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Affine invariant functions are constructed in spatial domain. Unlike the previous affine repre-
sentation functions in transform domain, these functions are constructed directly on the object
contour without any transformation. To eliminate the effect of the choice of points on the contour,
an affine invariant function using seven points on the contour is constructed. For objects with
several separable components, a closed curve is derived to construct the affine invariant functions.
Several experiments have been conducted to evaluate the performance of the proposed method.
Experimental results show that the constructed affine invariant functions can be used for object
classification.

1. Introduction

Recognizing objects that are subjected to certain viewing transformation is important in the
field of computer vision [1]. Affine transformation may be used as an approximation to
viewpoint-related changes of objects [2–4]. Typical geometric transformation such as rotation,
translation, scaling, and skewing are included in the affine transformation.

The extraction of affine invariant features plays a very important role in object
recognition and has been found application in many fields such as shape recognition and
retrieval [5, 6], watermarking [7], identification of aircrafts [1, 8], texture classification [9],
image registration [10], and contour matching [11].

Many algorithms have been developed for affine invariant features extraction. Based
on whether the features are extracted from the contour only or from the whole-shape region,
the approaches can be classified into twomain categories: region-basedmethods and contour-
based methods [12]. For good overviews of the various techniques refer to [12–15].
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Contour-based methods provide better data reduction, and the contour usually offers more
shape information than interior content [12]. A number of contour-based methods have
been introduced in recent years. Affine invariant function (AIF) in these papers is usually
constructed in transform domain (see [1, 8, 16–20], etc.).

Due to the spatial and frequency localization property of wavelets, many wavelet-
based algorithms have been developed for the extraction of affine invariant features. It is
reported that these wavelet-based methods outperform Fourier descriptors [1, 8, 19]. In these
methods, the object boundary is firstly analyzed by wavelet transform at different scales.
The obtained approximation and detail signals are then used for the construction of AIF. The
choice of the signals, the number of decomposition levels, and the wavelet functions used
have all resulted in a number of different approaches. Many promising results have been
reported; Alferez and Wang [21] proposed geometric and illumination invariants for object
recognition depending on the details coefficients of dyadic wavelet decomposition. Tieng
and Boles [19] have developed an approximation-detail AIF using one dyadic level only.
Another AIF, the detail-detail representation function, was derived by Khalil and Bayoumi
using a dyadic wavelet transform [1, 8]. The invariant function is computed by utilizing two,
three, or four dyadic scale levels. Recently, AIF from the approximation coefficients has been
developed by applying two different wavelet transforms with different wavelet basis [18].
The synthesized AIF is proposed by Lin and Fang [17] with the synthesized feature signals
of the shape.

However, in all these methods, AIFs are constructed in transform domain. That is to
say, the shape contour is firstly transformed by a linear operator (e.g., wavelet transform,
Fourier transform, etc.). Then AIFs are constructed from the transformed contour. In this
paper, we construct AIF directly by the shape contour without any transformation. Equidis-
tant Points on the object contour are used to construct AIFs. To eliminate the effect of the
choice of points on the contour, an AIF using seven points on the contour is constructed. In
addition, the shape contour is not available [12] in many cases. For example, the image of
Chinese character “Yang” as shown in Figure 3 consists of several components. AIFs can not
be constructed from these objects. To address this problem, we derive a closed curve, which is
called general contour (GC), from the object. GC is obtained by performing projections along
lines with different polar angles. The GC derived from the affine transformed object is the
same affine transformed version as that of the original object. AIFs can be constructed in
spatial domain from the derived GC. Several experiments have been conducted to evaluate
the performance of the proposed method. Experimental results show that the constructed
affine invariant functions can be used for object classification.

The rest of the paper is organized as follows: in Section 2, some basic concepts about
affine transform are introduced. AIFs are constructed in Section 3. The performance of the
proposed method is evaluated experimentally in Section 4. Finally, some conclusion remarks
are provided in Section 5.

2. Preliminaries

2.1. Affine Transformation

Consider a parametric point x(t) = [x(t), y(t)]T with parameter t on the object contour. The
affine transformation consists of a linear transformation and translation as follows:

x̃(t) = a11x(t) + a12y(t) + b1,

ỹ(t) = a21x(t) + a22y(t) + b2.
(2.1)
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The above equations can be written with the following form:

x̃(t) =

[

a11 a12

a21 a22

][

x(t)

y(t)

]

+

[

b1

b2

]

= Ax(t) + b, (2.2)

where the nonsingular matrix A represents the scaling, rotation, skewing transformations,
and the vector b corresponds to the translation.

If I is an affine invariant function and ˜I is the same invariant function calculated using
the points under the affine transformations, then the relation between them can be formulated
as

˜I = IJw, (2.3)

where J = det(A) is the determination of the matrixA. The exponentw of the power is called
the weight of the invariance. If w = 0, the function I is called as absolute invariant. If w/= 0,
the function I is called a relative invariant.

2.2. Affine Invariant Parameters

To establish one-to-one relation between two contour, the object contour should be parame-
terized. The arc length parameter transforms linearly under any liner transformation up to
the similarity transform including translation, rotation, and scaling. But, it is not a suitable
parameter for the constructing affine invariant function.

There are two parameters which are liner under an affine transformation: the affine arc
length [22] and the enclosed area [16]. The affine arc length τ is defined as follows:

τ =
∫

3
√

ẋ(t)ÿ(t) − ẍ(t)ẏ(t)dt, (2.4)

where ẋ(t), ẏ(t), and ẍ(t), ÿ(t) are the first and the second derivatives of x(t), y(t) with
respect to the arc length parameter t. Arbter et al. [16] defined the enclosed area parameter σ
as follows:

σ =
1
2

∫

∣

∣x(t)ẏ(t) − y(t)ẋ(t)
∣

∣dt. (2.5)

These two parameters can be made completely invariant by simply normalizing them with
respect to either the total affine arc length or the enclosed area of the contour. In the discrete
case, the derivatives of x and y can be calculated using finite difference equations. To establish
one-to-one relation between two parameter, the contour should be normalized and resampled
as in [19]. In the experiments of this paper, we use the enclosed area as the parameter.
In the discrete case, the parameterization should be normalized and resampled. The curve
normalization approach used in this paper mainly composes of the following steps [23].

(i) For the discrete object contour {(x(tk), y(tk)) : k = 0, 1, 2, . . . ,N − 1}, compute the
total area of the object contour by the following formula

EAN =
1
2

N−1
∑

k=0

∣

∣(x(tk) − x0)
(

y(tk+1) − y0
) − (x(tk+1) − x0)

(

y(tk) − y0
)∣

∣, (2.6)
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where O(x0, y0) denotes the centroid of the object. Let the number of points on the
contour after the parameterization beN too. Denote that Spart = EAN/N.

(ii) Select the starting point on object contour as the starting point P0(x′(σ0),y′
0(σ0))

of the normalized curve. From P0(x′(σ0), y′(σ0)) on object contour, search a point
P1(x′(σ1), y′(σ1)) along the contour, such that the area of each closed zone; namely,
the polygon P0OP1 equals to Spart.

(iii) Using the same method, from point P1(x′(σ1), y′(σ1)), calculate all the points
Pi(x′(σi), y′(σi)), i ∈ {1, 2, . . . ,N − 1} along the object contour. Pi(x′(σi), y′(σi)),
i ∈ {1, 2, . . . ,N − 1} along object contour.

In the experiments of this paper, the object contour or GC is normalized and resampled such
that N = 256.

3. Affine Invariant Object Representation

In this part, we will derive invariant function from the normalized object contours. Correla-
tion coefficient is used to measure the similarity of two AIFs. To construct AIFs from objects
with several separable components, we convert the object into a closed curve by performing
projections along lines with different polar angles.

3.1. AIFs Construct in Spatial Domain

Let [x(σ), y(σ)], and [x̃(σ̃), ỹ(σ̃)] be the parametric equations of two contours that differ only
by an affine transformation. For simplicity, in this subsection, we assume that the starting
points on both contours are identical. After normalizing and resampling, there is a one-to-
one relation between σ and σ̃. We use the object centroid as the origin, then translation factor
b is eliminated. Equation (2.2) can be written in matrix form as x̃(t) = Ax(t).

Let γ be an arbitrary positive constant, then [x(σ + γ), y(σ + γ)] is a shift version of
[x(σ), y(σ)]. We define the following function:

S
(

γ, σ
)

= x(σ)y
(

σ + γ
) − y(σ)x

(

σ + γ
)

=

∣

∣

∣

∣

∣

x(σ) x
(

σ + γ
)

y(σ) y
(

σ + γ
)

∣

∣

∣

∣

∣

,
(3.1)

where | · | denotes determination of a matrix. As a result of normalizing and resampling,
[x(σ), y(σ)], [x̃(σ̃), ỹ(σ̃)], and [x(σ + γ), y(σ + γ)], [x̃(σ̃ + γ), ỹ(σ̃ + γ)] satisfy the following
equation:

(

x̃(σ̃)

ỹ(σ̃)

)

= A

(

x(σ)

y(σ)

)

,

(

x̃
(

σ̃ + γ
)

ỹ
(

σ̃ + γ
)

)

= A

(

x
(

σ + γ
)

y
(

σ + γ
)

)

. (3.2)

It follows that

˜S
(

γ, σ̃
)

=

∣

∣

∣

∣

∣

x̃(σ̃) x̃
(

σ̃ + γ
)

ỹ(σ̃) ỹ
(

σ̃ + γ
)

∣

∣

∣

∣

∣

= JS
(

γ, σ
)

. (3.3)
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Figure 1: (a) A plane object. (b) The boundary of plane in (a). (c) The invariant function for the boundary
in (b).

In other words, S given in (3.1) is a relative invariance function. To eliminate the factor J =
det(A) in (3.3), S(γ, σ) needs to be normalized. We normalize S as follows:

Iγ =
S
(

γ, σ
)

EAN
, (3.4)

where EAN denotes enclosed area of the object contour as defined in (2.6). It follows from
(3.3) that Iγ given in (3.4) is an AIF. In [1, 8, 16–20], the shape contour is firstly transformed
by a linear operator (such as wavelet transform, Fourier transform, etc.). Then AIFs are
constructed from the transformed contour. In our method, the AIF given in (3.4) is directly
constructed from the shape contour without any transformation.

Figure 1(a) shows a plane object, and Figure 1(b) shows its boundary. Figure 1(c)
shows the AIF defined in (3.3) associated with Figure 1(b). Figure 2(a) shows an affine
transformation version of plane in Figure 1(a), and Figure 2(b) shows its boundary.
Figure 2(c) shows the AIF derived from Figure 2(b). In Figures 1(c) and 2(c), γ is set to 32.
Note that after affine transformation, the starting points of AIFs are different. We observe that
Figure 2(c) is nearly a translated version of Figure 1(c).

Experimental results show that the choice of γ may affect the accuracy of the object
classification based on Iγ . Some choice of γ may result in lower accuracy while other choice
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Figure 2: (a)An affine transformation version of Figure 1(a). (b) The boundary of plane in (a). (c) The AIF
for the boundary in (b).

of γ may result in higher accuracy. To eliminate the effect of the choice of γ , we construct AIFs
that involve more points on the object contour. In experiments of this paper, we use seven
equidistant partition points of the object contour: γ1 = N/8, γ2 = 2N/8, . . . , γ7 = 7N/8 to
construct AIF as follows:

Hγ1,γ2,...,γ7 = Iγ1Iγ2Iγ3Iγ4Iγ5Iγ6 + Iγ1Iγ2Iγ3Iγ4Iγ5Iγ7

+ Iγ1Iγ2Iγ3Iγ4Iγ7Iγ6 + Iγ1Iγ2Iγ3Iγ7Iγ5Iγ6

+ Iγ1Iγ2Iγ7Iγ4Iγ5Iγ6 + Iγ1Iγ7Iγ3Iγ4Iγ5Iγ6

+ Iγ7Iγ2Iγ3Iγ4Iγ5Iγ6 .

(3.5)

Indeed, it can be shown that, for arbitrary constants: γ1, γ2, . . . , γn, homogeneous polynomials
in terms of Iγ1 , Iγ2 , . . . , Iγn are also AIFs.
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3.2. Measurement of the Similarity between Two AIFs

We have seen from Figures 1(c) and 2(c) that affine transformation may result in a translated
version of AIF. To eliminate the effect of starting point, one-dimensional Fourier transform
can be applied to the obtained AIF. The invariance can be achieved by ignoring the phase in
the coefficients and only keeping the magnitudes of the coefficients. This way has a lower
computational complexity since that FFT is faster than shift matching [24].

In this paper, we construct AIFs in spatial domain. Therefore, to eliminate the effect of
starting point, we use correlation coefficient as in [18] to measure the similarity between two
AIFs. For two sequences Ik and I ′k, the normalized cross-correlation is defined as follows:

RI,I ′(l) =
∑

l

∑

k IkI
′
k−l

√

∑

I2
k

∑

I ′2k

. (3.6)

One of sequences, Ik or I ′k is rendered periodically, then the maximum value of correlation is
selected. Such an arrangement reduces the effect of the boundary starting point variation [18].
Consequently, translation invariant is achieved. Based on [25–27], some other approaches can
be derived to eliminate the effect of starting point.

3.3. AIFs for Objects with Several Separable Components

AIFs given in (3.4) and (3.5) can be used to object contour. But, in real-life, many objects
consist of several separable components (such as Chinese character “Yang” in Figure 3(a)).
Object contours are not available for these objects. Consequently, AIFs given in Section 3.1
cannot be used to these objects. To address this problem, we convert the object into a closed
curve by performing projection along lines with different polar angles (which is called central
projection transformation in [28]). The obtained closed curve is called general contour (GC) in
[29]. It can be proved that the GC extracted from the affine transformed object is also an affine
transformed version of GC extracted from the original object. Consequently, AIFs given in
Section 3.1 can be constructed based on the GC of the object. For example, Figure 3(b) shows
the GC of Figure 3(a). Figure 3(c) shows the AIF derived from GC of Figure 3(a).

4. Experiment

In this section, we evaluate the discriminate ability of the proposed method. In the first ex-
periment, we examine the proposed method by using some airplane images. Object contours
can be derived from these images. In the second experiment, we evaluate the discriminate
ability of the proposed method by using some Chinese characters. These characters have
several separable components, and contours are not available for these objects.

In the following experiments, the classification accuracy is defined as

η =
δ

λ
× 100%, (4.1)

where δ denotes the number of correctly classified images, and λ denotes the total number of
images applied in the test. Affine transformations are generated by the following matrix [1]:

A = k

(

cos θ − sin θ

sin θ cos θ

)

⎛

⎝

a b

0
1
a

⎞

⎠, (4.2)
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Figure 3: (a) The Chinese character “Yang”. (b) GC of Chinese in (a). (c) The AIF for GC in (b).

where k, θ denote the scaling, rotation transformation, respectively, and a, b denote the
skewing transformation. To each object, the affine transformations are generated by setting
the parameters in (4.2) as follows: k ∈ {0.8, 1.2}, θ ∈ {30, 90◦, 150◦, 210◦, 270◦, 330◦}, b ∈
{−3/2,−1,−1/2, 0, 1/2, 1, 3/2} and, a ∈ {1, 2}. Therefore, each image is transformed 168 times.

4.1. Air Plane Image Classification

The first experiment is conducted to classify the airplane images. Seven airplane images
shown in Figure 4 are used as models in this experiment. Some of these models represent
different objects but with similar contours, such as model 6 and model 7. They can be easily
misclassified due to their similarity. We test the effect of the choice of the constant γ . The
contour is normalized and resampled such that N = 256. We set γ1 = 32, γ2 = 64, . . . , γ7 = 224.
To each airplane image, the affine transformations are generated by setting the parameters
in (4.2) as aforementioned. Therefore, each image is transformed 168 times. That is to say,
the test is repeated 1176 times. Table 1 shows the classification accuracy of different constants
and that AIF is given in (3.5). It can be observed that different accuracies may be achieved
with different γ . For example, the accuracy rates are very low for γ4 = 128 and γ7 = 224. To
eliminate the effect of the choice γ , AIFs involved more points that can be used for object
classification. In the rest of this paper, we use AIF given in (3.5) to extract affine invariant
features.



Mathematical Problems in Engineering 9

1 2 3

4 5 6

7

Figure 4: The airplane models.

Table 1: Classification accuracies for different γ under different affine transformations.

γ 32 64 96 128
Accuracy rates 90.05% 96.51% 93.03% 87.59%
γ 160 192 224 AIF in (3.5)
Accuracy rates 93.03% 96.51% 88.61% 92.52%

4.2. The Classification of Objects with Several Separable Components

In this experiments, we extract affine invariant features from objects with several separable
components. 10 Chinese characters shown in Figure 4 are used as the database. These
characters are with regular script font. The size of these characters is 128 × 128. Each of
these characters consists of several separable components. Some characters have the same
structures, but the number of strokes or the shape of specific stokes may be a little different.
As aforementioned, each character image is transformed 168 times. That is to say, the
test is repeated 1680 times. Experiments on Chinese characters in Figure 5 and their affine
transformations show that 96.25% accurate classification can be achieved by using AIF given
in (3.5).
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Figure 5: Test characters used in the second experiment.

5. Conclusions

In this paper, we construct AIFs in spatial domain. Unlike the previous affine representation
functions in transform domain, these AIFs are constructed directly on the object contour
without any transformation. This technique is based upon object contours, parameterized by
an affine invariant parameter, and shifting of the contour. To eliminate the effect of the choice
of points on the contour, an AIF using seven points on the contour is constructed. For objects
with several separable components, a closed curve is derived to construct the AIFs. Several
experiments have been conducted to evaluate the performance of the proposed method.
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