s be a configuration on(G,q). Then there is a unique critical configuration
which can be reached by a legal sequence of firings, starting from s.

Proof: [4, Theorem 3.8]. 2

This result has a simple interpretation in terms of the groupK (G,q). Any configuration
s satisfiesσ(s) = 0, and so defines a coset [s] in K (G,q). If s′ is obtained froms by a
sequence of legal firings, it is of the forms′ = s− Qx, and so it belongs to the same coset
[s]. Lemma 14 asserts that each coset [s] has a unique critical representative.

This explains the name ‘critical group’ forK (G,q). Indeed, we can think of the critical
configurations themselves as the elements of a group. In that case, we must define an abelian
group operation• on the set of critical configurations so that the coset ofc1 • c2 is the sum
of the cosets [c1] and [c2] in K (G,q). This implies that we must takec1 • c2 to be the
unique critical representative of [c1+c2]—in other words, the unique critical configuration
which can be obtained by applying a sequence of legal firings toc1+ c2. More details can
be found in [4].

Our purpose here is to consider the index of the critical representativec of [s] whens is
stable. The configurations may itself be critical, in which casec = s. If s is not critical,
then there is a sequence of legal firings, starting withFq, which leads froms toc. If i (s)<0
then, becausei (c) ≥ 0, it follows thati (s) < i (c). This may still be true even ifi (s) is
in the critical range. For example, it was pointed out in Section 5 that the stable configuration
s = 21111 onK3,3 is not critical, even though its index is 0, which is in the critical range.
In this case the critical representativec = 02222 is obtained as follows:

21111
q−→ 32211

x−→ 02222,

and we havei (c) > i (s) again. However, it is possible for there to be a stable (but not
critical) elements whose critical representativec is such thati (s) = i (c).

Example Let G consist of a 5-cycleq, x, t, u, z together with a vertexy and two edges
joining y to q andx. SoM0 = 7− 3 = 4. Denote byabcdethe values of a configuration
at the verticesx, y, z, t, u. Then we have a sequence of legal firings

s= 21100
q−→ 32200

x−→ 03210
y−→ 11210

z−→ 11011= c.

It is easy to check thatc is recurrent, and clearlyi (s) = i (c) = 0.

Lemma 15 Let s be a stable configuration and c the unique critical representative of the
coset[s]. Then i(c) ≥ i (s).
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Proof: The general theory asserts that there is a sequence of legal firings

s
q−→ s′ −→ · · · −→ c.

Suppose that the setX of vertices other thanq which are fired more than once in the complete
sequence is not empty, and letx ∈ X be the vertex whose second firing occurs first in the
sequence. Ift is the configuration immediately before this second firing, andn(w) is the
number of firings ofw up to this point, we have

t (x) = s(x)− deg(x)+ 2ν(x)+6, where6 =
∑
w 6=x

n(w)ν(w, x).

Sinces(x) < deg(x), andt (x) ≥ deg(x), we must have 2ν(x) + 6 > deg(x). It follows
thatn(w) > 1 for at least onew 6= x and, by the definition ofx, we must havew = q. We
have shown that no vertex can be fired a second time untilq has been fired twice.

In the course of the sequence of firingsM initially increases bydeg(q) whenq is fired,
and decreases byν(q, y) every time a neighboury of q is fired. However, as we have shown,
no neighbour ofq can be fired more than once unlessq is fired again. Hence the index
cannot fall below its initial value unlessq is fired again. But then we can repeat the same
argument. HenceM(c) ≥ M(s), and consequentlyi (c) ≥ i (s) as claimed. 2

11. Counting minimal representations

In Section 5 we noted that the configurationc] defined byc](v) = deg(v)− 1 for all v 6= q
is the unique maximal critical configuration; in factM(c]) = M0 + (m− n + 1), and so
the index ofc] is m− n+ 1.

We define theconjugateof a stable configurations to bes∗ = c]− s. It follows from the
definition of stability thats∗ is also a stable configuration, and clearly the conjugate ofs∗

is s.

Lemma 16 Every element g of K(G,q) has a unique representation
∑

t (u)gu such that
the conjugate configuration t∗ is critical.

Proof: According to Lemma 13,g has a representation
∑

s(u)gu such thats is stable.
Furthermore, [s] = g.

The conjugate configurations∗ is also stable and, by the theory outlined above, there is
a sequence of legal firings which leads froms∗ to a critical configurationc. Let t = c∗, so
that

∑
t (u)gu is a representation of some element ofK (G,q).

Sincec = t∗ is obtained froms∗ by a legal sequence of firings, we have [t∗] = [s∗]. It
follows from the definition of conjuacy that [t ] = [s], and [s] = g, so that

∑
t (u)gu is a

representation ofg, and by its definitiont∗ = c is critical.
Suppose we are given any representation

∑
y(u)gu of g with y∗ = c′ critical. Then

we haveg = [t ] = [y], so [t∗] = [y∗], and [c] = [t∗] = [y∗] = [c′]. But each coset
has a unique critical representative, hencec = c′, and it follows thaty(u) = t (u) for all
verticesu. 2
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Lemma 17 The unique representation g=∑ t (u)gu for which t∗ is critical is a minimal
representation of g.

Proof: Suppose first that we have a representationg =∑ z(u)gu in whichz is not stable.
Then applying the rewriting rulesRv (v 6= q) must eventually produce a representation
g =∑ s(u)gu in whichs is stable. The rules imply that

∑
s(u) ≤∑ z(u) (sinceRq is not

used), so it is sufficient to assume that we have a representation withs stable.
In that case, applying Lemma 15 withs∗ as the stable configuration andt∗ as the critical

one leads to the conclusion thati (s∗) ≤ i (t∗). This means thatM(s) ≥ M(t), that is,∑
s(u) ≥∑ t (u), and hence

∑
t (u)gu is a minimal representation. 2

Lemmas 16 and 17 define a two-stage procedure for reducing a representation
∑

z(u)gu to
a minimal one.

• Stage 1: If necessary, reduce
∑

z(u)gu to
∑

s(u)gu, wheres is stable. This may be
done by applying the rewriting rulesRv (v 6= q) only.
• Stage 2: Apply the rewriting rules (includingRq if and only if it is needed) to

∑
s∗(u)gu

until a representation
∑

t∗(u)gu with t∗ critical is obtained. Then
∑

t (u)gu is a minimal
representation.

Example Consider again the graphK3,3, with the notation as in Sections 5 and 8. A
minimal representation of the elementg = 4v + w can be found as follows.

Stage 1: Applying Rv reducesg to v+w+ r + s, where the corresponding configuration
11011 is stable.
Stage 2: The conjugate configuration is 22222− 11011= 11211. Applying legal firings
(or the equivalent rewriting rules), we get

11211
q−→ 22311

x−→ 22022.

The last configuration is critical. Its conjugate is 00200, so a minimal representation of
g = 4v + w is 2x.

We now turn to the theoretical consequences of Lemmas 16 and 17. First we note that,
since

∑
t (u)gu is a representation ofg, the coset [t ] is g. If h denotes the coset [c]], then

[t∗] = [c] − t ] = h− g.

So the lemmas tell us that an elementg in K (G,q) has lengthM(t), wheret∗ is the unique
critical representative ofh− g. We have

L(g) = M(t) = M(c])− M(t∗)

= i (c])− i (t∗)

= (m− n+ 1)− i (t∗).
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Theorem B Let G be a connected graph and q a vertex of G. The growth functionL of
the critical group K(G,q) is related to theC function as follows:

L(z) = zm−n+1C(z−1).

Proof: We must check first that the mappingg 7→ t∗ is a bijection from the groupK (G,q)
to the set0(G,q) of critical configurations. Clearly, the mappingβ : g 7→ h−g of K (G,q)
into itself is a bijection. But the fact that each coset has a unique critical representative
means that the mapping which takesh − g = [t∗] to t∗ is a bijection, and sog 7→ t∗ is a
bijection.

The calculation given above shows thatL(g) = (m− n+ 1)− i (t∗). Hence the number
of elements ofK (G,q)which have lengthi is equal to the number of critical configurations
with index(m− n+ 1)− i . The result follows from the definitions ofL andC. 2

12. The growth function and the Tutte polynomial

Combining Theorems A and B we have the main result.

Theorem C Let G be a connected graph with n vertices and m edges, and let q be any
vertex of G. Then the Tutte polynomialT of G and the growth functionL of the Picard
presentation K(G,q) are related as follows:

T (1, z) = zm−n+1L(z−1).

Corollary The maximum length of an element in K(G,q) is m− n+ 1.
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