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Abstract
Let P (n) denote the largest prime factor of an integer n. In this paper we look at
the average of P (n), and prove that
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log t dt. This improves a result of De Koninck and Iv́ıc and

allows us to deduce their asymptotic expansion
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as a corollary, with the advantage that we can give the constants explicitly as
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1. Introduction

Let P (n) denote the largest prime factor of an integer n. The moments of P (n)
were first looked at in 1976 by Knuth and Pardon [4], and concerning the average,
they proved that X
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The above asymptotic also appeared in Erdős and Alladi’s 1977 paper [1] on additive
arithmetic functions. Later, De Koninck and Ivić [2] proved that
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where the constants di are computable, but not given explicitely. This expansion
appears again in [3], where Ivić finds a similar formula for the kth largest prime
factor. In this paper, we calculate the average of P (n) up to an error of the form
O✏

⇣
xe�c(log x)3/5�✏

⌘
, like that of the prime number theorem. This allows us to

deduce De Koninck and Ivić’s expansion as a corollary, as well as give the constants
di explicitely. Our main result is:

Theorem 1. Letting lig(x) =
R x
2

t
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[x/t]
log t dt, we have that
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For any integer k, lig(x) has the asymptotic expansion
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where
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These constants cn satisfy cn = 1 + O
�
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�
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Notice in particular that c0 = ⇡2

12 , so we deduce that
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Although this expansion has previously been presented in [2], and again in [3],
there are some advantages to the result above. We are able to give the constants
cn explicitely in terms of the zeta function without much additional work, and our
proof is basic requiring only an application of the hyperbola method. Furthermore,
we give the explicit integral form which has an error term like that of the prime
number theorem, paralleling how ⇡(x) is approximated by the function li(x).

2. The Main Theorem

For each integer n  x, there is at most one prime p >
p

x such that p|n, and for
each prime p there will be exactly
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Combining these two facts, we see that

X
p

x<px

p


x

p

�

X
nx

P (n) 
X
px

p


x

p

�
,



INTEGERS: 13 (2013) 3
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By writing
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which follows from the prime number theorem (See [5]) along with partial summa-
tion. Using (7) along with equations (5), and (6), we have that
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which proves (2). To recover the asymptotic expansion in (3), we turn our attention
to this integral function and make the substitution t = x
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Each of these integrals is absolutely convergent on [1,1), and so the last term con-
tributes an error term of at most Ok
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To evaluate these constants cn, we use exponential generating series. Integration
by parts tells us that for s > 1
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To find the size of cn we note that
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Substituting x = eu, the first integral becomes �(j + 1), and the second is O
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