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Abstract

We study (0, 1)-sequences in arbitrary base b and derive a new upper bound on the
star discrepancy of these. Moreover, we show that the van der Corput sequence is the
sequence with the highest star discrepancy among all (0, 1)-sequences. The key property
of the van der Corput sequence leading to this result is that its points are in a certain
sense as close to the origin as possible. The main tool in our work is a recent finding on
the discrepancy of (0, m, 2)-nets.

1. Introduction and Statement of the Result

In many applications, notably numerical integration, point sets with good distribution
properties in the unit cube are of interest. One way of measuring the quality of distribu-

tion of a point set in the s-dimensional unit cube [0, 1]s is based on the discrepancy func-
tion. Let PN be a point set in [0, 1]s consisting of N points. Let 0 ≤ α(1), α(2), . . . , α(s) ≤ 1,

then the discrepancy function ∆ is given by

∆
(
PN , α(1), . . . , α(s)

)
:= A

(
PN ,

s∏
j=1

[
0, α(j)

))− Nα(1) · · ·α(s),

where A
(
PN ,

∏s
j=1

[
0, α(j)

))
denotes the number of points of PN in

∏s
j=1

[
0, α(j)

)
. It is

useful in the following to introduce a “closed version” of ∆, which is defined by

∆
(
PN , α(1), . . . , α(s)

)
:= A

(
PN ,

s∏
j=1

[
0, α(j)

])− Nα(1) · · ·α(s).
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By taking a norm of ∆(PN , α(1), . . . , α(s))N−1, we obtain a measurement of the irregular-
ity of distribution. In particular, the supremum norm has been studied extensively. In

this case, we speak of the star discrepancy of the point set PN , which is defined by

D∗(PN) := sup
0≤α(1),...,α(s)≤1

∣∣∆(PN , α(1), . . . , α(s))N−1
∣∣ .

Note that, in the special case s = 1, we might also write

D∗(PN) = sup
0≤α≤1

∣∣∆(PN , α)N−1
∣∣

(this follows from the fact that ∆(PN , 1) = 0).

A broad class of point sets with small star discrepancy is provided by the concepts

of (t, m, s)-nets and (t, s)-sequences. An extensive survey on this topic can be found
in [7, 8]. We first give the definition of a (t, m, s)-net.

Definition 1 Let b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m be integers. A point set P consisting of
bm points in [0, 1)s forms a (t, m, s)-net in base b, if every subinterval J =

∏s
j=1[ajb

−dj ,

(aj + 1)b−dj ) of [0, 1)s, with integers dj ≥ 0 and integers 0 ≤ aj < bdj for 1 ≤ j ≤ s and
of volume bt−m, contains exactly bt points of P .

Observe that a (t, m, s)-net is particularly well distributed if its quality parameter

t is small. A very prominent example of a (0, m, 2)-net in base b is the so-called two-
dimensional Hammersley net in base b consisting of the points

x̃n =
( n

bm
, φb(n)

)
, 0 ≤ n ≤ bm − 1.

Here, φb(n) is the radical-inverse function in base b, with

φb(n) :=

∞∑
i=0

ai(n)b−i−1

for an integer n ≥ 0, where n is given by its unique digit expansion in base b,

n =

∞∑
i=0

ai(n)bi,

and where ai(n) ∈ {0, . . . , b − 1} for all i ≥ 0, and ai(n) = 0 for sufficiently large i. We

denote, for given m, the Hammersley point set in base b by Hm,b. It has recently been
outlined in [2, Lemma 1] that the Hammersley net Hm,b plays a special role among the

(0, m, 2)-nets in base b since it can be shown that

A(Ybm , [0, α] × [0, β]) ≤ A(Hm,b, [0, α] × [0, β]) (1)

for any (0, m, 2)-net Ybm in base b and any α, β ∈ [0, 1]. This result holds for all m ≥ 0 and
any choice of b ≥ 2. Inequality (1) means that the Hammersley point set has its points as
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close to the origin as possible for a (0, m, 2)-net in base b. This is a property that causes
relatively bad distribution properties of the Hammersley net; indeed, it can be shown

that the net Hm,b is the (0, m, 2)-net that has essentially the highest star discrepancy
among all (0, m, 2)-nets in base b (see again [2]).

A class of infinite point sets that are in their structure based on (t, m, s)-nets are
so-called (t, s)-sequences which are defined as follows (see [7, 8] for broader information).

Definition 2 Let b ≥ 2, s ≥ 1, and t ≥ 0 be integers. A sequence (yn)n≥0 is a (t, s)-

sequence in base b if for all l ≥ 0 and m > t the point set consisting of ylbm , . . . , y(l+1)bm−1

is a (t, m, s)-net in base b.

A popular example of a (0, 1)-sequence is the so-called van der Corput sequence in
base b, denoted by Cb and consisting of points x0, x1, . . ., where the n-th point xn is the

radical inverse function in base b of n (n ≥ 0). Observe that the points x̃n of Hm,b and
the points xn of Cb are related to each other via

x̃n =
( n

bm
, xn

)
, 0 ≤ n ≤ bm − 1. (2)

This relation between Hm,b and Cb is a special case of a more general situation de-
scribed by Niederreiter. In fact, Niederreiter shows in [7, Lemma 5.15] that, given a

(t, s)-sequence (yn)n≥0 in base b, the point set consisting of

ỹn :=
( n

bm
, yn

)
, 0 ≤ n ≤ bm − 1,

forms a (t, m, s + 1)-net in base b, provided that m ≥ t.

In this note, it is our aim to derive a new upper bound on the star discrepancy of (0, 1)-
sequences. We also show that Cb is the sequence with the highest star discrepancy among

all (0, 1)-sequences in base b. The star discrepancy of (0, 1)-sequences in general and of
the van der Corput sequence in particular has been studied extensively in the literature.

For example, Niederreiter derived good general upper bounds on the star discrepancy of

arbitrary (t, s)-sequences in base b (see [7, 8]). In the case of a (0, 1)-sequence Y in base
b, Niederreiter showed

ND∗(YN) ≤ (log N)
b − 1

2 log b
+ O(1), (3)

where YN denotes the collection of the first N (N ∈ �) points of Y , and the constant in
the O-notation does not depend on N . Restricting himself to a special case, Pillichsham-

mer proved in [9] that for any digital (0, 1)-sequence Y over �2 we have

ND∗(YN) ≤ ND∗(C2,N) ≤ log N

3 log 2
+ 1, (4)

where YN denotes the collection of the first N (N ∈ �) points of Y , and C2,N is the
collection of the first N points of the van der Corput sequence in base 2. The latter result
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means that the van der Corput sequence is the worst distributed digital (0, 1)-sequence
over �2 with respect to the star discrepancy (for the definition of digital sequences see [9]

or, more generally, [8]). Further interesting results concerning the discrepancy of Cb are
due to Béjian and Faure [1], Drmota, Larcher, and Pillichshammer [3], and Faure, who

gave formulas for the star discrepancy of the van der Corput and related sequences and
studied their asymptotical behavior (see, e. g., among many papers, [4, 5, 6]).

In this paper, we are going to generalize the inequalities in (4) to a broader class

of (0, 1)-sequences, to be more precise to all (0, 1)-sequences, thereby improving on (3).
This will be achieved by finding an analogue to inequality (1), which will show that the

van der Corput sequence is the (0, 1)-sequence with its points as close to the origin as
possible. As it is the case with the Hammersley point set in two dimensions, the latter

property is the reason why Cb will turn out to be the sequence with the highest star
discrepancy among all (0, 1)-sequences. In the next section we prove the subsequent

theorem.

Theorem Let Y be an arbitrary (0, 1)-sequence in base b and denote by YN the first N

elements of Y . Moreover, let Cb,N be the first N terms of the van der Corput sequence
in base b. Then

ND∗(YN) ≤ ND∗(Cb,N) ≤ (log N)f(b) + c(b),

where c(b) is a constant depending only on b and where

f(b) =

{
b2

4(b+1) log b
, if b is even,

b−1
4 log b

, if b is odd.

Remark Note that the bound in the theorem is, in the special case b = 2, the same as

the bound in (4) with respect to the leading term. Note also that the bound improves
on (3).

We obtain the following corollary, which immediately follows by using our theorem
and Théorème 6 in [4].

Corollary For given b ≥ 2, we have

lim sup
N→∞

sup
Y

ND∗(YN)

log N
= f(b),

where the supremum is extended over all (0, 1)-sequences Y in base b, where YN denotes

the collection of the first N points of Y , and where f(b) is defined as above.

2. The Proof

We start with some auxiliary results. The subsequent lemma is motivated by Lemma 2
in [9].
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Lemma 1 Let Y = (yn)
∞
n=0 be a (0, 1)-sequence in base b. Let m ≥ 0, bm−1 < N ≤ bm,

and denote the collection of the first N points y0, . . . , yN−1 of Y by YN . Moreover, define

Ỹbm as the (0, m, 2)-net with points ỹ0, . . . , ỹbm−1, where

ỹn :=
( n

bm
, yn

)
, 0 ≤ n ≤ bm − 1.

Then for α ∈ [0, 1] we have

(a)

A(YN , [0, α)) = A(Ỹbm, [0, Nb−m) × [0, α)),

(b)
A(YN , [0, α]) = A(Ỹbm , [0, (N − 1)b−m] × [0, α]),

(c)

∆(YN , α) = ∆(Ỹbm, Nb−m, α),

(d)

∆(YN , α) = ∆(Ỹbm , (N − 1)b−m, α) − α.

Proof. The formulas in (a) and (b) are obvious. Concerning (c), note that, due to (a),

∆(YN , α) = A(YN , [0, α)) − Nα

= A(Ỹbm , [0, Nb−m) × [0, α)) − bmNb−mα

= ∆(Ỹbm , Nb−m, α).

The proof of (d) is similar to that of (c), making use of (b). �

Let us now define a function S : [0, 1] → [0, 1] by S(x) := 1−x and denote, for a point
set PN consisting of N points p0, . . . , pN−1 ∈ [0, 1], by S(PN) the point set consisting of

the collection of the S(pn), 0 ≤ n ≤ N − 1.

We also need some further notation. Let Y = (yn)∞n=0 be an arbitrary (0, 1)-sequence

in base b and let m ≥ 0. Let for a point yn ∈ Y , with 0 ≤ n ≤ bm − 1, yn be the
point that is obtained by moving yn into the upper endpoint (r + 1)b−m of the interval

[rb−m, (r+1)b−m), 0 ≤ r < bm, it lies in. Furthermore, denote the collection of the points
y0, . . . , ybm−1 by Y bm . We now have

Lemma 2 For an arbitrary (0, 1)-sequence Y = (yn)
∞
n=0 in base b and m ≥ 0, let S

and Y bm be defined as above. Then the points of S(Y bm) satisfy the properties of the

first bm points of a (0, 1)-sequence, that is, for any l ≥ 0 and any k ∈ {1, . . . , m} with

(l + 1)bk ≤ bm the points S(ylbk), . . . , S(y(l+1)bk−1) form a (0, k, 1)-net.
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Proof. Let Y be a (0, 1)-sequence in base b and let m ≥ 0. We need to show that for any
l ≥ 0 and any k ∈ {1, . . . , m} with (l + 1)bk ≤ bm the points S(ylbk), . . . , S(y(l+1)bk−1)

form a (0, k, 1)-net. This can be seen as follows. Since Y is a (0, 1)-sequence, it follows
that the points ylbk, . . . , y(l+1)bk−1 are a (0, k, 1)-net. Thus, for any nonnegative integer

a < bk, there is exactly one point among ylbk, . . . , y(l+1)bk−1 that lies in the interval
[ab−k, (a+1)b−k). Consequently, there is exactly one point among ylbk , . . . , y(l+1)bk−1 that

lies in (ab−k, (a+1)b−k] for each a ∈ {0, 1, . . . , bk−1}. This, however, implies that there is

exactly one point among S(ylbk), . . . , S(y(l+1)bk−1) in each interval [ab−k, (a + 1)b−k), a ∈
{0, 1, . . . , bk − 1}, which means that the points S(ylbk), . . . , S(y(l+1)bk−1) form a (0, k, 1)-

net. �

The following auxiliary result will be essential in the proof of our main result.

Lemma 3 Denote by Cb,N the first N elements of the van der Corput sequence in base
b. Moreover, let Y be an arbitrary (0, 1)-sequence in base b and denote the collection of

its first N elements by YN . Then we have

A(YN , [0, α]) ≤ A(Cb,N , [0, α])

and

A(YN , [0, α)) ≥ A(S(Cb,N), [0, α))

for any α ∈ [0, 1], where S is defined as above.

Proof. We start with showing the first inequality. Let Y be an arbitrary (0, 1)-sequence
in base b and let m ≥ 0 be such that bm−1 < N ≤ bm. Denote by Ỹbm the (0, m, 2)-net in

base b with points

ỹn :=
( n

bm
, yn

)
, 0 ≤ n ≤ bm − 1,

where yn is the n-th point of Y . By (2) and by Lemma 1,

A(YN , [0, α]) = A(Ỹbm , [0, (N − 1)b−m] × [0, α]),

A(Cb,N , [0, α]) = A(Hm,b, [0, (N − 1)b−m] × [0, α]).

Due to (1),

A(Ỹbm , [0, γ] × [0, δ]) ≤ A(Hm,b, [0, γ] × [0, δ])

for any choice of γ, δ ∈ [0, 1]. The first inequality follows.

We show the second inequality by making use of the first inequality. For an arbitrary
(0, 1)-sequence Y in base b and bm−1 < N ≤ bm, define Y bm as above. By Lemma 2,

S(Y bm) is such that these points satisfy the properties of the first bm points of a (0, 1)-
sequence. Note that by the construction outlined in the proof of Lemma 2 the collection

of the points S(y0), . . . , S(yN−1), let us denote it by S(Y N), satisfies the analog properties
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of the first N points of a (0, 1)-sequence. For given α ∈ [0, 1] it thus follows by the first
inequality that

A(Y N , [α, 1]) = A(S(Y N), [0, 1 − α]) ≤ A(Cb,N , [0, 1 − α]) = A(S(Cb,N), [α, 1]).

By the fact that
A(Y N , [0, 1]) = N = A(S(Cb,N), [0, 1]),

we obtain
A(Y N , [0, α)) ≥ A(S(Cb,N), [0, α)).

Since
A(YN , [0, α)) ≥ A(Y N , [0, α)),

the assertion is shown. �

We now deduce

Proposition 1 Let Y be an arbitrary (0, 1)-sequence in base b. Further, let YN , Cb,N ,
and S be defined as above. Then we have

ND∗(YN) ≤ max{ND∗(Cb,N), ND∗(S(Cb,N))}.

Proof. To begin with, note that the first inequality in Lemma 3 also yields

A(YN , [0, α)) ≤ A(Cb,N , [0, α))

for any α ∈ [0, 1]. From this inequality together with the second inequality in Lemma 3

we obtain
A(S(Cb,N), [0, α)) ≤ A(YN , [0, α)) ≤ A(Cb,N , [0, α)),

which gives
∆(S(Cb,N), α) ≤ ∆(YN , α) ≤ ∆(Cb,N , α)

for any α ∈ [0, 1].

Consequently,

sup
0≤α≤1

|∆(YN , α)| ≤ sup
0≤α≤1

max {|∆(Cb,N , α)| , |∆(S(Cb,N), α)|} .

Interchanging supremum and maximum in the right hand side of the latter inequality

(which causes no problems since ∆ is piecewise linear in α) yields the result. �

We can now give the proof of our theorem.
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Proof. For the first inequality, it is by Proposition 1 sufficient to show that

ND∗(S(Cb,N)) ≤ ND∗(Cb,N).

Let α ∈ [0, 1] be given. Observe that

∆(S(Cb,N), α) = A(S(Cb,N), [0, α)) − Nα

= A(Cb,N , (1 − α, 1]) − Nα

= A(Cb,N , [0, 1]) − A(Cb,N , [0, 1 − α]) − Nα

= −A(Cb,N , [0, 1 − α]) + N − Nα

= −∆(Cb,N , 1 − α).

Similarly it can be shown that ∆(S(Cb,N), α) = −∆(Cb,N , 1 − α). From this it even

follows that
ND∗(S(Cb,N)) = ND∗(Cb,N)

and the first inequality is shown.

The second inequality is shown as follows. Since it is true that the star discrepancy

of Cb,N equals the extreme discrepancy of Cb,N (see [4, Corollary to Théorème 1 (p. 147)
and Section 5.5.1 (p. 178)]), we can use results by Faure who showed that

D∗(Cb,N) ≤ ab

log b
log N + max

{
2, 1 +

1

b
+ ab

}
(cf. [4, Théorème 2]), where

ab =

{
b2

4(b+1)
, if b is even,

b−1
4

, if b is odd

(cf. [4, Section 5.5]). The result follows. �
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