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Abstract

In [4] we proved a generalization of Beatty’s Theorem which we stated came from the

Nim value analysis of a game. In this paper we give the Nim value analysis of this

game and show its relationship with Beatty’s Theorem. The game is a one-pile counter

pickup game for which the maximum number of counters that can be removed on each

successive move changes during the play of the game. The move size is bounded by a

move function f whose arguments are pile sizes. After analyzing this game, we discuss a

blocking version of this game as well as the misère version.

1. Introduction

Two players alternately remove a positive number of counters from a pile of counters. The

maximum size of the move is determined by a move function f : N → N whose arguments

are pile sizes. Each player in his turn must remove from one up to the minimum of n

and f(n) counters, where n is the size of the pile. The game ends when either the pile is

empty or f(n) = 0 and the winner is the last player to move. Since we can replace a move

function f(n) with min(n, f(n)) without changing the legal moves in the game, without
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loss of generality we will assume 0 ≤ f(n) ≤ n throughout the paper. Our analysis solves

a very large class of games that includes as a subclass all games whose move function

satisfies both

1. f(0) = 0 and

2. For all n ≥ 0, f(n + 1)− f(n) ∈ {0, 1}.

The second condition, called the unit jump condition (ujc), will be used repeatedly.

The move functions f(n) = brnc and f(n) = drne for some r, 0 < r ≤ 1, are primitive

special cases. Our analysis using f(n) = n solves both the regular and misère versions of

m-pile Bouton’s nim. Also, our analysis using f(n) = min(n, k), k = 1, 2, . . . solves both

the regular and misère versions of m-pile modular Bouton’s nim.

At the end of this paper, we will show how to generate numerous examples of the game.

These will include the ‘primitive’ move functions f(n) = brnc and f(n) = drne, 0 < r ≤
1. In Example 1 immediately after Lemma 6, we show how the analysis in this paper

also generalizes Beatty’s Theorem. In a companion paper [4], we used the same basic

analysis as we do here to extend Beatty’s Theorem to strictly increasing continuous

functions that are independent. See [1] and [6]. Also, a further extension of this paper

led us to discover a class of combinatorial games that we have not seen in the literature.

We call these blocking games, and we discuss the blocking version of this game briefly in

Section 6. See [2].

This paper uses the Sprague-Grundy theory of combinatorial games which we sum-

marize below. The Grundy values of positions, which we denote g(n), are called Nim

values in this paper. Sections 2 and 3 can be omitted by those readers who are familiar

with this material.

2. Beatty’s Theorem

In 1926 Sam Beatty made the following discovery, which he posed as a problem in [1]. If

a is a positive irrational number, the sequences m(1+a), m = 1, 2, . . . and n(1+a−1), n =

1, 2, . . . together contain exactly one number from each of the intervals (k, k + 1), k =

1, 2, . . . .
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3. Impartial Games

Our game is a finite, impartial game played under the usual rules of play:

1. two players alternate moving,

2. there is no infinite sequence of moves,

3. both players have the same moves available, and

4. the winner is the last player to make a move.

Such a game can be thought of a directed acyclic graph. Each vertex of the graph

corresponds to a position in the game, and the directed edges correspond to the possible

moves. The followers of a vertex are those positions joined by an outgoing edge.

The minimum excluded value (mex) of a finite set of nonnegative integers is the least

nonnegative integer not in the set. For example, mex{1, 2, 4, 0} = 3 and mex{ } = 0.

The Nim value of a position is the mex of the nim values of its followers. A position with

no followers (a terminal position) has Nim value 0. It is easy to see that the winning

strategy is to move to a position with Nim value 0, for then the opponent either has no

move at all and loses immediately, or must move to a position with Nim value greater

than 0, and so must eventually lose.

Nim values are of greatest use in composite games where there are several components.

Each player, on his turn, selects a component game in which a legal move can be made

and makes a legal move in that game. The game is over when no legal moves can be

made in any of the component games, and the winner is the player who makes the last

move. The Nim value of the composite game is the nim sum ⊕ of the Nim values of

the component games. The nim sum is obtained by writing the integers in binary and

adding modulo 2 without carrying. For example, 2⊕ 3 = 102 ⊕ 112 = 012 = 1.

The positions (P1, P2, . . . , Pk) with a nim sum of zero (g(P1)⊕g(P2)⊕. . .⊕g(Pk) = 0)

are called balanced positions, and the positions with a non-zero nim sum are called

unbalanced. A player who moves from an unbalanced position can always move to a

balanced position, but a player who moves from a balanced position must always move

to an unbalanced position. Note that all terminal positions are balanced. The misère

version of the game is played under the same rules except that the loser is the last

player to make a move. Let us call a component game Gi special if for each non-terminal

position P in Gi such that g(P ) = 0, there is a follower Q of P with g(Q) = 1. If
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each component Gi is special, then the balanced positions (P1, P2, . . . , Pk) in the misère

version of the composite game are given by the following two conditions:

1. If at least one g(Pi) ≥ 2, then (P1, P2, . . . , Pk) is balanced if and only if g(P1) ⊕
g(P2)⊕ . . .⊕ g(Pk) = 0.

2. If each g(Pi) ∈ {0, 1}, then (P1, P2, . . . , Pk) is balanced if and only if g(P1)⊕g(P2)⊕
. . .⊕ g(Pk) = 1.

All the other positions are unbalanced. Note that all the terminal positions are unbal-

anced. We point out later that all of the games studied in this paper are special.

4. Main Theorems

We now proceed to solve the subclass of games mentioned above. This is followed by an

extension of the solution to the entire class of games. Let N denote the set of non-negative

integers and Z the set of all integers.

Theorem 1. Let n be a non-negative integer. Consider the game

(n, f) where n is the pile size and f : N → N is a move function such that f(0) = 0 and

f satisfies the ujc. Then the Nim values g(n) in the game (n, f) satisfy the following:

1. g(0) = 0

2. If f(n)− f(n− 1) = 1 and n ≥ 1, then g(n) = f(n).

3. If f(n)− f(n− 1) = 0 and n ≥ 1, then g(n) = g(n− 1− f(n)).

4. For all non-negative integers n, {g(n), g(n− 1), . . . , g(n− f(n))} =

{0, 1, 2, . . . , f(n)}, where 0 < 1 < . . . < f(n) (that is, the elements of the set

{0, 1, 2, . . . , f(n)} are listed exactly once).

5. For all non-negative integers n, g(n) ≤ f(n).

Proof. As noted above, f(n) ≤ n for all n ∈ N . The proof of the theorem is by mathe-

matical induction on n. Starting the induction at n = 0 is trivial because only conditions

1, 4 and 5 apply, which hold because g(0) = f(0) = 0. Now assume that the theorem

holds for k ∈ {0, 1, 2, . . . , n− 1}. We show that the statements also hold for n. Since f

satisfies ujc, either
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Case 1. f(n− 1) + 1 = f(n) or

Case 2. f(n− 1) = f(n).

We will tacitly assume that f(n) > 0. If f(n) = 0, then f(0) = f(1) = f(2) = . . . =

f(n) = 0 since f is non-decreasing.

Proof for case 1. The condition can be rewritten as f(n)−f(n−1) = 1. Thus we need to

prove condition 2. Once we prove condition 2, it is clear that condition 5 also holds. From

condition 4 and the induction hypothesis, {g(n− 1), g(n− 2), . . . , g(n− 1− f(n− 1))} =

{0, 1, 2, . . . , f(n − 1)}, where 0 < 1 < · · · < f(n − 1). Then from the definition of Nim

value,

g(n) = mex({g(n− 1), g(n− 2), . . . , g(n− f(n))})
= mex({g(n− 1), g(n− 2), . . . , g(n− 1− f(n− 1))})
= mex({0, 1, 2 . . . , f(n− 1)} = f(n− 1) + 1 = f(n).

To prove condition 4, note that

{g(n), g(n− 1), g(n− 2), . . . , g(n− f(n))}
= {g(n), g(n− 1), . . . , g(n− 1− f(n− 1))}
= {g(n)} ∪ {g(n− 1), g(n− 2), . . . , g(n− 1− f(n− 1))}
= {f(n)} ∪ {0, 1, 2, . . . , f(n− 1)}
= {0, 1, 2, . . . , f(n)}, where 0 < 1 < · · · < f(n),

since 0 < 1 < . . . < f(n− 1) and f(n− 1) < f(n).

Proof for case 2. We are given f(n − 1) = f(n). Thus we need to show condition 3,

namely, g(n) = g(n − f(n) − 1). First we need to make sure that n − f(n) − 1 ≥ 0.

But 0 ≤ f(n − 1) ≤ n − 1 was assumed previously and from f(n − 1) ≤ n − 1 and

f(n) = f(n − 1), it follows that n − f(n) − 1 ≥ 0. The induction hypothesis gives

{g(n− 1), g(n− 2), . . . , g(n− 1− f(n− 1))} = {0, 1, 2, . . . f(n− 1)} where 0 < 1 < · · · <
f(n− 1). Therefore,

g(n) = mex({g(n− 1), g(n− 2), . . . , g(n− f(n))})
= mex({g(n− 1), g(n− 2), . . . , g(n− f(n− 1))})
= mex({g(n− 1), g(n− 2), . . . , g(n− 1− f(n− 1))}\{g(n− 1− f(n− 1))})
= mex({0, 1, 2, . . . f(n− 1)}\{g(n− 1− f(n− 1))}),
= g(n− 1− f(n− 1)) = g(n− 1− f(n)) (from the definition of mex),

which proves condition 3.
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Next note that g(n) = g(n − f(n) − 1) ≤ f(n − f(n) − 1) ≤ f(n) by the induction

hypothesis with condition 5 and the fact that f is non-decreasing. So condition 5 holds.

Furthermore, condition 4 is satisfied:

{g(n), g(n− 1), g(n− 2), . . . , g(n− f(n))}
= {g(n), g(n− 1), g(n− 2), . . . , g(n− f(n− 1))}
= {g(n)} ∪ {g(n− 1), g(n− 2), . . . , g(n− f(n− 1))}
= {g(n− 1− f(n− 1))} ∪ {g(n− 1), g(n− 2), . . . , g(n− f(n− 1))}
= {g(n− 1), g(n− 2), . . . , g(n− 1− f(n− 1))}
= {0, 1, 2, . . . f(n− 1)}
= {0, 1, 2, . . . f(n)}

since f(n) = f(n− 1).

Readers who are mostly interested in Beatty’s Theorem can skip Theorem 2 since it

can be omitted without loss of continuity. Now we expand the result of Theorem 1 as

follows. First we need some notation. Let h be a function from the nonnegative integers

N to the integers Z. Define the derived function h′ : N → Z as follows: h′(0) = 0 and for

n ∈ N \ {0}, h′(n) = min(h′(n− 1) + 1, h(n)). Suppose h(0) = 0 and h satisfies the ujc,

as required in the hypothesis of Theorem 1. Then it follows by mathematical induction

that h = h′. Also note that h′ satisfies the ujc if and only if h′ is non-decreasing. The fol-

lowing illustrates a move function f such that the derived function f ′ is non-decreasing.

Note that (f ′)′ = f ′.

x 0 1 2 3 4 5 6 7 8

f(x) 0 3 4 4 4 4 8 7 6

f ′(x) 0 1 2 3 4 4 5 6 6

Theorem 2. The games (n, f) and (n, f ′) have the same Nim values for any move func-

tion f : N → N such that f ′ is non-decreasing.

Thus the class of functions for which we can solve the game is enlarged to all games

(n, f) such that the derived function f ′ satisfies the hypothesis of Theorem 1, a much

larger class of games.

Proof. The proof is by induction. The base case: g((0, f)) = g((0, f ′)) = 0 since these

are both terminal positions. Now suppose g((k, f)) = g((k, f ′)) for 0 ≤ k ≤ n − 1. To



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #G03 7

see that g((n, f)) = g((n, f ′)), we consider the two cases a) f ′(n)− f ′(n− 1) = 0 and b)

f ′(n) − f ′(n − 1) = 1. In case a) it follows from the definition of f ′ that f ′(n) = f(n).

Then

g((n, f)) = mex({g(n− 1), g(n− 2), . . . , g(k − f(n))})
= mex({g(n− 1), g(n− 2), . . . , g(n− f ′(n))}) = g((n, f ′)).

On the other hand, in case b), from Theorem 1, g((n, f ′)) = f ′(n). Then g((n, f ′)) =

mex({g(n − 1), g(n − 2), . . . , g(n − f ′(n))}) = f ′(n). But applying condition 4 from

Theorem 1 yields {g((n, f ′)), g(n− 1), g(n− 2), . . . , g(n− f ′(n))}) = {0, 1, 2, . . . , f ′(n)},
so {g(n−1), g(n−2), . . . , g(n−f ′(n))}) = {0, 1, 2, . . . , f ′(n)−1} = {0, 1, 2, . . . , f ′(n−1)}.
Now g((n, f)) = mex({g(n− 1), g(n− 2), . . . , g(n− f(n))}). Since f(n) ≥ f ′(n), this is

equal to

mex({g(n−1), g(n−2), . . . , g(n−f ′(n))}∪{g(n−1−f ′(n)), g(n−2−f ′(n)), . . . , g(n−f(n))})

= mex({0, 1, 2, . . . , f ′(n− 1))} ∪ {g(n− 1− f ′(n)), g(n− 2− f ′(n)), . . . , g(n− f(n))})

But 0 ≤ g(n − i − f ′(n)) ≤ f ′(n − i − f ′(n)) ≤ f ′(n − 1) for i ∈ {1, 2, . . . , f(n) −
f ′(n)} by condition 5 of Theorem 1 and the fact that f ′ is non-decreasing. Thus each

g(n − i − f ′(n)) lies in the set {0, 1, 2, . . . , f ′(n − 1)} and therefore we have g(n, f) =

mex({0, 1, 2, . . . , f ′(n−1)}) = f ′(n−1)+1 = f ′(n), as was to be shown. Thus g((n, f)) =

g((n, f ′)) in either case, and this completes the inductive proof.

In order to use Theorem 1 more effectively with specific functions, we need Theorem

4, which generalizes Theorem 1. We also use the functions F (m), H(m) of Definition 3

when we generalize Beatty’s Theorem.

Definition 3. For any non-negative integer n, consider the game (n, f) where the move

function f satisfies the four conditions

1. f(0) = 0 and

2. For all n ≥ 0, f(n + 1)− f(n) ∈ {0, 1}.

3. limn→∞ f(n) =∞.

4. limn→∞ n− f(n) =∞.

Let h(n) = n−f(n). Note that because of conditions 1-4, both h and f are surjections of N

onto N . Thus for each integer m ≥ 0, we may define F (m) to be the smallest non-negative
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integer x such that f(x) = m, and H(m) to be the smallest non-negative integer x such

that h(x) = m. Finally, let α be any non-negative integer and 0 ≤ a1 < a2 · · · < ai < · · ·
be all the non-negative integers such that g(ai) = α. That is, a1, a2, . . . is the sequence

of pile sizes whose Nim values are α.

Theorem 4. The sequence a1, a2, . . . can be generated recursively as follows: a1 = F (α)

and for all i = 2, 3, 4, . . . , ai = H(ai−1 + 1).

The conditions 3 and 4 could be omitted, but the proof would be slightly more

technical.

Proof. First note that

1. h(0) = 0,

2. for all n ≥ 0, h(n + 1)− h(n) ∈ {0, 1}, and

3. limn→∞ h(n) =∞.

We use Theorem 1 to prove Theorem 4 by induction on the index i in a1, a2, . . . . Since

limn→∞ f(n) = ∞ and limn→∞ n − f(n) = limn→∞ h(n) = ∞, we can use conclusion 2

once and conclusion 3 repeatedly to show that for all nonnegative integers α there are

infinitely many nonnegative integers whose Nim value is α. Therefore it makes sense to

talk about a1, a2, . . . as being the infinite increasing sequence of all non-negative integers

whose Nim values are α. Since h and f satisfy the ujc, it follows that f(F (m)−1) = m−1

for all m ≥ 1 and h(H(m)− 1) = m− 1 for all m ≥ 1.

From condition 5 of Theorem 1, it follows that for all n ≥ 0, g(n) ≤ f(n). Therefore,

from condition 2 of Theorem 1, a1 = F (α). Thus we may suppose for the induction

hypothesis that 0 ≤ a1 = F (α) < a2 < a3 < . . . < ai are all the non-negative integers

up to and including ai whose Nim values are α. We also suppose that these ai’s are

generated by a1 = F (α) and ak = H(ak−1 + 1) for all k ∈ {2, 3, . . . , i}.

To complete the proof it remains to show that the next positive integer ai+1 whose

Nim value is α is given by

ai+1 = H(ai + 1).

To this end, let s be the smallest positive integer such that h(s) > ai. Of course,

s = H(ai + 1). Also, ai < s since h(n) ≤ n. Since h(n + 1)− h(n) ∈ {0, 1}, we have

i. s− f(s) = ai + 1 and ii. (s− 1)− f(s− 1) = ai.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #G03 9

We ignore this paragraph when ai = s−1 because in this case the sets are empty. The

condition h(n+1)−h(n) ∈ {0, 1} together with equation ii. above implies that for all t ∈
{ai +1, ai +2, . . . , s−1}, h(t) = t−f(t) ≤ ai. Therefore, for t ∈ {ai +1, ai +2, . . . , s−1},
ai ∈ {t − 1, t − 2, t − f(t)}. Therefore, g(ai) = α ∈ {g(t − 1), g(t − 2), . . . , g(t − f(t))},
and for t in the above range, g(t) = mex{g(t− 1), g(t− 2), . . . , g(t− f(t))} 6= α.

We now show that g(s) = α. This will complete the proof since s is the next integer

after ai such that g(s) = α and s = H(ai + 1). Using equations i. and ii. above, we see

that f(s)− f(s− 1) = 0. From conclusion 3 of Theorem 1 and equation i. above, we see

that g(s) = g(s− f(s)− 1) = g(ai) = α.

In order to apply Theorem 4, we will use the following material from the companion

paper [4].

Definition 5. Suppose u, v are real functions on the domain [0,∞). We say u and v

are complementary if they satisfy

1. u(0) = v(0) = 0,

2. u and v are non-decreasing on [0,∞), and

3. u(x) + v(x) = x for all nonnegative x.

It is easy to see that at least one of u and v is unbounded. As a technical convenience,

we assume both are unbounded. It is easy to see that ∀ε > 0,∀x ∈ [0,∞),

0 ≤ u(x + ε) − u(x) ≤ ε and 0 ≤ v(x + ε) − v(x) ≤ ε. From this it follows that both u

and v are continuous.

Lemma 6. Suppose u and v are complimentary functions. Define f : N → N,

h : N → N by f(n) = bu(n)c, h(n) = n−f(n) = n−bu(n)c = dn−u(n)e = dv(n)e. Since

f and h satisfy the conditions of Definition 3, for every nonnegative integer m, F (m) and

H(m) are defined by Definition 3. For any nonnegative integer m, define u−1(m) to be

the smallest nonnegative real number that satisfies u(u−1(m)) = m and v−1(m) to be the

largest nonnegative real number satisfying v(v−1(m)) = m. . Then F (m) = du−1(m)e,
and H(0) = 0, H(m + 1) = bv−1(m) + 1c.

Proof. We prove that ∀m ∈ {0, 1, 2, . . . }, (1) F (m) = du−1(m)e. The proof that (2)

H(0) = 0, H(m+1) = bv−1(m)+1c is very similar and is left to the reader. An intuitive

proof of (1) and (2) using pictures is also fairly easy. Formal proofs of these are also

given in [4], where we assume that both u and v are strictly increasing. Considering
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m ∈ {0, 1, 2, . . . } to be fixed, we abbreviate u−1(m) as u−1. Thus u−1 is the smallest

non-negative real number for which u(u−1) = m. Also, define u = du−1e. Now it is easy

to see that F (0) = du−1(0)e = 0. Therefore, we assume m ∈ {1, 2, 3, . . . }. Note that

u−1(m) = u−1 ≥ 1 since ∀x ∈ [0,∞), 0 ≤ u(x) ≤ x. Since f satisfies the ujc, equality (1)

is assured once we prove

a. f(u) = bu(u)c = m, and

b. f(u− 1) = bu(u− 1)c = m− 1.

To prove a. note that u− u−1 = ε, where 0 ≤ ε < 1. Then

bu(u)c = bu(u−1 + ε)c
= bu(u−1 + ε)− u(u−1) + u(u−1)c
= bu(u−1 + ε)− u(u−1) + mc
= m + bu(u−1 + ε)− u(u−1)c.

Also, 0 ≤ u(u−1 + ε) − u(u−1) ≤ ε < 1. Therefore, bu(u−1 + ε) − u(u−1)c = 0. Thus

bu(u)c = m+bu(u−1 + ε)−u(u−1)c = m. To prove (b), define u = u−1 = du−1−1e. Let

u−1 − u = ε, where 0 < ε ≤ 1. Now bu(u− 1)c = bu(u)c = bu(u−1 − ε)c = bu(u−1 − ε)−
u(u−1)+u(u−1)c = bu(u−1−ε)−u(u−1)c+m. Since u is non-decreasing and u−1 = u−1(m)

is the smallest non-negative real number satisfying u(u−1) = m and 0 < ε, it follows that

0 < u(u−1)− u(u−1 − ε) ≤ ε ≤ 1. Therefore, −1 ≤ u(u−1 − ε)− u(u−1) < 0. Therefore,

bu(u−1− ε)− u(u−1)c = −1. Thus bu(u− 1)c = bu(u−1− ε)− u(u−1)c+ m = m− 1.

The reader can easily see that the two sequences F (m), m = 1, 2, 3, . . . , and H(m +

1), m = 0, 1, 2, 3, . . . together partition the set of positive integers and also that the

members of each of the two sequences are distinct. This result is a generalization of

Beatty’s Theorem. In [4], we extend this in a natural way to achieve a more powerful

version of this result in which the continuous, increasing functions u and v are completely

independent.

5. Examples

Example 1 (Beatty’s Theorem) Define u(x) = x
1+a

and v(x) = ax
1+a

, a > 0. From

lemma 6, F (m) = du−1(m)e = d(1+a)me and H(m+1) = bv−1(m)+1c = b(1+1/a)m+

1c. We know that F (m), m = 1, 2, . . . , and H(m+1), m = 0, 1, 2, . . . , together partition
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the set of positive integers and the members of each of the two sequences are distinct.

Since H(0 + 1) = 1, it follows that F (m), m = 1, 2, . . . and H(m + 1), m = 1, 2, . . .

partitions {2, 3, 4, . . . }. Now if a is irrational, then H(m+1) = d(1+1/a)me. Therefore,

if a is irrational, then the sequences d(1 + a)me, m = 1, 2, . . . and d(1 + 1/a)me, m =

1, 2, . . . partition {2, 3, . . . }, which is equivalent to Beatty’s Theorem.

The original solution to Beatty’s problem was provided by Ostrowski and Aitken [7]

and generalized to a larger class of sequences by Lambek and Moser [6]. It appears that

the Lambek and Moser approach is the inverse of our approach. Our approach arose

from studying the Nim (ie, Sprague-Grundy) values of games, while it is quite possible

that Lambek and Moser were not aware of connection with combinatorial games. In [3],

Fraenkel used Beatty’s Theorem to study a generalized Wythoff’s game. He did not use

Wythoff’s game to derive Beatty’s Theorem as we have done here with our game.

Example 2. Define u, v on [0,∞) as follows:

u(x) =

{
x if 0 ≤ x ≤ 1√

x if x > 1

and

v(x) =

{
0 if 0 ≤ x ≤ 1

x−√x if x > 1

Define the move function f(n) = b√nc, n = 0, 1, 2, . . . . Then h(n) = dn − √ne, n =

0, 1, 2, . . . . We invite the reader to go through the technicalities of Lemma 6. Now

u−1(n) = n2, n = 0, 1, 2, . . . , and v−1(n) = 2n+1+
√

4n+1
2

, n = 0, 1, 2, . . . . Let a be any

nonnegative integer and 0 ≤ a1 < a2 . . . be all of the nonnegative integers whose Nim

values are a. Then a1, a2, . . . is generated recursively as follows: a1 = F (a) = du−1(a)e =

a2, and for all i ∈ {2, 3 . . . , }, ai = H(ai−1 + 1) = bv−1(ai−1) + 1c =

⌊
2ai−1+3+

√
4ai−1+1

2

⌋
.

The reader will also note the following Beatty-like property. The sequences F (m) =

m2, m = 1, 2, 3, . . . and H(m + 1) =
⌊

2m+3+
√

4m+1
2

⌋
, m = 0, 1, 2, . . . are disjoint se-

quences of distinct positive integers whose union is the set of positive integers.

Example 3. Define u, v on [0,∞) as follows:

u(x) =

{
0 if 0 ≤ x ≤ 1

3x2/3 − 3x1/3 if x > 1

and

v(x) =

{
x if 0 ≤ x ≤ 1

x− 3x2/3 + 3x1/3 if x > 1
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Define the move function f(n) = b3n2/3 − 3n1/3c, n = 0, 1, 2, . . . . Then h(n) =

dn− 3n2/3 + 3n1/3e, n = 0, 1, 2, . . . . Now u−1(0) = 0,

u−1(n) =

(
1

2
+

1

2

√
1 + 4n/3

)3

, n = 1, 2, 3, . . . ,

and

v−1(n) =
(
1 + 3
√

n− 1
)3

, n = 0, 1, 2, . . . .

Let a be any nonnegative integer and 0 ≤ a1 < a2 < . . . be all the nonnegative integers

whose Nim values are a. Then a1, a2, . . . is generated recursively as follows: a1 = F (a) =

du−1(a)e and for all i ≥ 2, ai = H(ai−1 + 1) = bv−1(ai−1) + 1c.

The reader will also note the following Beatty-like property:

F (m) =

⌈(
1

2
+

1

2

√
1 + 4m/3

)3
⌉

, m = 1, 2, 3, . . .

and

H(m + 1) =
⌊(

1 + 3
√

m− 1
)3

+ 1
⌋

, m = 0, 1, 2, . . .

are disjoint sets of distinct positive integers whose union is the set of positive integers. Of

course we chose u and v so that u−1 and v−1 could be represented in explicit form. When

one or both u−1 and v−1 cannot be computed in explicit form, we leave it in implicit

form the same way that sin−1x is left in implicit form. The reader might also like to

consider the following variations of the above example: f(n) = d√ne, f(n) = dn−√ne,
f(n) = bn−√nc, f(n) = drne, 0 < r < 1, f(n) = brnc, 0 < r < 1, f(n) = d3n2/3−3n1/3e.
The cases where r = k/(k + 1) are especially interesting because they can be solved

explicitly. Of course, the Beatty-like property will immediately follow as well.

6. Misère and Blocking Games

It is easy to see that all the games studied so far are special games as defined in section

3. Therefore, the misère versions of the composite games are solved by the strategy given

in section 3.

Games with Blocking. Consider the game (n, f) that satisfies the hypothesis of

Theorem 1. Let k denote a non-negative integer. On each move including the first, before

the moving player moves, the opposing player can block up to k of the moving players

options. We denote this game by (n, f, k). The nim values of (n, f, k) can be computed
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by the formula

g(n, f, k) =

⌊
g(n, f)

k + 1

⌋
.
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