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Abstract

In this paper the author proves a general theta functions identity by using the theory
of elliptic functions. This identity allows the author to derive four interesting theta
functions identities. These identities lead to new proofs of some well-known identities of
Ramanujan associated with the modular equations of degree 5. Some new identities are
also discussed.

1. Introduction

We suppose throughout that ¢ := ¢*™" Im (7) > 0; this condition ensures that all the
sums and products that appear here converge. We will use the standard g-notations:
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The well-known Jacobi’s triple product identity [1, pp. 21-22], [2, p. 35], [9, 10] is

@aa)zde= 3 (—1)g" 5, (L1)

n=—oo

Using the above identity, M. D. Hirschhorn [9] derived the following septagonal numbers
identity

(@* —a—a™" +a7?)(a’q,a g, a’q, a7 ¢ @)oo (05 02

e n— n n(5n—3)
— (q2’q3’q5;q5)oO Z (_1) ( 10n—3 Ta —-10 +3)q72
ey n — _10n n(5n—1)
(4,45 ¢% )00 D (1)@ g a0 g (1.2)

n=—oo
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Using this identity, Hirschhorn provided a simpler proof of the following identity of
Ramanujan [13, p. 139], [4, 9, 16]:

= (ny\ ng"  (g9)3
1-5 (—) = >, 1.3
nZ::l 5/1=q" (¢°:¢°) (1.3)
where (%) denote the Legendre symbol.

In [7], H. M. Farkas and I. Kra rediscovered (1.2) using the theory of theta functions
with rational characteristics. F. G. Garvan [6] provided an interesting generalization of
(1.2) and his proof depends only on the triple product identity.

Using the Jacobi theta function 6;(z|q) ((2.1) below), (1.2) can be reformulated as

iq 20, (zlq)0(2z]q) = 01(2n7]q%) {220, (5a + 77|q®) — €270, (52 — 77|¢)}
—0,(77|q%) {*®0, (5 + 277|q°) — e~ 40, (5x — 277|¢%)} . (1.4)

In Section 3 of this paper we will prove a very general identity (identity (3.2) below)
involving theta functions.

In Section 4, we will derive (1.4) from identity (3.2), and then prove (1.3) using (1.4).
We will also prove the following important result of Ramanujan:

i~ RO~ g 9
where 1 (4,4% @)
q > R(q) = (P ) (1.6)
The following identity will be established in Section 5 using (3.2):
0l ) 2ela”) = 6o la) {0+ o) — 0re — S
- oGl {6+ Tl -0 -Twb. 0

From this identity, we can obtain the following identity of Ramanujan [13, p. 139], [4, 16]:

< (N g (¢°:¢°)%
— =q . 1.8
nz::l <5> 1-97% " (69 (18)
Using (1.7), we can also derive the identity
f,(2~ f,(Z 25. 25
1(5)r |Q) . 1(257T|Q) — 1+5q(q 4 )oo. (19)
01(5la)  01(Fla) (43 @)oo
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In Section 6, we will prove

@l 2ela) = GCT10) {7+ Ty - 03— o)}

~6(Zl0) {63+ T ) - e - )b, (110

where s 10
5 (0% ¢°)22

C(q) = 250q(q; 4)4(¢% ¢°)% + 3125¢> ===, (1.11)
(4:9)%
Using (1.10), we can obtain
(% lq)  63(%lq) (0% ¢°)5
ENEUANARS 1L VRN | I Y A A Ay 1.12
HENED) . (H12)

Section 7 is devoted to the proof of the following identity:

Cl@)0(x]q”)01(22q°) = 07(277|¢°) {**05(x + 77]q°) — e 07 (x — w7lg®)}  (1.13)
—07(771g°) {"70} (x + 277|¢%) — e7*0} (2 — 277]g") }, (1.14)

where ()0
: % @)oo
¢2C(q) = 109(¢50)5 (4" 0 )o0 + 75505 (1.15)
(4% ¢°)2%
Using this identity, we can rederive the following identity of Ramanujan:
1 (4:9)3
e — 1= R(q) = o2 1.16
(0 = e (1.16)

It should be pointed out that we also need the method of L. -C. Shen [17] in deriving
(1.4), (1.7), (1.10) and (1.14).

Identities (1.5) and (1.16) can be found in Ramanujan’s second notebook [14, pp.
265-267] and were first proved by G. N. Watson [18] for the purpose of establishing
some of Ramanujan’s claims about R(g) made in his first two letters to Hardy [15, pp.
xxvii, xxviii]. They were used by B. C. Berndt, H. H. Chan, and L. -C. Zhang [3] in
deriving general formulas for the explicit evaluation of R(q). They were also used by the
author and R. P. Lewis [11] to provide simpler proofs of two Lambert series identities of
Ramanujan.

In [4], Chan utilized the Hecke correspondence between Dirichlet series and Fourier
expansions of modular forms to show that (1.3) and (1.4) are equivalent.
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2. Some Basic Facts About 6,(z|q)

For ¢ = €™ with Im(7) > 0, the Jacobi theta function 6;(z|q) is defined by [19, p. 463]

[e.9]

Z (_1>nq%n(n+1)e(2n+l)iz

n=—oo

oo

0i(zlq) : = —ig

= 205 3 (—=1)"qz""* D sin(2n 4 1)z, (2.1)
n=0

In terms of infinite products [19, p. 469],

Or(2la) = 24 (50 2)(1 @)oo (965 Doe (26> 0)oe
= g (¢ oo (€71 @)oo (26T @) (2.2)
One deduces easily from (2.1) that (see, for example, [17])
%6, 00,
— = —8q¢—=— 2.3
022 8q (23)

In the following, #] and #; denote the first and second partial derivatives of §; with
respect to z. We can derive the following two important identities [17] from (2.2):

9/ TL
L(zlq) = cotz+4 Z sin 2nz, (2.4)
91 n= 1 C]
8/1/ o0 nqn€21z 00 nqnefQiz o0 nqn
— = —1+38 +8 ——————+38
01 <Z|q) + Z _ n€2zz ; 1— qne—sz + nz::l 1— qr
= —1+162 c032n2+82 ] (2.5)
—q"
Differentiating (2.4) with respect to z, we obtain
9/ ) < ng"
( ) = —csc?z4+8) cos 2nz. (2.6)
91 n—1 1-— qn

Using these identities and the simple differential identity
(8,/6,)" = 07/, — (8,/6,) . (27)

an interesting proof of the following trigonometric series identity of Ramanujan [12], [8,
pp. 134-135] has recently been given by Shen [17]:

2
{cotz—qu sin nz}

1—q"

1 q" cos2nz 1 & 1—cos2nz)
= <¢—cot — . 2.8
R
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By some elementary calculations we find the following trigonometric functions iden-
tities:

T o 2T 4

2_ _ = = 2.9
csc” o csc? E 75 (2.9)
2 4 )
cos 8 cos T £ (E> . (2.10)
5 ) 2 \5

Replacing z by £ and %” in (2.4) respectively and then subtracting the two resulting
equations and finally using (2.9) we find that

TG-S G en

Replacing z by T and 2% in (2.5) respectively and then subtracting the two resulting
equations and ﬁnally using (2 9), (2.10) and (1.3) we find that

(&) Gl -(5) (5h) = {5 (6)%)

4 PR
_ _77(;1’ qgoo . (2.12)
V5 (¢°5¢°) oo
Applying logarithmic differentiation to (2.2), we find that
9/ 00 qn 2iz 00 qne—sz
—1— 21 — 4+ 2 —_— 2.13
91< |q) L5 anol_qnemz_’_ Zn;ll_q 6721,2 ( )

Differentiating (2.13) with respect to z, we find that

n 2zz 00 qne—sz

n=1

Replacing ¢ by ¢°, setting z = 77 and z = 277 respectively, we obtain

9/1 / . 00 q5n+1 oo q5n+4
(@) o) = 15 e 4

n=0 n=0
9/1 ! ) q5n+2 o0 q5n+3
Y orrld®) = 4aS 4 gy 4
() et = 18 e 1 E

N erig?) — (B) mrla) =45 (2) (2.15)
0, 0, (5) (1—qm)
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From (2.1), we find that

e*0,(5z + n7|¢°) = iq* > (—1)"qn<5373>e(10”’3)”, (2.16)
diz 5 3o n, 2= (10n—1)iz
e"*01(5z +2r7|¢°) = ig s > (=1)'¢ = e . (2.17)

Differentiating both sides of (2.16) twice with respect to z, and then setting z = 0 in
the resulting equation, we obtain

—40,(77|q°) + 20i0, (77|q°) + 2507 (77|q°)
n(5n—3)

S (—1)(10n — 3)%™%

n=—oo

00|

i n(5n—3)

d
= —igs <9+40qdq> S (=1)q

o1 d
= —ig8 (9 +4qu—q> (q,q4,q5;q5)oo. (2.18)
By logarithmic differentiation, we have
d
(¢.4% 4" ¢°) ) <9+40qdq> (¢.4% 4" ¢)

o0 5 5n 5n — 4 5n—4 5n — 1 5n—1
::9—40§j<7w L Bz de™ 7 (5n=1)g ). (2.19)

1— q5n 1 — q5n—4 1— q5n—1

Substituting (2.19) into (2.18) and using (2.24) below we obtain

/

0 0"
4 —20i-L -2
029 (77]q°) 5(91

/

(77]q°)

5ng™" (5n — 4t (bn —1)g" !
= 4 . 2.2
9—40 Z (1 _ q5n 1 — q5n74 + 1 — q5n71 ( O)
Similarly, from (2.17) we obtain
0 6//
16 — 40i -1 (277|¢°) — 2522 (277|q°)
6 6
00 5nq5n (57’L _ 3)(]51173 (5’/’L _ 2)q5n2>
= 1-40 + + . 2.21
n;l <1 _ q5n 1 — q5n—3 1— q5n—2 ( )
Substracting (2.20) from (2.21) we obtain
0/ 0 / //
12 +20¢ {0—1(7r7'|q ) — 20 (277|q” } +25 {0—1 77|q°) (27r7|q )}
1

— —q"

{ i } . (2.22)
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Differentiating (2.2) with respect to z and then putting z = 0 we obtain the identity

0(q) = 0,(0lg) = 245 (¢: 9)>.. (2.23)

Replacing ¢ by ¢° in (2.2) and then taking z = 77, and 277 in the resulting equation
respectively we find that

01(r71¢%) = g5 (4 0%) oo (0% 07) oo (0% 0 s (2.24)
0,27710°) = iq7 (0% ¢°)oo(0% 0o (@ €)oo (2.25)

Multiplying the above two equations, after some manipulation we find that

01(7710")01 (277|¢%) = —4 " 1(6; @)oo (05 ¢°)oer (2.26)

From (2.2) we have the following special values of 6;(z|q)

2T 1, T 2mi —2mi
(—Iq) = 2q§(81ng)(q;Q)oo(qe25 Q)0 (g€ 5 q) 0, (2.27)
27T 1. 0T 4mi —4mi

91(g!q) = 2QS(Smg)(q;q)oo(qe 51000 (7€ 5 Q)00 (2.28)

Multiplying the above equations and then using the elementary facts

T .27 \/5

sin —sin — = —

b} 5 4

and

27

1—2)1—zes )(1—aes)1—zes )(1—aes)=1—2a"

in the resulting equation, we find that

1 (Z10)0 L la) = VBaH (050)oe 0 ) (2.29)

From the definition of 0;(z|q) we readily find the following functional equations

bzt nmle) = (~1)'6:(ela). (2:30)
01(z +nr7lg) = (=1)"¢" 7 e ™20, (2|q), (2.31)

where n is any integer. Differentiating the above equations with respect to z and then
setting z = 0 in the resulting equations, we find that

0)(nxlq) = (-1)"0i(q) and 6(n77|q) = (—=1)"q" = 0}(q). (2.32)
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3. A General Identity For 6,(z|q)

In this section we will prove the following theta functions identity.

Theorem 1 If fi(2) and fo(z) are two different entire functions satisfying the functional
equations

flz+m) =—f(2) and flz+77)= —q_ge_loizf(z), (3.1)
with f1(0) # 0, f2(0) # 0, then there is a constant C(q) such that

Cl@)01(2lq)01(2x]q) = f2(0) (f1(x) + fi(=2)) = f1(0) (fo() + fo(=2)) - (3.2)

To prove the above identity we require the following fundamental theorem of elliptic
functions [5, p. 22, Theorem 2|:

Theorem 2 The sum of all the residues of an elliptic function vanishes in the period
parallelogram.

The idea is to construct an elliptic function whose poles are known and then compute
the residues of the elliptic function at these poles. Set the sum of the residues to zero to
obtain the desired identity for theta functions. We will use L’Ho6pital’s rule to compute
the residues.

Proof. Let 0 < z,y < 7 be two distinct parameters different from the zeros of fi(z). By
(2.31) and (2.32) we readily verify that

01(29)01(z — x]q)01(z + =[q)01(z — ylg)01 (= + ylq)
satisfies (3.1). Therefore,

f1(2)
2|q)01(z — z]q)01(z + [q)01(2 — y[q)b1(z + ylg)’

is an elliptic function with periods = and n7. The poles of E(z) are 0,z, 7 — z,y, and
7 — 1y, all of which are simple poles. Let res(E; ) denote the residue of E(z) at a. From

E(z) = o

Theorem 2, we have
res(E;0) + res(E;x) + res(E;m — x) +res(E;y) + res(E;m —y) = 0. (3.3)
Now

res(£;0) = limzE(z)

z—0
~ lim f1(2) x lim ———
2001 (z — z]q)01 (2 + x|q)01(2 — ylg)01 (2 + ylg) -0 0:1(2]q)

01(q)07 (219)0% (ylq)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1(2001), #A03 9

res(F;x) = lim(z —x)E(2)

Z—T

= lim h(zlg) x lim _2Tr
== 01(2[q)01 (2 + z[q)01 (2 — ylg)01 (= + ylg) == 01(2 — z[q)
01(q)01 (1q)01 (2] q)6: (x — ylq)01 (x + ylg)” '

res(Esm—1x) = legx(z —7m+x)E(2)

= lim Hi(z) X lim FomEr
e=mw 01 (2]q)01 (2 — x|q)01 (2 — ylg)01(z + ylg) =72 01(2 + z|q)

L fi(r —x)

0l (r — 2|0 (7 — 22]q)bi (m — = — ylq)bi (7 — = + ylq)

0 (q)01(x]q)01(2x]9)0:1 (x — y|q)0:1 (x + ylg)

Similarly, we have

. _ f1(y)
s ) = a6 2yl — 0o T vl (3.7)
res(E;m—y) = L(=y) (3.8)

01(q)01(yl9)0: (2yl9) 01 (x — y]q)0: (z + ylg)”

Substituting (3.5), (3.6), (3.7) and (3.8) into (3.3) we obtain

fily) + fi(—y) fi(x) + fi(—x) 01(x + y|q)01(z — ylq) (3.9)
f1(0)01(ylq)01(2y]q) f1(0)0:(|q)01(27]q) 03 (x|q)0%(ylg) '

In the same way we can obtain the identity for fo(2):

L) +h(=y) hE)+hl=z)  hz+ylgb(r —ylg) (3.10)
f2(0)61(y]q)61(2y]q) f2(0)01(x(q)6: (22]q) 0 (xlg)bi(yle)
By comparing (3.9) and (3.10), we obtain
@)+ fil=2)  fol2) + fo(—2)
f1(0)01(x]q)01(2zlq)  f2(0)01(x]q)01(22]q)
fily) + fi(=y) fa(y) + fo(=y) (3.11)

~ A0 W0 2le)  F(0)01(yla)0i (2yla)

From this identity we readily find that

fil@)+ fi(=2)  folz) + fo(—2)
f1(0)61(z]q)61(2x]q)  f2(0)01(x(|q)01(22]q)
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C(a)
fi(@)f2(q)
Theorem 1. By analytic continuation, we know (3.2) holds for all x.

is independent of x, so it must be a constant, say . This completes the proof of

Identity (3.2) is a very general identity involving theta functions. In the next sections
we will choose some special functions f;(z) and f»(z) to obtain some interesting identities
for theta functions.

4. The Proofs of (1.3), (1.4), and (1.5)

Using (2.31), it is easy to verify that fi(z) = €*#6,(5z + n7|¢°) and fa(2) = €¥0, (52 +
277|q°) satisfy all the conditions of Theorem 1. Taking fi(z) = €*#6,(5z + 77|¢°) and
f2(2) = €*#6,(5z + 277|q°) in Theorem 1, we find that

C(q)01(xlg)01(22]q) = 01(277|¢”) {e**01(52 + 77]q°) — €701 (52 — 77]q°) }
—0,(77|q®) {€*®0, (5 + 27 7|q%) — e~ 470, (5x — 277|¢%) } . (4.1)

To determine C(q), we take = £ in (4.1). After some simple calculations we find that

2 , 4 2
C(q)Ql(g|q)91(g|q) = 2i(cos g — cos g)Ql(ﬂT|q5)91(2ﬂ7’|q5). (4.2)

Substituting (2.26) and (2.29) into the above identity we find that

2 2T 4m
C(q) = ﬁz(cos ~ —cos —)q

:Zq

N

N[
—~
e
w
~—

)
Using (4.3) in (4.1) we obtain (1.4).
Replacing g by ¢°, setting x = 77, and using (2.25) we obtain (1.5).

Differentiating both sides of (1.4) twice with respect to z and setting = = 0, we find
that

12 4+ 20z {Zl(ﬂﬂq ) — 22 (277|q° )} + 25{ (77l¢%) — 1(27r7|q5)}
1 1
—i / 2
B L) — (4.4)
01 (m7|q?)01 (277 |qP)

Substituting (2.22), (2.23), and (2.26) into the above identity we obtain (1.3).

5. The Proofs of (1.7), (1.8), and (1.9)

Taking f1(z2) = 61(z + ”|q5) and fo(2) = 01(z + 27r|q ) in Theorem 1, we find that
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(el (2ele) = 651 {Ba(e+ Zlah) — ba(o — Tlab)

1 2 1 2 1
~0:Flab) {oue + Tl - e - Tlah . 61

Replacing ¢ by ¢° we obtain
2T T T
C(q°)01(2]q°)01(22]¢°) = &(5@{&@+5MM—&@—5Mﬁ

~0(Flo) {0+ Tl - 0o - Tl ) 62)

To determine C'(¢°), we take x = 77 in (5.2). Using (2.31), after some simple calcu-
lations, we find that

4m 2m U 2m
C(q"):(wr|q")r (27|0°) = 2473 (cos — — cos (Sl (o) (5.3)
Substituting (2.26) and (2.29) into the above identity we find that
2 4
C(¢°) = 2v/5(cos g — COS g)q_% = 5. (5.4)

Using (5.4) in (5.2) we obtain (1.7).
Setting = ¢ in (1.7) and using (2.29) we obtain (1.8).

Differentiating both sides of (1.7) twice with respect to x and setting x = 0, we find

that o 9// 00
_<‘> ( >:&@@&?M‘ (5:5)

Substituting (2.11), (2.23), and (2.29) in the above identity we obtain (1.9)

6. The Proofs of (1.10) and (1.12)

Taking fi(z) = 63(z + Z|q) and fo(2) = 6(z + Z|q) in Theorem 1, we find that
@l 2ela) = 710 {01+ Tla) — 03— Do)}

~6(Cl0) {03+ Tl - e - Tl b (6)

Differentiating both sides of (6.1) twice with respect to x and setting x = 0, we find
that

o (5) =0 (52 () Gl -2 (E) G- st o2
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Using (2.7) we have

{38 G55 (o) - o{ GE) G-(G) (5} - ey 0

Substituting (2.11), (2.12), (2.23) and (2.29) into the above equation we obtain

I A

Substituting (1.3) and (1.8) into the above equation we obtain

2 (0% 4°) %
(9%

thereby completing the proof of (1.10). Taking z = Z in (1.10) and using (2.29) we obtain
(1.12).

Clq) = 2509(q; 4)5 (47 4°)5 + 3125¢7 (6.5)

7. The Proofs of (1.14) and (1.16)

Taking f1(z) = e*#03(z + T|q) and fo(2) = €*#07(z + 22%|q) in Theorem 1, we find that

TT 9z T
o) - e i - o)}

Cla)6n(alo)6r (20la) = 07T o) {2 03(o + 7
2nT

=0T ) {03 + L) — 0 e -

2T

—q) ¢t (7.1
Replacing ¢ by ¢°, the above identity becomes

C(q°)01(x]g°)01(22]0°) = 03 (277|g°) {703 (x + 77|¢°) — e 207 (w — 77]q”) }
—03(rrlg®) {03 (x + 277|q") — e 707 (x — 277]0°) | (7.2)

Differentiating both sides of (7.2), twice, with respect to x, setting x = 0, we find that

/ !/ /!

0] 0] 01 0
12 + 201 (7r7|q )—2—= (27TT|q Jp+5 (7T7'|q ) — 1(27?7'|q5)
‘91 9 01 ‘91

AN A w208 (eP)?
*20{@ =)~ (5 (Q”T‘q>}‘e%<mq5>e?<2w|q5>‘ =

Using (2.7) we have

/ / 1/

124
12 + 207 ﬁ(7?7'|q ) — 20 (27r7'|q )+ 25 o1 (7r7'|q ) — 9—1(27r7|q5)
01 0 (91 91

0 (Z) S <Z> e} = g
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Substituting (2.15), (2.22), (2.23) and (2.26) into the above equation we obtain

oS (5) 205 () - e 9

q" (1—qm)? (45 9)%

Using (1.3) and (1.8) in the above equation we obtain

(¢:9)%

¢2C(¢°) = 10q(q; )% (¢; °)L + Ty (7.6)

thereby completing the proof of (1.14). Taking x = n7 in (1.14) and using (2.25) we
obtain (1.16).
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