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Abstract

A Ducci sequence is a sequence of n-tuples of integers obtained by iterating the map
(a1, . . . , an) !→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|). In this paper, we generalize the concept
of Ducci sequences to sequences of d-dimensional arrays, extend some of the basic results on
Ducci sequences to this case, and point out some new phenomena that occur. Our main tool
is the description of Ducci sequences modulo two in terms of polynomials over the field F2.

1. Introduction

Ducci sequences have been studied for more than a century, and have recently enjoyed a
resurgence of interest; see for example [2, 6, 7, 9, 11, 12, 16, 20]. The idea is to start with an
n-tuple of numbers (in this paper we will stick to integers) (a1, a2, . . . , an) and to form the
n-tuple of cyclic differences D(a1, . . . , an) = (|a1 − a2|, |a2 − a3|, . . . , |an−1 − an|, |an − a1|).
One then repeats the procedure, obtaining a sequence of n-tuples called a Ducci sequence in
honor of E. Ducci who first studied them (see [15]).

A Ducci sequence is said to vanish if it stabilizes at (0, 0, . . . , 0). We have the following
main result, which has been rediscovered many times:

Theorem 1 Every Ducci sequence of n-tuples of integers vanishes if and only if n is a power
of two.

Proof. The usual approach is to first notice that, since the entries of the tuples are bounded,
every Ducci sequence eventually becomes periodic. Then one shows (e.g., [8] or [19]) that
every tuple in the cyclic part must be a constant multiple of a binary tuple - a tuple whose
entries lie in {0, 1}. Then we have, for binary tuples,

(|a1 − a2|, |a2 − a3|, . . . , |an − a1|) ≡ (a1 + a2, a2 + a3, . . . , an + a1) mod 2.
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This means that the Ducci operator D is linear modulo two, and Theorem 1 is now easy
(and fun) to prove for binary tuples; see for example Theorem 5 below. !

Many other aspects of Ducci sequences have also been studied, such as the number of
iterations required to reach the cyclic part (this is known as the “length of the n-number
game;” see, e.g., [18]), the periods of the cyclic part (e.g., [6], [9], [13], [20] and [21]), and
the relationship with cellular automata (e.g., [1], [16] and [20]). Numerous generalizations
of Ducci sequences have also been studied (e.g., [5], [11] and [22]), and the purpose of this
paper is to introduce yet another generalization, this time to higher dimensions.

2. Ducci Sequences Over F2 - A Survey

In this section, we briefly survey some known results on binary Ducci sequences, before
turning to higher dimensions in the following sections. We denote by F2 = Z/2Z the field of
two elements.

Definition 2 A Ducci sequence over F2 is a sequence u1, u2, . . . ∈ Fn
2 of n-tuples given by

ui+1 = Dui, where

D(a1, a2, . . . , an) := (a1 + a2, a2 + a3, . . . , an−1 + an, an + a1).

Typical questions concern vanishing, or the period of a tuple.

Definition 3 Let u ∈ Fn
2 . We say that u vanishes if Dku = (0, 0, . . . , 0) for some k ∈ N.

The period of u is the least l ∈ N such that Dk+lu = Dku for all sufficiently large k, and
the smallest such k is called the length of u. The basic Ducci sequence is the Ducci sequence
starting with a0 := (0, 0, . . . , 0, 1), and its period is denoted by P (n). The tuple u is said to
be in a cycle if Dku = u for some k ∈ N.

Notice that the period of every tuple must divide P (n), since D is linear and commutes
with cyclic permutations, and every tuple is a linear combination of cyclic permutations of
a0. Before we can state a theorem summarizing some of the main results concerning Ducci
sequences over F2, we make one more definition.

Definition 4 Let R be a ring, and x ∈ R. Then the multiplicative order of x in R, denoted
OrdR(x), is defined to be the eventual period of the sequence x, x2, x3, . . . , if it exists. In
particular, if x ∈ R× then OrdR(x) is the order of x in the group R×.
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Theorem 5 Let n = 2km, where m is odd.

1. Every u ∈ Fn
2 vanishes if and only if n = 2k.

2. The length of the basic Ducci sequence is 2k, and the first tuple in the basic Ducci
sequence that is in a cycle is (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

2k − 1 zeros

, 1).

3. u = (a1, . . . , an) is in a cycle if and only if

m−1∑

j=0

ai+j2k = 0 for all i = 1, . . . , 2k.

4. P (n) divides 2k(2t − 1), where t = OrdZ/mZ(2).

5. If 2r ≡ −1 mod m for some r ∈ Z, then P (n) divides n(2r − 1).

The above result is far from exhaustive, in particular, much more is known about the
function P (n), see for example [13] and [14]. Some of these results have been rediscovered
many times. As far as the author can tell, (1) is first proved in [10], (2) appears in [14] for
the special case n = 2r ± 2s and in [4] for general n, (3) is proved in [17], while (4) and (5)
appear in [13].

A particularly useful technique for studying Ducci sequences is due to Peter Zwengrowski
[23], and we will follow his approach throughout this paper. Consider the isomorphism of
F2-vector spaces:

Fn
2

∼−→ R =
F2[x]

〈xn + 1〉 (1)

u = (a1, . . . , an) !−→ fu(x) mod (xn + 1),

where fu(x) = a1xn−1+a2xn−2+· · ·+an. Zvengrowski’s idea was to exploit the ring structure
of R: notice that applying the Ducci operator D corresponds to multiplication by (x + 1) in
R:

fDu(x) ≡ (x + 1)fu(x) mod (xn + 1).

Now all questions about the Ducci sequence u, Du, D2u, . . . ∈ Fn
2 may be reformulated as

questions about the sequence of polynomials fu(x), (x + 1)fu(x), (x + 1)2fu(x), . . . ∈ R.

Proof of Theorem 5 Let t = OrdZ/mZ(2), then (x + 1)2k+t
= (x2k+t

+ 1) = (x2k
+ 1) =

(x + 1)2k
in R, and this is zero if and only if n = 2k. This proves (1) and (4). It now

follows that u is in a cycle if and only if fu(x) is divisible (in R) by (x2k
+ 1), which is

seen to be equivalent to (3), and this in turn completes the proof of (2). Lastly, suppose
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2r ≡ −1 mod m. Then (x + 1)n2r
= (x2r+k

+ 1)m = (x−2k
+ 1)m = x−n(1 + x2k

)m = (1 + x)n,
and (5) follows. !

There are various expressions for the period of a given u, of which we give a particularly
pleasing one below. For simplicity, we will now assume that n is odd, the general case
being found in [6]. Similar results are also found in [9], and in fact the first such result was
attributed to D. Richman in [17], but apparently never published.

We denote by µn(F2) the group of nth roots of unity in the algebraic closure of F2.

Theorem 6 Suppose n is odd, and let u ∈ Fn
2 . Then the period of u is given by

Per(u) = lcm{OrdF2
(ζ + 1) | ζ ∈ µn(F2), fu(ζ) (= 0}.

Proof. We start by factorizing xn + 1 into distinct irreducible factors in F2[x]:

xn + 1 =
N∏

i=1

ϕi(x).

Now, by the Chinese Remainder Theorem, we have

R =
F2[x]

〈xn + 1〉
∼=

N∏

i=1

F2[x]

〈ϕi(x)〉 =
N∏

i=1

Fi,

where each Fi = F2[x]
〈ϕi(x)〉 is a finite field, in fact it is the extension of F2 obtained by adjoining

a root ζi ∈ µ(F2) of ϕi(x), with the isomorphism Fi
∼−→ F2(ζi) induced by x !→ ζi.

Now Per(u) is the eventual period of the sequence

fu(x), (x + 1)fu(x), (x + 1)2fu(x), . . . in R,

which in turn is the lowest common multiple over all i of the eventual periods of

fu(ζi), (ζi + 1)fu(ζi), (ζi + 1)2fu(ζi), . . . in Fi.

If fu(ζi) = 0, then this period is 1, otherwise the period equals OrdFi(ζi + 1), since fu(ζi) is
a unit. Lastly, it is clear that one may take the lowest common multiple over all nth roots
of unity ζ, and not just the chosen ζi’s, since all the roots of ϕi(x) are conjugate over F2.
The theorem follows. !

3. On to Higher Dimensions

Definition 7 Let R be a ring, and n1, n2, . . . , nd natural numbers. Denote by Mn1×···×nd
(R)

the R-module of n1 × · · · × nd arrays with entries in R. Elements of Mn1×···×nd
(R) are
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



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




D→





0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1




D→





0 0 0 0
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1




D→





0 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




D→





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





Figure 1: The basic 5 × 4 Ducci sequence vanishes.

denoted by (ai1,... ,id), where each index ij ranges over the residue classes modulo nj, for
j = 1, 2, . . . , d. For ease of notation, we choose {1, 2, . . . , nj} as a set of representatives for
these residue classes.

We now introduce Ducci sequences of dimension d ≥ 1, and we start with those over F2.

Definition 8 An n1 × · · · × nd Ducci sequence over F2, also called a D-sequence, is a
sequence U1, U2, . . . ∈ Mn1×···×nd

(F2) defined by the recurrence relation Ui+1 = D(Ui), where
the Ducci operator D is defined by

D(ai1,... ,id) =




∑

j1,... ,jd∈{0,1}

ai1+j1,i2+j2,... ,id+jd



 .

A basic Ducci sequence is one starting with A0, which has 1 in its (n1, n2, . . . , nd)th entry,
and zeros everywhere else.

For example, n1 × n2 Ducci sequences are sequences of matrices. This is illustrated in
Figure 1, which shows the first few elements (matrices) of the basic 5 × 4 Ducci sequence,
which vanishes. In Figure 2 we show the first 31 elements of the basic 32×32 Ducci sequence
stacked beneath each other, where each cube represents a one and a gap represents a zero.
The combined effect gives us a discrete approximation to the Sierpinski pyramid.

The cycle formed by the basic 7 × 7 × 7 Ducci sequence is shown in Figure 3.

As before, every D-sequence eventually forms a cycle, and we may ask the same questions
about which elements are in a cycle, what the period might be, and which Ducci sequences
vanish (i.e., stabilize at the zero element). The period of the basic n1 × · · · × nd Ducci
sequence over F2 is denoted by P (n1, . . . , nd). Before we can state our generalization of
Theorem 5, we need one more definition.

Definition 9 Let U = (ai1,... ,id) ∈ Mn1×···×nd
(F2) and 1 ≤ j ≤ d. Then a j-row of U is

the nj-vector consisting of those entries ai1,... ,id all of whose coordinates are fixed at some
constant values, except for the jth coordinate, which ranges from 1 to nj to make up the
vector.
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Figure 2: The basic 32 × 32 Ducci sequence

Theorem 10 Let n1, . . . , nd be natural numbers, and write ni = 2kimi with mi odd, for
i = 1, . . . , d. Let k = max{k1, . . . , kd} and t = lcmi{OrdZ/miZ(2)}. Then

1. Every U ∈ Mn1×···×nd
(F2) vanishes if and only if at least one of the ni’s is a power of

two.

2. U ∈ Mn1×···×nd
(F2) is in a cycle if and only if every j-row (b1, . . . , bnj) of U , for every

j = 1, . . . , d, satisfies

mj−1∑

l=0

bi+l2kj = 0 for all i = 1, . . . , 2kj .

3. The first element of the basic n1×· · ·×nd Ducci sequence which is in a cycle is D2k
(A0).

4. P (n1, . . . , nd) divides 2k(2t − 1).

5. P (n1, . . . , nd) = lcm{P (n1), . . . , P (nd)}.

As in the one-dimensional case, we consider the isomorphism of F2-vector spaces

Mn1×···×nd
(F2)

∼−→ R :=
F2[x1, . . . , xd]

〈xn1
1 + 1, . . . , xnd

d + 1〉 (2)

U = (ui1,... ,id) !−→ fU(x1, . . . , xd) mod 〈xn1
1 + 1, . . . , xnd

d + 1〉,

where

fU(x1, . . . , xd) =
∑

i1,... ,id

ui1,... ,idx
n1−i1
1 · · ·xnd−id

d ∈ F2[x1, . . . , xd].
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Figure 3: The basic 7 × 7 × 7 Ducci sequence
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We see that under this isomorphism, the Ducci operator D corresponds to multiplication by
(x1 + 1) · · · (xd + 1) in the ring R.

Proof of Theorem 10 We first point out that k and t as defined in the Theorem are
the least integers k ≥ 0, t ≥ 1 satisfying 2k+t ≡ 2k mod ni for all i = 1 . . . , d, and hence
satisfying

(
(x1 + 1) · · · (xd + 1)

)2k+t

=
(
(x1 + 1) · · · (xd + 1)

)2k

in R.

(3) and (4) now follow immediately, as does (1) once we point out that
(
(x1+1) · · · (xd+1)

)2k

is non-zero in R if and only if none of the ni’s are powers of 2. It also follows that U is in

a cycle if and only if fU(x1, . . . , xd) is divisible by
(
(x1 + 1) · · · (xd + 1)

)2k

, from which (2)
may be deduced by examining what this means for the coefficients of fU . Lastly, (5) follows
from the fact that the multiplicative order of (xi + 1) in R equals its multiplicative order in

F2[xi]
〈xni+1〉 . !

Next, we concern ourselves with computing periods of Ducci sequences. We have the
following generalization of Theorem 6.

Theorem 11 Suppose that n1, . . . , nd are all odd. Then the period of U ∈ Mn1×···×nd
(F2) is

given by

Per(U) = lcm{OrdF2

(
(ζ1 + 1) · · · (ζd + 1)

)
| ζi ∈ µni(F2), i = 1, . . . , d, fU(ζ1, . . . , ζd) (= 0}.

Proof. For ease of notation, we will assume that d = 2, and it will be clear how to extend
the proof to arbitrary dimension d. As in Theorem 6, we wish to factorize our ring R into a
product of finite fields.

R =
F2[x1, x2]

〈xn1
1 + 1, xn2

2 + 1〉
∼=

F2[x1]
〈xn1

1 +1〉 [x2]

〈xn2
2 + 1〉

∼=
N∏

i=1

Fi[x2]

〈xn2
2 + 1〉 ,

where Fi = F2[x1]
〈ϕi(x1)〉

∼= F2(ζi) as in the proof of Theorem 6. This is a finite field, so we may

similarly factor each Fi[x2]
〈xn2

2 +1〉 into a product of finite fields Fij to obtain

R ∼=
N∏

i=1

Mi∏

j=1

Fij, where Fij
∼= F2(ζi, ζj),

and now ζi ∈ µn1(F2) and ζj ∈ µn2(F2). The rest of the proof is now identical to that of
Theorem 6. !
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4. Preimages of D

Under the isomorphism (2) the image and kernel of the Ducci operator are given by

Im(D) ∼=
(x1 + 1)(x2 + 1) · · · (xd + 1)F2[x1, . . . , xd]

〈xn1
1 + 1, . . . , xnd

d + 1〉

and

ker(D) ∼=
〈xn1−1

1 + xn1−2
1 + · · · + 1, . . . , xnd−1

d + xnd−2
d + · · · + 1〉F2[x1, . . . , xd]

〈xn1
1 + 1, . . . , xnd

d + 1〉 .

Intuitively, this means that the array U is in the image of D if every j-row, for every
j = 1, . . . , d, contains an even number of ones. In this case, U is uniquely determined by
any of its (n1 − 1) × (n2 − 1) × · · ·× (nd − 1)-subarrays. Thus we have

dimF2 Im(D) = (n1 − 1)(n2 − 1) · · · (nd − 1)

dimF2 ker(D) = n1n2 · · ·nd − (n1 − 1)(n2 − 1) · · · (nd − 1).

Definition 12 A row flip on U is the action of inverting all the elements in one j-row of
U . In terms of polynomials, this means adding xi1

1 xi2
2 · · ·xid

d (x
nj−1
j + x

nj−2
j + · · · + xj + 1) to

the polynomial representing U .

We see that if U has a preimage under U , then it actually has 2n1n2···nd−(n1−1)(n2−1)···(nd−1)

preimages, and each preimage can be obtained from any other by performing a sequence of
row flips upon it. Finding one preimage of U is straightforward, but finding one which has
a minimal number of ones is much harder, as the following result shows.

Theorem 13 The following decision problem is NP-complete: Given U ∈ Mn1×···×nd
(F2)

and M ≥ 0, does U have a preimage under D containing at most M ones?

Proof. We start by assuming U ∈ Im(D), otherwise there is nothing to prove. From the
above discussion follows that our decision problem is equivalent to the following problem:

Row flipping(d): Given U ∈ Mn1×···×nd
(F2) and M ≥ 0, does there exist a sequence of row

flips reducing U to an array containing at most M ones?

It is shown in [3] that Row flipping(2) is NP-complete. (In fact, there is an interesting
connection between n1 × n2 Ducci sequences over F2 and the game of “Squares” (see [3]):
The Ducci operator D gives precisely the transition from the solution board to the game
board).
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It is now easy to show that a polynomial-time solution to Row flipping(d) would also
yield a polynomial-time solution to Row flipping(d-1), for d ≥ 3. Indeed, suppose given
U ∈ Mn1×···×nd−1

(F2) and 0 ≤ M ≤ n1n2 · · ·nd−1, we let nd := n1n2 . . . nd−1 + 2, and
construct W ∈ Mn1×···×nd

(F2), which contains U as the subarray with dth coordinate equal
to 1, and all whose other entries are zero. Then any sequence of row flips reducing the
number of ones in W to at most M cannot include any d-row flips (this requires a few
moments’ thought), hence this same sequence of row flips will reduce U to at most M ones.
Thus Row flipping(d-1) reduces to Row flipping(d), and the result follows by induction on
d. !

5. Ducci Sequences Over Z

Now that we have made some progress on n1× · · ·×nd Ducci sequences over F2, what about
Ducci sequences in Mn1×···×nd

(Z) defined somehow in terms of absolute differences? One
may propose several definitions for the Ducci operator D, and it is not clear which will lead
to the richest theory. Let’s restrict ourselves, for now, to the following class of operators:

Definition 14 A map D : Mn1×···×nd
(Z) → Mn1×···×nd

(Z) is called a Ducci operator if it
satisfies D(aU) = aD(U) for every scalar a ∈ Z, and if it reduces modulo 2 to the usual
Ducci operator D of Definition 8.

The Ducci operator D is called bounded if for every U ∈ Mn1×···×nd
(Z) there exists some

MU > 0 such that the entries of Dk(U) are bounded by MU for all k.

An n1×· · ·×nd Ducci sequence over Z, also called a D-sequence, is a sequence U1, U2, . . . ∈
Mn1×···×nd

(Z) given by Ui+1 = D(Ui), where D is a Ducci operator.

Then we have the following result.

Theorem 15 Suppose that D : Mn1×···×nd
(Z) → Mn1×···×nd

(Z) is a bounded Ducci operator.
Then every D-sequence vanishes if and only if at least one of the ni’s is a power of two.

Proof. Suppose that some ni is a power of two. Since D is bounded, every D-sequence
eventually forms a cycle. Suppose that U ∈ Mn1×···×nd

(Z) is in such a cycle, and is not the
zero element. Since we may divide out by common factors, we may assume that at least
one entry of U is odd. But U mod 2 must also be in a cycle of the corresponding Ducci
sequence over F2, which vanishes by Theorem 10, hence U mod 2 is the zero element. This
is a contradicton.

On the other hand, if none of the ni’s are powers of 2, then there are D-sequences which
do not vanish modulo 2, hence do not vanish. !
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


1 2 1
2 1 3
1 1 2



 D1→




0 1 1
1 1 2
1 0 1



 D1→




1 1 2
1 2 1
0 1 1



 D1→




1 0 1
2 1 1
1 1 2



 D1→




2 1 1
1 1 0
1 2 1



 D1→




1 1 2
1 2 1
0 1 1





Figure 4: A 3 × 3 D1-sequence which becomes cyclic with period 3




2 3 5
5 2 3
3 5 2



 D2→




4 1 5
5 4 1
1 5 4



 D2→




2 7 5
5 2 7
7 5 2



 D2→




8 7 1
1 8 7
7 1 8



 D2→




8 5 13

13 8 5
5 13 8



 D2→ · · ·

Figure 5: A divergent 3 × 3 D2-sequence

The above argument also gives an alternative proof to Theorem 1.

We give two examples of Ducci operators.

Example 1. The operator D1 : Mn1×n2(Z) → Mn1×n2(Z) defined by

D1(ai,j) =
(∣∣|ai,j − ai+1,j+1|− |ai+1,j − ai,j+1|

∣∣)

is a bounded Ducci operator, but as Figure 4 shows, it is no longer true that the elements
in a cycle are binary, as was the case in one dimension.

Example 2. The operator D2 : Mn1×n2(Z) → Mn1×n2(Z) defined by

D2(ai,j) = (|ai,j + ai+1,j+1 − ai+1,j − ai,j+1|)

is also a Ducci operator. If A = (ai,j) ∈ Mn×n(Z) is such that ai,j = ai+1,j+1 for all i and j,
then D2(A) has the same symmetry, and the sequence of n-tuples formed by the first rows
of the matrices in the D2-sequence starting with A is what Marc Chamberland [11] calls a
Ducci sequence with (−1, 2,−1)-weighting. In particular, such sequences can diverge (e.g.,
Figure 5), so D2 is not a bounded Ducci operator.

Interestingly, divergent D2-sequences only seem to occur for certain values of n1 and n2:
It is easy to show that all D2-sequences vanish if min(n1, n2) ≤ 2, and it follows from [11]
and the above argument that there exist diverging 3 × 3, 8 × 8 and 16 × 16 D2-sequences.
Computations suggest that all D2-sequences vanish if n1 or n2 equals 4, and that some 3× 5
and 5 × 5 D2-sequences diverge, whereas all 3 × 7 sequences seem to be bounded. What
about other values of n1 and n2?

At this stage we can say very little about periods of Ducci sequences over Z, other than
the obvious fact that the period of some U is divisible by the period of (U mod 2). The
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n1 × n2 D D1 D2

3 × 3 1, 3 1, 3, 6 1, 3,∞
3 × 5 1, 5, 15 1, 5, 10, 15, 30 1, 10, 15, 30, 120, 390, 660, 1920, (∞)
3 × 6 1, 3, 6 1, 3, 6, 12 1, 2, 3, 6, 12, 36, 66, 72, 78, 114, 174, 282,∞
3 × 7 1, 21 1, 21 1, 21, 42, 84, 147, 168, 210, 273, 420, 546, 588, 672
5 × 5 1, 15 1, 15, 30, 45 1, 60, 90, 3720, 16335, (∞)

Table 1: Some periods of D, D1 and D2-sequences. The entries for D1 and D2 are likely
incomplete. The symbols ∞ and (∞) denote sequences known and suspected to diverge,
respectively.

above two examples show a wider range of periods for given values of n1 and n2 than do
Ducci sequences over F2. Table 1 gives a few results, intended not as an exhaustive list, but
merely to demonstrate the wealth of periods of higher-dimensional Ducci sequences over Z.

Clearly, much remains to be discovered here.

References

[1] O. Andriychenko and M. Chamberland, “Iterated strings and cellular automata”, Math. Intelligencer
22 (2000), no. 4, 33–36.

[2] A. Behn, C. Kribs-Zaleta and V. Ponomarenko, “The convergence of difference boxes”, Amer. Math.
Monthly 112 (2005), no. 5, 426–439.

[3] F. Breuer and J.M. Robson, “Strategy and complexity of the game of squares”, Bull. London. Math.
soc. 30 (1998), 274–282.
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