
#A21 INTEGERS 15 (2015)

DISTRIBUTION OF EIGENVALUES OF WEIGHTED,
STRUCTURED MATRIX ENSEMBLES

Olivia Beckwith
Department of Mathematics, Emory University, Atlanta, Georgia

Victor Luo
Dept of Math & Stats, Williams College, Williamstown, Massachusetts

Steven J. Miller
Dept of Math & Stats, Williams College, Williamstown, Massachusetts

Karen Shen
Department of Mathematics, Stanford University, Stanford, CAalifornia

Nicholas Triantafillou1

Department of Mathematics, MIT, Cambridge, Massachusetts

Received: 8/23/13, Revised: 10/25/14, Accepted: 5/1/15, Published: 5/8/15

Abstract
Given a structured random matrix ensemble where each random variable occurs
o(N) times in each row and the limiting rescaled spectral measure eµ exists, we fix
a p 2 [1/2, 1] and study the ensemble of signed structured matrices by multiplying
the (i, j)th and (j, i)th entries of a matrix by a randomly chosen ✏ij 2 {1,�1},
with Prob(✏ij = 1) = p (i.e., the Hadamard product). For p = 1/2 the limiting
signed rescaled spectral measure is the semi-circle; for other p it has bounded (resp.,
unbounded) support if eµ has bounded (resp., unbounded) support, and converges
to eµ as p ! 1. The proofs are by Markov’s Method of Moments, and involve the
pairings of 2k vertices on a circle. The contribution of each pairing in the signed
case is weighted by a factor depending on p and the number of vertices involved in
at least one crossing. These numbers are of interest in their own right, appearing in
problems in combinatorics and knot theory. The number of configurations with no
vertices involved in a crossing is well-studied (the Catalan numbers). We discover
and prove similar formulas for other configurations.
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Gene Kopp for helpful conversations, and the referee for many valuable suggestions. The first and
third named authors were partially supported by NSF grant DMS0850577 and Williams College;
the second, fourth and fifth named authors were partially supported by NSF grant DMS0970067,
and the third author was also partially supported by NSF grant DMS1265673.
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1. Introduction

1.1. Background

Although Random Matrix Theory began with statistical investigations by Wishart,
the work of Wigner, Dyson, and others made its power and universality apparent.
Wigner observed that ensembles of matrices with randomly chosen entries accurately
model many nuclear phenomena. These ensembles have also emerged outside of
physics, in subjects ranging from number theory [23] to random graphs [17, 30] to
bus routes in Mexico [1, 25].

The study of structured sub-ensembles of real symmetric matrices, especially the
density of their normalized eigenvalues, is of particular interest. Wigner’s famous
Semicircle Law states that the limiting spectral measure of the normalized eigenval-
ues of real symmetric matrices with independent entries (drawn from distributions
with mean 0, variance 1, and finite higher moments) converges almost surely to the
semi-circle density as the size of the matrix tends to infinity; however, very di↵erent
behavior emerges for many subfamilies of structured matrices. Examples include
band matrices, circulant matrices, random abelian G-circulant matrices, adjacency
matrices associated to d-regular graphs, and Hankel and Toeplitz matrices, among
others [3, 2, 4, 6, 7, 8, 9, 10, 13, 15, 16, 18, 24, 26, 27, 28, 29, 32]. The Toeplitz
[10, 15] and singly palindromic Toeplitz ensembles [27] are particularly interest-
ing. We concentrate on generalizing these ensembles for definiteness and ease of
exposition, noting that similar arguments apply for other structured ensembles.

A real symmetric matrix is Toeplitz if it is constant along its diagonals. It is
palindromic Toeplitz if, in addition, the first row is a palindrome. The limiting
rescaled spectral measure for the palindromic Toeplitz ensemble is a Gaussian and
the limiting rescaled spectral measure for the full Toeplitz ensemble is almost a
Gaussian (the first three moments agree with the moments of a standard Gaussian,
but the fourth moment is 22

3 , slightly smaller than 3, the fourth moment of a
standard Gaussian.) Our focus will be on other related ensembles. Before stating
our results, we first quickly review some standard notation; below c and r are
constants depending on the system.

• A random matrix ensemble is a collection of N ⇥N real symmetric matrices
whose independent entries are drawn from iidrvs whose density p has mean
0, variance 1 and finite higher moments. More generally, we could consider
matrices that are functions of some collection of iidrvs. The associated prob-
ability measure is Prob(A)dA =

Q
(i,j)2IN

p(aij)daij , where IN is a complete
set of indices corresponding to the independent entries of the matrices, i.e.,
the full set of random variables underlying the ensemble.2

2For real symmetric Toeplitz matrices aij = ak` if |i � j| = |k � `|, and thus IN =
{a11, a12, . . . , a1N}.
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• The empirical spectral measure of an N ⇥N real symmetric matrix A is

µA(x) :=
1
N

NX
k=1

�(x� �k(A)), (1.1)

with �(x) the Dirac delta functional and the �k(A)’s are the eigenvalues of A.
The rescaled empirical spectral measure is

eµA(x) :=
1
N

NX
k=1

�

✓
x� �k(A)

cNr

◆
= µA/cNr(x), (1.2)

and the normalized empirical spectral distribution FAN is defined by

FAN (x) =
1
N

#
⇢

k  N :
�k(A)
cNr

 x

�
. (1.3)

• Given real symmetric N⇥N matrices A = (aij) and B = (bij), their Hadamard
product A�B is the matrix whose (i, j)th entry is aijbij ; its empirical spectral
measure is µA�B(x).

• If the limit of the sequence of average moments of an ensemble exists and
uniquely determines a measure, that measure is called the limiting spectral
measure of the ensemble.

• Let p 2 [1/2, 1] and consider the random matrix ensemble of real symmetric
matrices E = (✏ij) with independent entries iidrvs that are 1 with probability p
and -1 with probability 1�p. Given a random matrix ensemble with matrices
A, consider the signed random matrix ensemble with matrices A � E . The
ensemble has measure0

@Y
ij

p(1+✏ij)/2(1� p)(1�✏ij)/2

1
AProb(A)dA. (1.4)

We rescale the eigenvalues of the Hadamard product by the same factor used
for the unsigned matrices, obtaining the expected empirical spectral measure
eµA�E(x) = µ(A/cNr)�E(x). The average kth moment is

Z 1

�1
· · ·
Z 1

�1

Y
1ijN

X
✏ij2{�1,1}

Z 1

x=�1
xkeµA�E(x)

p(1+✏ij)/2(1� p)(1�✏ij)/2Prob(A)dx dA. (1.5)



INTEGERS: 15 (2015) 4

Definition 1. Let p be a density with mean 0, variance 1 and finite higher mo-
ments. For fixed n, an N⇥N real symmetric Toeplitz matrix A is (degree n) highly
palindromic if the first row is 2n copies of a palindrome, where the independent en-
tries of the matrices are independently drawn with density p. If n = 0 we say A is
singly palindromic. If aij is the entry in the ith row and jth column of A, then we
set b|i�j| = aij.

Remark 1. We assumed in the above definition that N is a multiple of 2n so that
each element occurs exactly 2n+1 times in the first row. We also often omit ‘real
symmetric’ as that is understood. Entries are constant along diagonals, and entries
on two diagonals N/2n diagonals apart from each other, or symmetric within a
palindrome, are equal. If the ensemble is at least doubly palindromic, then the b’s
are not distinct and satisfy additional relations due to the palindromicity.

1.2. Results

The Eigenvalue Trace Lemma implies the kth moment of eµA is

Mk;N (A) =
Z 1

�1
xkeµA(x)dx =

Trace(Ak)
ckNrk+1

. (1.6)

In §2, we show that expanding Trace(Ak) as a sum of products of k-tuples of entries
of A, a standard degree of freedom argument shows that in the limit, the sum is
unchanged when we restrict to products consisting of “matched pairs.” (All other
terms taken together contribute zero in the limit.) The di�culty is figuring out
the contribution of each of these pairings, and the answer greatly depends on the
structure of the matrix. The odd moments trivially vanish, and for even moments
the only contribution in the limit comes when the indices are matched in pairs
with opposite orientation. We may view these terms as pairings of 2k vertices,
{1, 2, . . . , 2k}, on a circle.

We determine the contribution of these pairings in §3. We focus on Toeplitz
and related ensembles for ease of presentation. Similar general results hold in other
cases, although connections between Toeplitz ensembles and knot theory allow us
to provide closed form results for the ensembles that we study. We show that the
depression of the contribution of a pairing c compared to the unsigned Toeplitz
and singly palindromic Toeplitz ensembles depends only on e(c), where e(c) is the
number of vertices in crossing pairs in the pairing. When p = 1/2, as in the real
symmetric case, the limiting rescaled spectral measure is the semi-circle distribu-
tion. All crossing configurations contribute 0, and all non-crossing configurations
contribute 1. Thus the 2kth moment equals the kth Catalan number, which is both
the number of non-crossing pairings of 2k objects and the 2kth moment of the semi-
circle density.3 By contrast, when p = 1 the contribution of each pairing is the same

3The normalized semi-circular density is fsc(x) = 1
⇡

q
1�

� x
2

�2
if |x|  2 and 0 otherwise, and
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as in the unsigned case. Intermediate p interpolate between these extremes. More-
over, any distribution that had unbounded or bounded support before weighting
still has unbounded or bounded, respectively, support after weighting.

Before stating the theorem below we quickly define the almost sure convergence,
and comment on one of the assumptions. Our outcome space is ⌦N = {b0, b1, . . . },
where the bi’s are iidrv with density p, and if ! = (!0,!1, . . . ) 2 ⌦N then Prob(!i 2
[↵i,�i]) =

R �i

↵i
p(xi)dxi. We denote elements of ⌦N by A to emphasize the cor-

respondence with matrices, and we set AN to be the structured real symmetric
matrix obtained by truncating A = (b0, b1, . . . ) to give us the requisite number
of independent entries to generate an N ⇥ N matrix in our ensemble. We de-
note the probability space by (⌦N,FN, PN). To each integer m � 0 we define the
random variable Xm;N on ⌦N by Xm;N (A) =

R1
�1 xmdFAN (x); note this is the

mth moment of the measure µAN . For each m, Xm;N ! Xm almost surely if
PN ({A 2 ⌦N : Xm;N (A) ! Xm(A) as N !1}) = 1.

If independent random variables in our ensemble occurred order N times then
degenerate behavior could happen. Restricting to the case where each occurs o(N)
times precludes some highly structured matrix ensembles, such as block matrices
that are a fixed scalar times the matrix of all 1’s, or the “right angle” family where
aij = bmin(i,j).

Theorem 1. Consider any ensemble of N ⇥N real-symmetric structured matrices,
where the independent entries are drawn from a distribution p with mean 0, variance
1 and finite higher moments. We assume the following about our random matrix
ensemble.

1. As N ! 1 the associated rescaled empirical spectral measures converge to a
measure, eµ.

2. Each of the independent random variables occurs o(N) times in each row of
the matrices for this ensemble.

Fix a p 2 [1/2, 1] and consider the Hadamard product of our ensemble and real
symmetric signed matrices (✏ij), where the entries are independently chosen from
{�1, 1} with Prob(✏ij = 1) = p.

If p = 1/2 the expected empirical spectral measures converge to the semi-circle,
while for all other p the limiting spectral measure has bounded (resp. unbounded)
support if the original ensemble’s limiting rescaled spectral measure has bounded
(resp. unbounded) support. If the density p is an even function then the measures
converge almost surely.

Remark 2. Theorem 1 holds for real symmetric Toeplitz and singly palindromic
Toeplitz matrices. See Theorem 3 for an explicit, closed form expression for the
depression of the moments of these ensembles as p ! 1/2.

the even moments are the Catalan numbers.
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The controlling factor in the real symmetric Toeplitz and singly palindromic
Toeplitz cases (and in a limited manner the highly palindromic Toeplitz cases)
lurking in Remark 2 is the number of vertices involved in a crossing; we make this
precise in §3. Our problem thus reduces to one in combinatorics, which turns out to
be related to knot theory. This connection provides additional motivation for and
applications of this work; see for example [11, 19, 21, 22, 12, 31, 33]). In the course
of our investigations, we prove several interesting combinatorial results. Many of the
coe�cients have been previously tabulated on the OEIS; see for example Remark
5. We isolate several below.

Consider all (2k � 1)!! pairings of 2k vertices on a circle. Let Cr2k,2m denote
the number of these pairings where exactly 2m vertices are involved in a crossing,
and let Ck denote the kth Catalan number, 1

k+1

�2k
k

�
. We obtain exact formulas for

Cr2k,2m in some cases, and for large k we prove the limiting behavior of the expected
value and variance of the number of vertices involved in at least one crossing.

Theorem 2. Notation as above, we have:

• For m  10 we have Cr2k,0 = Ck, Cr2k,2 = 0, Cr2k,4 =
� 2k
k�2

�
, Cr2k,6 =

4
� 2k
k�3

�
, Cr2k,8 = 31

� 2k
k�4

�
+
Pk�4

d=1

� 2k
k�4�d

�
(4 + d), and Cr2k,10 = 288

� 2k
k�5

�
+

8
Pk�5

d=1

� 2k
k�5�d

�
(5 + d).

• Taking all pairings to be equally likely, the expected number of vertices in
crossings is

2k
2k � 1

✓
2k � 2� 2F1(1, 3

2 , 5
2 � k;�1)

2k � 3
� (2k � 1) 2F1(1,

1
2

+ k,
3
2
;�1)

◆
,

(1.7)
which is 2k�2� 2

k +O
�

1
k2

�
as k !1; here 2F1 is the hypergeometric function.

Further, the variance of the number of vertices involved in a crossing converges
to 4.

We prove our results on the limiting measure via Markov’s Method of Moments
(see [5, 34]) by showing the average moments converge to the moments of a distribu-
tion. Controlling the variance and the rate of convergence via a counting argument
and applying Chebyshev’s inequality and the Borel-Cantelli lemma completes the
analysis.

2. Moment Preliminaries

For ease of exposition we consider (real symmetric) Toeplitz ensembles below,
though simple modifications of our arguments would yield similar results for other
ensembles. We take (c, r) to be (1, 1/2). We summarize the needed expansions from
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previous work. For a fixed N ⇥N matrix A drawn from a Toeplitz ensemble, the
kth moment of its rescaled empirical spectral measure is

Mk,N (A) =
1

N
k
2 +1

X
1i1,...,ikN

ai1i2ai2i3 · · · aiki1 . (2.8)

For the signed Toeplitz and palindromic Toeplitz ensembles this is

Mk,N (A) =
1

N
k
2 +1

X
1i1,...,ikN

✏i1i2b|i1�i2|✏i2i3b|i2�i3| · · · ✏iki1b|ik�i1|. (2.9)

We define the expected moment as:

Mk := lim
N!1

E (Mk,N (A))

= lim
N!1

1
N

k
2 +1

X
1i1,...,ikN

E
�
✏i1i2b|i1�i2|✏i2i3b|i2�i3| · · · ✏iki1b|ik�i1|

�
.

(2.10)

For c a partition of {1, 2, . . . , k}, let Sc be the set of permutations (i1, . . . , ik) 2
{1, 2, . . . , N}k such that b|ij�ij+1| = b|i`�i`+1| if and only if j and ` are in the same
block of c.

Set

Mk,c := lim
N!1

1
N

k
2 +1

X
(i1,...,ik)2Sc

E
�
✏i1i2b|i1�i2|✏i2i3b|i2�i3| · · · ✏iki1b|ik�i1|

�
. (2.11)

Taking P(k) to be the set of partitions of {1, . . . , k}, Mk =
P

c2P(k) Mk,c. We
call Mk,c the contribution of the partition c to Mk. Let S0c ⇢ Sc be the subset such
that for j 6= ` in the same block of c, ij � ij+1 = �(i` � i`+1) + Crj `, where Crj `

is belongs to a well-specified set of size depending on the level of palindromicity of
the ensemble and the moment being computed,but independent of N . Define M 0

k,c

analogously to Mk,c with S0c replacing Sc.
The following lemma shows that most partitions contribute zero to Mk as N !

1.

Lemma 1. Let k be an integer and consider any Toeplitz ensemble. If Mk,c 6= 0,
then c is a pairing, i.e., c consists of k/2 blocks of size 2. For these terms, b↵

appears in the product exactly twice. The odd moments of the limiting rescaled
spectral measure vanish. To compute M2k,c, for c a pairing, it su�ces to sum over
terms with b’s matched in exactly pairs with a minus sign in each of the k equations
of the form

ij � ij+1 = ±(i` � i`+1). (2.12)
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See [15, 16]4 for a proof. We can rephrase the lemma as follows: Mk,c = M 0
k,c,

and both terms are zero if c has any blocks of magnitude di↵erent from 2. Lemma
1 motivates the following definition.

Definition 2. A pairing is a matching of the indices 1, 2, . . . , 2k such that the
indices are matched exactly in pairs, and with a negative sign in (2.12). There are
(2k � 1)!! pairings of the 2k vertices.

Note these pairings correspond to O
�
Nk+1

�
terms in the sum in (2.10) for the

2kth moment.
As pairings that are the same up to a rotation of the vertices contribute equally

to the moments, we make the following definition.

Definition 3. Two pairings {(a1, a2) , (a3, a4) , . . . , (a2k�1, a2k)} and {(b1, b2) , (b3, b4),
. . ., (b2k�1, b2k)} are in the same configuration if they are equivalent up to a rela-
beling by rotating the vertices; i.e., there is some constant l such that bj = aj + l
mod 2k.

We display the five distinct configurations for the sixth moment in Figure 1.
To determine the moments it su�ces to calculate for each configuration both the
contribution of a pairing with that configuration to the sum in (2.10), and the
number of pairings with that configuration.

3. Determining the Moments

We first introduce a convenient notation.

Definition 4. Fix an integer 2k and consider the circle with 2k vertices spaced
uniformly, labeled 1, 2, . . . , 2k. If a, b and x are three of these vertices, by a < x < b
we mean the vertex ordering that we pass through vertex x as we travel clockwise
about the circle from vertex a to vertex b.

By Lemma 1, for the rest of the paper we may assume the vertices are matched
in exactly pairs. We distinguish between three types of vertices in these pairings.

4After correcting equations (2.7) and (2.8) of [16] to fix an omission and to take C1 2
{(�b |il�il+1|

N/2n c+ k� 1) N
2n : k 2 {1, . . . , 2n}} and C2 2 {(b |il�il+1|

N/2n c+ k) N
2n � 1 : k 2 {1, . . . , 2n}}

into account, we have that b|ijij+1| is paired with b|ik�ik+1| if and only if ij � ij+1 =

±(ik � ik+1) + Crjk . For singly palindromic Toeplitz matrices, the only possible values are Crjk

equals ±(N � 1) or 0. The number of possible values for each Crjk depends on the moment m
being computed and on the level n of palindromicity of the ensemble, but is independent of N , a
fact which will be crucially important in later proofs.
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ij jk

kl

lmmn

ni

Adjacent
ij jk

kl

lmmn

ni

Semi !
adjacent!1"

ij jk

kl

lmmn

ni

Semi !
adjacent!2"

ij jk

kl

lmmn

ni

Diagonal!1" ij jk

kl

lmmn

ni

Diagonal!2"

Figure 1: The distinct configurations for the 6th moment. The multiplicity under
rotation of the five patterns are 2, 3, 6, 3 and 1.

Figure 2: A pairing of 10 vertices with 8 crossing vertices (in two symmetric sets of
4 vertices), and 2 dividing vertices (connected by a main diagonal).
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Definition 5. A pair of vertices (a, b), a < b, is crossing if there exists a pair of
vertices (x, y) such that the order of the four vertices, as we travel clockwise around
the circle from a to b, is either a, x, b, y or a, y, b, x. A pair (a, b) is non-crossing if
for every pair (x, y), x is between a and b (as we travel clockwise around the circle
from a to b) if and only if y is.

In other words, a pair is crossing if the line contained in the circle (i.e., the chord)
connecting its two vertices crosses another line connecting two other vertices. In
Figure 1 the first two configurations have no crossing vertices, the third has four,
and all vertices are crossing for the fourth and fifth. The number of crossing vertices
is always even and never two.

Definition 6. A non-crossing pair of vertices (a, b) (with a < b) is dividing if the
following two conditions hold (all other non-crossing pairs are non-crossing non-
dividing pairs):

1. There exist two pairs of crossing vertices, (x, y) and (w, z), such that as we
travel around the circle from a to b we have x, y, w and z are between a and
b.

2. There exist two pairs of crossing vertices, (p, q) and (r, s), such that as we
travel around the circle from b to a we have p, q, r and s are between b and a.

In other words, a pair is dividing if it divides the circle into two regions of pairs,
where each region has at least one crossing pair. No pair crosses a dividing edge since
its pair must be non-crossing; see Figure 2 for an illustration. From the definition,
every pairing with a dividing pair has at least 10 vertices. This creates additional
complications arise when studying the higher moments. A similar situation arises
in weighted d-regular graphs, where there is a marked change in behavior at the
eighth moment; see [13] for details. Note that all pairings with a given configuration
have the same number of crossing pairs and the same number of dividing pairs.

We show that the contribution of each pairing in the unsigned case is weighted by
a factor depending on the number of crossing pairs in that pairing. We then prove
some combinatorial formulas which give closed form expressions for the number of
pairings with m vertices crossing for small k. As the combinatorics are prohibitively
di�cult for large k, we find the limiting behavior in §4.

3.1. Weighted Contributions

The following theorem is central to our determination of the moments. It reduces
the calculation to two steps. First, we need to know the contribution of a pairing in
the unsigned case (equivalently, when p = 1). For the singly palindromic Toeplitz
ensemble each pairing contributes 1. For the Toeplitz ensemble, upper and lower
bounds on the contribution of each pairing are known, but the exact value is not.
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Second, we need to determine the number of vertices involved in crossing pairs,
which we do in part in §3.2.

Theorem 3. For each choice of a pairing c of the vertices (1, . . . , 2k), let x(c)
denote the total contribution of all tuples with paired terms matching this pairing
in the unsigned case. (i.e., x(c) = M 0

k,c in the unsigned ensemble for the partition
underlying the pairing.) For the Toeplitz and singly palindromic Toeplitz ensembles,
the contribution in the signed case is x(c)(2p � 1)e(c), where e(c) represents the
number of vertices in crossing pairs in the configuration corresponding to c.

Recall that the contribution from a pairing c is

M 0
k,c =

X
(i1,...,ik)2S0c

E(✏i1i2b|i1�i2|✏i2i3b|i2�i3| · · · ✏i2ki1b|i2k�i1 |)

=
X

(i1,...,ik)2S0c

E(✏i1i2✏i2i3 · · · ✏i2ki1)E(b|i1�i2| · · · b|ik�i1|). (3.13)

We must show that E(✏i1i2✏i2i3 · · · ✏i2ki1) = (2p � 1)e(c). We do this by showing
that for each pair (ij , ij+1) , (ik, ik+1) where b|ij�ij+1| = b|ik�ik+1|,

E
�
✏ijij+1✏ikik+1

�
=

(
(2p� 1)2 if (ij , ij+1) , (ik, ik+1) are a crossing pair
1 otherwise.

(3.14)

Notice that

E (✏↵) = 1 · p + (�1) · (1� p) = 2p� 1, E
�
✏2↵
�

= 1. (3.15)

Therefore, if m epsilons are chosen independently, the expected value of their
product is (2p� 1)m. In particular, we see that Mk,c = (2p� 1)e(c)x(c).

For ease of exposition, we prove the following lemmas in the Toeplitz case, and
comment on the proofs (or barriers to proof) in the singly palindromic and highly
palindromic cases.5

Lemma 2. For the Toeplitz and singly palindromic Toeplitz ensembles,

E(✏i1i2✏i2i3 · · · ✏i2ki1) � (2p� 1)e(c). (3.16)

Proof. To prove E(✏i1i2✏i2i3 · · · ✏i2ki1) � (2p � 1)e(c), we show that pairs not in a
crossing contribute 1. Consider a non-crossing pair (ir, ir+1) , (ip, ip+1) (correspond-
ing to vertices r and p on the circle with 2k labeled vertices), with r < p. For each

5For the palindromic case, by (2.7) and (2.8) of [16] we must add C1 and C2 into equation
(2.12), as well as parts of the proof for Lemma 1; however, some minor changes to our proofs show
that these lemmas still hold in the palindromic Toeplitz case.
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(iq, iq+1) paired with (iq0 , iq0+1), we have r < q < p if and only if r < q0 < p. Recall
from (2.12) and Lemma 1 that in the Toeplitz case, iq� iq+1 = �(iq0 � iq0+1), while
in the singly palindromic Toeplitz case iq � iq+1 = �(iq0 � iq0+1) + Q(q, q0) where
Q(q, q0) 2 {�(N�1), 0, N�1}. Thus

Pp
k=r(ik� ik+1) = t(N�1) for some integer t

because each di↵erence in the sum is paired with its additive inverse, which is also in
the sum. As

Pp
k=r(ik�ik+1) = (ir�ir+1)+(ir+1�ir+1)+· · ·+(ip�ip+1) = ir�ip+1,

we must have ir = ip+1 ± t(N � 1). It is clearly impossible to have |t| > 1, and
if t = ±1, this forces {ir, ip+1} = {1, N}; thus t = 0. Since this situation uses
up a degree of freedom, this implies that ir = ip+1. By a similar argument ap-
plied to the sum

Pr
k=p(ik � ik+1) (taking indices cyclically), ir+1 = ip. Therefore

✏irir+1 = ✏ipip+1 , and E(✏irir+1✏ipip+1) = 1.

Lemma 3. For the Toeplitz, singly palindromic Toeplitz, and highly palindromic
Toeplitz ensembles,

E(✏i1i2✏i2i3 · · · ✏i2ki1)  (2p� 1)e(c). (3.17)

Proof. We show E(✏i1i2✏i2i3 · · · ✏i2ki1)  (2p � 1)e(c) by showing that if ✏iaia+1 =
✏ibib+1 , a < b, then (ia, ia+1) , (ib, ib+1) are non-crossing. This su�ces to prove the
result since the only dependency between the ✏’s arises from the requirement that
the matrix is real symmetric. Thus there is a dependency between ✏isis+1 and ✏ipip+1

if and only if we know they are equal. In showing that a dependency between ✏’s
implies the corresponding vertex pair must be non-crossing, we show that crossing
pairs imply independent ✏’s and thus contribute (2p� 1)2.

If ✏iaia+1 = ✏ibib+1 then the unordered sets {ia, ia+1} and {ib, ib+1} are equal.
This implies that |ia � ia+1| = |ib � ib+1|, so (ia, ia+1) , (ib, ib+1) must be paired on
the circle. Since the only contributing terms are when they are paired in opposite
orientation, ia = ib+1, and

Pb
k=a(ik � ik+1) = ia � ib+1 =

P
k ±Crk . We can

rewrite this sum asPd
k=b �k|ik�ik+1| =

P
k ±Crk , where �k is ±1 if the vertex k is paired with is less

than a or greater than b, and 0 if and only if the vertex k is paired with is between
a and b. However, since the number of possible values for

P
k ±Crk is independent

of N , a linear dependence among the di↵erences is impossible, as we need to have
Nk+1 degrees of freedom for each configuration (see the proof of Lemma 1). So
each �k = 0, and each vertex between vertices a and b is paired with something else
between a and b. Thus, no edges cross the edge between vertices a and b.

Proof of Theorem 3. For Toeplitz and singly palindromic Toeplitz matrices, we
proved that an epsilon is unmatched if and only if its edge is in a crossing. Thus, an
epsilon is not paired if and only if its edge is not in a crossing. Therefore the contri-
bution is weighted by E(✏i1i2✏i2i3 · · · ✏i2ki1), which by Lemmas 2 and 3 is (2p�1)e(c),
completing the proof.
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Remark 3. In the doubly palindromic Toeplitz case, Lemma 2 does not hold for
the sixth moment, as we shall see in Lemma 5. In particular, this means the de-
termination of the limiting rescaled spectral measures for general signed ensembles
and general p is harder.

Lemma 4. For the Toeplitz, singly palindromic Toeplitz, and highly palindromic
Toeplitz ensembles, if the contribution from a non-crossing configuration was x be-
fore the weighting, it is at most (2p� 1)4(x� 1) + 1 after applying the weighting.

Proof. In the Toeplitz and singly palindromic Toeplitz cases, x = 1 and the claim is
trivial. In the highly palindromic case, we note that there is a contribution of 1 from
the terms which also contribute in the real symmetric case. The remaining terms
contain at least 2 pairs of vertices which are not matched in the real symmetric case,
since one mismatched pair (relative to the real symmetric ensemble) implies a second
mismatched pair as

P2m
k=1(ik � ik+1) = 0. Hence E(✏i1i2✏i2i3 · · · ✏i2ki1)  (2p � 1)4

for these terms, completing the proof.

Remark 4. A slightly modified version of this proof shows that for other real sym-
metric ensembles, if the contribution from a non-crossing configuration was x before
the weighting, it is at most (2p� 1)2(x� 1) + 1 after applying the weighting. Sim-
ilarly, for crossing configurations, if the contribution was x before the weighting, it
is at most (2p� 1)2x after applying the weighting.

Lemma 5. For the sixth moment of signed doubly palindromic Toeplitz ensembles,
the contribution from a configuration is not determined uniquely by the number of
crossings.

See §A.1 for a proof.

3.2. Counting Crossing Configurations

Theorem 3 reduces the determination of the moments to counting the number of
pairings with a given contribution x(c) and weighting by (2p� 1)e(c), where e(c) is
the number of vertices in crossings in the configuration. As remarked above, in the
singly palindromic Toeplitz case each x(c) = 1, while in the general Toeplitz case
we only have bounds on the x(c)’s, and thus must leave these as parameters in the
final answer.

We turn to computing the e(c)’s for various configurations. These and similar
numbers have been studied in knot theory where these chord diagrams appear in the
study of Vassiliev invariants (see [19, 22, 12, 31, 33]). While we cannot determine
exact formulas in general, we are able to solve many special cases.

Definition 7. Let Cr2k,2m denote the number of pairings involving 2k vertices where
exactly 2m vertices are involved in a crossing.
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Let Ck = 1
k+1

�2k
k

�
denote the kth Catalan number. One of its many definitions

is as the number of ways to match 2k objects on a circle in pairs without any
crossings; this interpretation is the reason why Wigner’s Semi-Circle Law holds.
Thus, we immediately deduce the following.

Lemma 6. We have Cr2k,0 = Ck.

We use this result to prove the following theorem, which is instrumental in our
counting.

Theorem 4. Consider 2k vertices on a circle, with a partial pairing on a subset
of 2v vertices. There are

� 2k
k�v

�
ways to place the remaining 2k � 2v vertices in

non-crossing, non-dividing pairs.

Proof. Let W denote the desired quantity. Each of the remaining 2k � 2v vertices
must be placed between two of the 2v already paired vertices on the circle. These
2v vertices have created 2v regions. A necessary and su�cient condition for these
2k � 2v vertices to be in non-crossing, non-dividing pairs is that the vertices in
each of these 2v regions pair only with other vertices in that region in a non-
crossing configuration. Thus, if there are 2s vertices in a region, by Lemma 6 the
number of valid ways they can pair is C2s. As the number of valid matchings
in each region depends only on the number of vertices in that region and not on
the matchings in the other regions, we obtain a factor of C2s1C2s2 · · ·C2s2v , where
2s1 + 2s2 + · · ·+ 2s2v = 2k � 2v.

We need only determine how many pairings this factor corresponds to. Notice
that by specifying one index and (s1, s2, . . . , s2v), we completely specify a pairing
of the 2k vertices. However, as we are pairing on a circle, this specification does
not uniquely determine a pairing since the labeling of (s1, s2, . . . , s2v) is arbitrary.
Each pairing can be written as any of the 2v circular permutations of some choice
of (s1, s2, . . . , s2v) and one index. Thus we are interested in

W =
2k
2v

X
2s1+2s2+···+2s2v=2k�2v

Cs1Cs2 · · ·Cs2v . (3.18)

We evaluate it with the k-fold self-convolution identity of Catalan numbers, which
states

X
i1+···+ir=n

Cir�1 · · ·Cir�1 =
r

2n� r

✓
2n� r

n

◆
. (3.19)

Setting ij = sj + 1, r = 2v and n = k + v and rewriting yields

2k
2v

X
2s1+2s2+···+2s2v=2k�2v

Cs1Cs2 · · ·Cs2v =
✓

2k
k � v

◆
, (3.20)

which completes the proof as the left hand side is just (3.18).
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Given Theorem 4, our ability to find formulas for Cr2k,2m rests on our ability
to find the number of ways to pair 2v vertices where 2m vertices are crossing and
2v � 2m vertices are dividing. We can do this for small values of m, but for large
m the combinatorics become very involved.

Definition 8. Let P2k,2m,i represent the number of pairings of 2k vertices with
2m crossing vertices in i partitions. We define a partition to be a set of crossing
vertices separated from all other sets of crossing vertices by at least one dividing
edge.

It takes a minimum of 4 vertices to form a partition, so the maximum number
of partitions possible is b2m/4c. Our method of counting involves writing

Cr2k,2m =
b2m/4cX

i=1

P2k,2m,i. (3.21)

Our first combinatorial result is the following.

Lemma 7. We have P2k,2m,1 = Cr2m,2m

� 2k
k�m

�
.

Proof. The proof is immediate from Theorem 4. If there is only one partition, there
are no dividing edges and we multiply the number of ways we can choose 2k � 2m
non-crossing non-dividing pairs by the number of ways to then choose how the 2m
crossing vertices are paired.

Lemma 8. We have

P2k,2m,2 =
k�mX
d=1

✓
2k

k �m� d

◆
(m + d)

 X
0<a<m

Cr2a,2aCr2m�2a,2m�2a

!
. (3.22)

Proof. Let d be the number of dividing edges. To have two partitions we need at
least one of the k�m non-crossing edges to be dividing. We sum d from 1 to k�m.
Given d, we can pair and place the non-crossing non-dividing edges in

� 2k
k�m�d

�
ways from Theorem 4. We then choose a way to pair the 2m crossing vertices into
2 partitions, one with 2a vertices, the other with 2b vertices. If a = b, there are
m + d distinct spots where we may place the dividing edge. If a 6= b, there are
2m + 2d spots. As each choice of a 6= b appears twice in the above sum, the result
follows.

Determining P2k,2m,3 requires the analysis of several more cases, and we were
unable to find a nice way to generalize the results of Lemmas 7 and 8. However,
these two results do allow us to write down the following formulas.
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Lemma 9. We have

Cr2k,4 =
✓

2k
k � 2

◆

Cr2k,6 = 4
✓

2k
k � 3

◆

Cr2k,8 = 31
✓

2k
k � 4

◆
+

k�4X
d=1

✓
2k

k � 4� d

◆
(4 + d)

Cr2k,10 = 288
✓

2k
k � 5

◆
+ 8

k�5X
d=1

✓
2k

k � 5� d

◆
(5 + d) . (3.23)

The proof follows by deriving recursive formulas; see §A.2 for details.
By using Lemma 9 to calculate the number of terms with each of the possible

contributions given in Theorem 3, we are able to calculate up to the 12th moment
exactly (for the 12th moment we use the same recursive procedure as in the proof
of Lemma 9 to calculate Cr12,12).

Remark 5. The coe�cients in front of the binomial coe�cient of the leading term
of Cr2k,2m are sequence A081054 from the OEIS [20].

4. Limiting Behavior of the Crossing Numbers

As we cannot find exact expressions for the number of pairings with exactly 2m
crossing vertices for all m, we determine the expected value and variance of the
number of vertices in a crossing. Such expressions and their limiting behavior are
useful for obtaining bounds for the moments. We make frequent use of arguments
on the probabilities of certain pairings, recognizing that since all configurations are
equally likely the probability vertex i pairs with vertex j is just 1

2k�1 .

Theorem 5. If all pairings of 2k vertices on a circle are equally likely, the expected
number of vertices in crossings is

2k
2k � 1

 
2k � 2� 2F1

�
1, 3

2 , 5
2 � k;�1

�
2k � 3

� (2k � 1) 2F1

✓
1,

1
2

+ k,
3
2
;�1

◆!

= 2k � 2� 2
k

+ O

✓
1
k2

◆
. (4.24)

Proof. As we only need the asymptotic expression, we prove that below and give
the proof of (4.24) in Appendix A.3. For a given pairing of 2k vertices, let Xi = 1
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if vertex i is involved in a crossing and 0 otherwise. Then Y2k =
P2k

i=1 Xi is the
number of vertices involved in a crossing in this pairing. By linearity of expectation

E (Y2k) = E
 

2kX
i=1

Xi

!
= 2kE (Xi) = 2kpcross, (4.25)

where pcross is the probability that a given vertex is in a crossing (this is the
same for all vertices). We may think of pcross as the probability that vertex 1 is in
a crossing. We notice that

1. Vertex 1 is matched with another odd indexed vertex with probability k�1
2k�1 .

In this case it is in a crossing as there are an odd number of vertices in the
two regions created by the matching and the regions cannot only pair with
themselves.

2. If vertex 1 is matched with an even indexed vertex, then it is in a crossing i↵
it doesn’t partition the remaining vertices into two parts that pair exclusively
with themselves. If it is matched with vertex 2m (happening with probability

1
2k�1 ) then its edge divides the vertices into regions of 2m � 2 and 2k � 2m
vertices. As the number of ways to match 2` objects in pairs with order
immaterial is (2`� 1)!! = (2`� 1) (2`� 3) · · · 3 · 1, the probability that each
region pairs only with itself is (2m� 3)!! (2k � 2m� 1)!!/ (2k � 3)!!.

Thus the probability that vertex 1 is involved in a crossing is

pcross =
k � 1
2k � 1

+
k�1X
m=2

1
2k � 1

✓
1� (2m� 3)!! (2k � 2m� 1)!!

(2k � 3)!!

◆

=
2k � 3
2k � 1

� 1
2k � 1

k�1X
m=2

� k�2
m�2

�
� 2k�3
2m�3

� , (4.26)

and therefore

E (Y2k) = 2kpcross = (2k)
2k � 3
2k � 1

� (2k)
1

2k � 1

k�1X
m=2

� k�2
m�2

�
� 2k�3
2m�3

� . (4.27)

The first and last terms above are both 1
2k�3 , as for m = 2 we have (k�2

0 )
(2k�3

1 ) = 1
2k�3 ,

and for m = k�1 we have (k�2
k�3)

(2k�3
2k�5)

= (k�2
1 )

(2k�3
2 ) = 1

2k�3 . Looking at the ratio of subsequent
terms, straightforward algebra shows� k�2

m�1

�
/
� 2k�3
2m�1

�
� k�2
m�2

�
/
� 2k�3
2m�3

� =
2m� 1

2k � 2m� 1
. (4.28)
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Figure 3: Numerical confirmation of formulas for the expected value and variance
of vertices involved in crossing. The first plot is the expected value for 2k vertices
(solid line is theory) versus k, the second plot is a plot of the deviations from theory,
and the third plot is the observed variance; all plots are from 100,000 randomly
chosen matchings of 2k vertices in pairs.

Thus for m up to the halfway point, each term in the sum is less than the previous.
In particular, the m = 3 term is 5/(2k � 7) times the m = 2 term, and hence all of
these terms are O(1/k2). Similarly, working from m = k � 2 to the middle we find
all of these terms are also O(1/k2), and thus the sum in (4.27) can be rewritten,
giving

E (Y2k) = (2k)
2k � 3
2k � 1

� (2k)
1

2k � 1

✓
2

2k � 3
+ O

✓
1
k2

◆◆

= 2k � 2� 2
k

+ O

✓
1
k2

◆
. (4.29)

Theorem 6. As k ! 1, the variance of the number of vertices in a crossing
approaches 4.

As the proof is similar to the proof of Theorem 5, we leave the details to §A.4
Figure 3 provides a numerical verification of the formulas for the expected values

and variances.
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5. Limiting Spectral Measure

We complete the proof of Theorem 1 by showing convergence and determining the
support.

Proof of Theorem 1. The proof of the claimed convergence is standard, and follows
immediately from similar arguments as in [15, 27, 16, 24]. Those arguments rely
only on degree of freedom counting arguments, and are thus applicable here as well.
We are left with determining the limiting rescaled spectral measures.

• p = 1/2: If p = 1/2, we know from (3) that only those configurations with
no crossings contribute. In particular, we may apply this to the ±1 real sym-
metric weight matrix. Moreover, in the crossing configurations, it is simple
to check that in (N � n · o(N))n ⇡ Nn � o(Nn) of the Nn terms for the nth
moment computation each random variable from the coe�cients of the matrix
ensemble occurs exactly twice. Since the moments of the original distribution
are finite, the remaining o(Nn) terms do not contribute. Thus, we may as-
sume that each random variable occurs exactly twice in each term (and the
variables are otherwise independent.) The claim follows directly from recall-
ing that the number of non-crossing configurations are simply the Catalan
numbers, which are also the moments of the semi-circle distribution.

• p > 1/2: We consider the case when eµ (the limiting rescaled spectral measure)
has unbounded support; the case of bounded support is similar. To show that
the limiting signed rescaled spectral measure has unbounded support it su�ces
to show that the moments of our distribution grow faster than any exponential
bound, i.e., that for all B there exists some k such that M2k > B2k. Assume
the moments of the unsigned ensemble grow faster than exponentially. We
prove that our distribution similarly has unbounded support using this fact
and by considering the “worst-case” scenario allowed for under Theorem 3.
Namely, we suppose that each term contributes x(c) (2p� 1)2k, which gives
us the smallest moment possible. In this case, M2k is decreased from the
unsigned case by a factor of (2p�1)2k, and thus the growth is still faster than
any exponential bound.
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A. Appendix: Proofs of Some Claims

A.1. Proof of Lemma 5

We prove that the adjacent configuration and the non-adjacent non-crossing config-
uration (the upper-left and upper-middle configurations in Figure 1, respectively)
have di↵erent contributions to the sixth moment. The main idea is that in the
‘adjacent configuration’, every contributing term has either all three pairings of the
form aijaji, or exactly one pairing of this form. Since we know that the contribution
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when all three pairings are of this form is 1, the contribution when there is exactly
one pairing of this form is (x�1). In this situation, the contribution to the moment
is weighted by (2p� 1)4, giving a total of (2p� 1)4(x� 1) + 1.

Specifically, we have that

it � it+1 = �(it+1 � it+2)± Crt,t+1 , (A.30)

where Crt,t+1 = N/2 or N/2 � 1 or 0 (N and N � 1 are ruled out because we
would lose a degree of freedom by forcing one value to be 1 and the other to be N).
Moreover, Crt,t+1 = 0 if and only if ✏itit+1 = ✏it+1it+2 . If we choose three values from
{0,±N/2,±N/2�1} that add to 0, either one or three of the values must be 0. The
cases where all three are 0 contribute fully while the case where two are non-zero is
depressed by (2p� 1)4, so that contribution to the moment in the signed ensemble
is exactly (2p� 1)4(x� 1) + 1.

In the other non-crossing configuration, the moment is at most (2p�1)4(x�1)+1
by the proof of Lemma 4. Hence, to show the moment is smaller than this, it su�ces
to find a contributing group of terms whose moment is reduced by more than (2p�
1)4. We can take the vertices to be ai,j , aj,i+N/2, ai+N/2,k+N/2, ak+N/2,l, al,k, ak,i,
where i, k < N/2. While there is an additional inequality between i and j and
between k and l, this does not remove a degree of freedom since there are still order
N possible values. Hence some portion of the (x � 1) contribution is reduced by
a factor of (2p � 1)6 < (2p � 1)4. Since the remaining portion of the contribution
is reduced to at most (2p � 1)4 times its original value, the contribution to the
6th moment of the non-adjacent non-crossing configuration in the signed doubly
palindromic case is strictly less than (2p� 1)4(x� 1)+1, and thus not equal to the
contribution from the adjacent non-crossing configuration. 2

A.2. Proof of Lemma 9

We recall that Cr2k,0 = Ck and Cr2k,2 = 0, where the second equation follows from
the fact that at least 4 vertices are needed for a crossing. From (3.21) and (7) we
find Cr2k,4 = P2k,4,1 = Cr4,4

� 2k
k�2

�
. We can calculate Cr4,4 by using the above and

the fact that

kX
m=0

Cr2k,2m = (2k � 1)!!. (A.31)

This follows as the number of ways to match 2k objects in pairs of 2 with order not
mattering is (2k � 1)!!, and thus the sum of all our matchings in pairs must equal
this. Note this number is also the 2kth moment of the standard normal; this is the
reason the singly palindromic Toeplitz have a limiting rescaled spectral measure
that is normal, as each contribution contributes fully. We find
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Cr4,4 = (2 · 2� 1)!!� Cr4,2 � Cr4,0 = 3� 2 = 1. (A.32)

This completes the proof of the first formula: Cr2k,4 =
� 2k
k�2

�
.

The other coe�cients are calculated in a similar recursive fashion – essentially,
once we have values for Cr2k,2l for l = 0, 1, 2, . . . ,m � 1, we can find Cr2m,2m by
using (A.31), which allows us to write the general formulas above for Cr2k,2m. We
show the calculations below. We have

Cr6,6 = (6� 1)!!� Cr6,4 � Cr6,2 � Cr6,0 = 4, (A.33)

so Cr2k,6 = 4
� 2k
k�3

�
,

and thus

Cr8,8 = (8� 1)!!� Cr8,6 � Cr8,4 � Cr8,2 � Cr8,0 = 31. (A.34)

To finish the calculation for Cr2k,8 we compute

X
0<a<4

Cr2a,2aCr8�2a,8�2a

= Cr2,2Cr6,6 + Cr4,4Cr4,4 + Cr6,6Cr2,2 = 0 + 1 + 0 = 1, (A.35)

so that we get Cr2k,8 = 31
� 2k
k�4

�
+
Pk�4

d=1

� 2k
k�4�d

�
(4 + d).

For the formula for Cr2k,10,

Cr10,10 = (10� 1)!!� Cr10,8 � Cr10,6 � Cr10,4 � Cr10,2 � Cr10,0 = 288, (A.36)

and finally

X
0<a<5

Cr2a,2aCr10�2a,10�2a

= Cr2,2Cr8,8 + Cr4,4Cr6,6 + Cr6,6Cr4,4 + Cr8,8Cr2,2 = 8, (A.37)

so Cr2k,10 = 288
� 2k
k�5

�
+ 8

Pk�5
d=1

� 2k
k�5�d

�
(5 + d). 2

A.3. Proof of Theorem 5 (Mean)

To prove (4.24), it su�ces to simplify the sum in the expansion of pcross in (4.26).
We first extend the m-sum to include m = k; this adds 1 to the sum which must be
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subtracted from the term outside. For notational convenience, set n = k � 2. We
re-index and let m run from 0 to n, reducing to

S(n) =
nX

m=0

�n
m

�
�2n+1
2m+1

� . (A.38)

The following notation and properties are standard (see for example [14]). The
Pochhammer symbol (x)m is defined for m � 0 by (x)m = �(x + m)/�(x) =
x(x + 1) · · · (x + m� 1), and the hypergeometric function 2F1 by

2F1(a, b, c; z) =
1X

m=0

(a)m(b)m

(c)m

zm

m!
, (A.39)

which converges for all |z| < 1 so long as c is not a negative integer.
For ease of exposition, we work backwards from the answer.6 Using �(1 + z) =

z�(z) and �(1 + `) = `! (for integral `), we find

2F1(1,
3
2
,
1
2
� n,�1) =

1X
m=0

(1)m(3/2)m

(1/2� n)m

(�1)m

m!

=
1X

m=0

�(1 + m)
�(1)

�(3/2 + m)
�(3/2)

�(1/2� n)
�(1/2� n + m)

(�1)m

m!

=: T1(n) + T2(n), (A.40)

where T1(n) is the sum over m  n and T2(n) is the sum over m > n. From the
functional equation of the Gamma function and using `!! = `(`� 2)(`� 4) · · · down
to 2 or 1, we find

�(3/2 + m) = 2m(2m + 1)!!�(3/2)
�(1/2� n + m) = (�1)m2m(2n� 1)(2n� 3) · · · (2n� 2m + 1)�(1/2� n).

(A.41)

Substituting, we find

T1(n) =
nX

m=0

(2m + 1)!!(2n� 2m� 1)!!
(2n� 1)!!

= (2n + 1)
nX

m=0

�n
m

�
�2n+1
2m+1

� ; (A.42)

note this is our desired sum. Thus
nX

m=0

�n
m

�
�2n+1
2m+1

� = 2F1(1, 3/2, 1/2� n,�1)� T2(n)
2n + 1

, (A.43)

6Mathematica can evaluate such sums and suggest the correct hypergeometric combinations.
One has to be a little careful, though, as it incorrectly evaluated S(n), erroneously stating that
there was zero contribution if we extend the sum to all m.
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and the proof is completed by analyzing T2(n). To determine this term’s contribu-
tion, we re-index. Writing m = n + 1 + u, we find

T2(n)

=
1X

u=0

�(1 + n + 1 + u)
�(1)

�(3
2 + n + 1 + u)

�(3
2 )

�(1
2 � n)

�(1
2 � n + n + 1 + u)

(�1)n+1+u

(n + 1 + u)!
u!
u!

=
1X

u=0

�(1 + u)
�(1)

�(5
2 + n + u)

�(3
2 )

�(1
2 � n)

�(3
2 + u)

(�1)n+1(�1)u

u!

=
(�1)n+1�(1

2 � n)�(5
2 + n)

�(3
2 )2

1X
u=0

�(1 + u)
�(1)

�(5
2 + n + u)
�(5

2 + n)
�(3

2 )
�(3

2 + u)
(�1)u

u!

= �(2n + 3)(2n + 1) 2F1(1, 1/2 + k, 3/2,�1), (A.44)

where we used �(1 � z)�(z) = ⇡/ sin(⇡z) with z = n + 1
2 to simplify the Gamma

factors depending only on n. Combining the above proves (4.24).

A.4. Proof of Theorem 5 (Variance)

We need to calculate Var (Y2k) = E
�
Y 2

2k

�
� E (Y2k)2. As we know the second term

by Theorem 5, we concentrate on the first term:

E
�
Y 2

2k

�
=

X
i,j2{1,...,2k}

E (XiXj) . (A.45)

The above sum has 4k2 terms. For 2k of those terms, i = j so E (XiXj) =
E
�
X2

i

�
= E (Xi) = pcross as the X`’s are binary indicator variables with probability

of success pcross. For another 2k terms, we have i and j are paired on the same
edge, so E (XiXj) = E (Xi) = pcross as before.

For the remaining 4k2 � 4k terms, i and j are on di↵erent edges and we must
find the probability that both those edges are in crossings. We separate this into
two disjoint probabilities, the probability pa that they cross each other, and the
probability that they don’t cross each other but are each crossed by at least one
other pairing. We denote this second probability by (1� pa) pb, where pb is the
conditional probability they are each crossing given that they don’t cross each other.
We find these probabilities by summing over the placements of k,m, p, q above as
appropriate and calculating for each the probability of observing one of our desired
configurations. We have shown

E
�
Y 2

2k

�
= 4kpcross +

�
4k2 � 4k

�
(pa + (1� pa) pb) , (A.46)

thus reducing the problem to the determination of pa and pb.
We label our edges as {1,m} and {p, q}. They cross i↵ one of {p, q} is one of

the m � 2 vertices between 1 and m, and the other is one of the 2k �m vertices
between m and 2k. Thus
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pa =
2kX

m=2

1
2k � 1

· 2 · m� 2
2k � 2

· 2k �m

2k � 3

=
2

(2k � 1) (2k � 2) (2k � 3)

"
2kX

m=2

�4k �
2kX

m=2

m2 + (2k + 2)
2kX

m=2

m

#
.

(A.47)

From formulas for the sum of the first n integers and squares, we simplify the
second factor and find

pa =
2

(2k � 1) (2k � 2) (2k � 3)
(2k � 1) (2k � 2) (2k � 3)

6
=

1
3
. (A.48)

We now calculate pb, the probability that {1,m} and {p, q} are both involved in
crossings given they don’t cross each other. We must place {1,m} , {p, q}. Relabel-
ing if necessary, we may assume 1 < m < p < q; such a labeling is possible if and
only if {1,m} and {p, q} do not cross each other. We compute the complement of
our desired probability by finding the number of configurations where at most one
of {1,m} and {p, q} is in a crossing. We denote the number of such configurations
by Nk,m,p,q and can thus write

pb = 1�
2k�2X
m=2

2k�1X
p=m+1

2kX
q=p+1

Nk,m,p,q

(2k � 5)!!
. (A.49)

As there are
�2k�1

3

�
terms in the above sum (corresponding to the

�2k�1
3

�
possible

choices of m,p, q as we have specified the location of vertex 1 and the order of
m,p, q), we can rewrite (A.49) as

pb = 1�
P2k�2

m=2

P2k�1
p=m+1

P2k
q=p+1 Nk,m,p,q�2k�1

3

�
(2k � 5)!!

. (A.50)

All that remains is to evaluate the sum above. To do so, we first define the
following function P (k), which counts the number of ways k vertices can be paired
with each other:

P (x) =

8><
>:

0 if k is odd
1 if k = 0
(k � 1)!! otherwise.

(A.51)

These two edges divide the remaining vertices into three regions: those between
{1,m} and {p, q}, of which there are M = p�m� 1 + 2k � q, those on the side of
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{1,m}, of which there are L = m�2, and those on the side of {p, q}, of which there
are R = q�p�1. We know that {1,m} will not be crossed if the L vertices between
1 and m pair exclusively with each other. Likewise, {p, q} will not be crossed if the
vertices between p and q pair exclusively with each other. Our desired quantity is
thus the union of these two events less their intersection:

P (L + M)P (R) + P (R + M)P (L)� P (L)P (M)P (R) . (A.52)

If L or R is 0, one of {1,m} , {p, q} is an adjacent edge, and therefore is not
crossing. Thus

Nk,m,p,q

=

(
(2k � 5)!! if L or R is 0
P (L + M)P (R) + P (R + M)P (L)� P (L)P (M)P (R) otherwise.

(A.53)

We now investigate the limiting behavior of pb (given in (A.49)) by using the
cases in (A.53).

• For the first case, we have L or R is zero, and thus Nk,m,p,q = (2k � 5)!!. We
are reduced to counting the number of terms with L or R zero. Note that
L = 0 when m = 2, and R = 0 when q = p + 1. Each of these events happens
in
�2k�2

2

�
pairings (we have fixed either m or q, and the other 2 vertices are

chosen from the remaining 2k� 2 vertices), and their intersection is
�2k�3

1

�
(p

is the only free index) pairings. In the limit, this case contributes
⇣
2
�2k�2

2

�
�
�2k�3

1

�⌘
(2k � 5)!!�2k�1

3

�
(2k � 5)!!

=
3
k

+ O

✓
1
k3

◆
. (A.54)

• For the second case, L and R are non-zero. We first evaluate the contribution
of the first two terms (they contribute the same as we can relabel {1,m}
and {p, q}) and then the third, recalling that we only have to look for terms
that are at least O

�
1
k2

�
since by (A.46) any other terms do not contribute as

k !1.

– For P (L + M)P (R), the largest terms are from when either L+M = 2,
or when R = 2. In these cases, Nk,m,p,q = (2k � 7)!!. If R = 2 then
q = p + 3 and m,p are free so there are

�2k�4
2

�
such terms corresponding

to the
�2k�4

2

�
choices of m and p. If L+M = 2 and L 6= 0 then there are

only two possible terms: either L = 1,M = 1, R = 2k� 6 or L = 2,M =
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0, R = 2k�6. Including the symmetric terms for P (R + M)P (L), these
terms thus have a combined contribution of

2
⇣�2k�4

2

�
+ 2
⌘

(2k � 7)!!�2k�1
3

�
(2k � 5)!!

=
3

2k2
+ O

✓
1
k3

◆
. (A.55)

– For the third term, �P (L)P (M)P (R), the largest contributions are
when two regions combine for exactly 2 vertices, contributing (2k � 7)!!.
If we disregard the requirement that L and R are nonzero in order to
obtain an upper bound on the magnitude of this contribution, there are
3 possible terms. The next largest contribution is when two regions
combine for exactly 4 vertices, contributing (2k � 9)!!. Proceeding with
these diagonal terms, we know that the third term contributes at most
in magnitude

3
(2k � 7)!!�2k�1

3

�
(2k � 5)!!

+ 6
(2k � 9)!!�2k�1

3

�
(2k � 5)!!

+ 9
(2k � 11)!!�2k�1
3

�
(2k � 5)!!

+ · · ·

= O

✓
1
k3

◆
, (A.56)

so they do not contribute to the main term in the limit.

Thus we have that, as k !1,

pb = 1� 3
k
� 3

2k2
+ O

✓
1
k3

◆
. (A.57)

Therefore if we substitute for pa and pb in (A.46) we find

E
�
Y 2

2k

�
= 4k � 4 +

�
4k2 � 4k

�✓1
3

+
2
3

✓
1� 3

k
� 3

2k2

◆◆

= 4k2 � 8k + O

✓
1
k

◆
. (A.58)

Using (4.29), we also have that

E (Y2k)2 =
✓

2k � 2� 2
k

+ O

✓
1
k2

◆◆2

= 4k2 � 8k � 4 + O

✓
1
k

◆
. (A.59)

The variance is E
�
Y 2

2k

�
� E (Y2k)2, which is 4 + O(1/k) as k !1. 2


