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Even though several promising approaches have been proposed in the literature, generic category-
level object detection is still challenging due to high intraclass variability and ambiguity in the
appearance among different object instances. From the view of constructing object models, the
balance between flexibility and discrimination must be taken into consideration. Motivated by
these demands, we propose a novel contextual hierarchical part-driven conditional random field
(CRF) model, which is based on not only individual object part appearance but also model
contextual interactions of the parts simultaneously. By using a latent two-layer hierarchical
formulation of labels and a weighted neighborhood structure, the model can effectively encode the
dependencies among object parts. Meanwhile, beta-stable local features are introduced as observed
data to ensure the discriminative and robustness of part description. The object category detection
problem can be solved in a probabilistic framework using a supervised learning method based on
maximum a posteriori (MAP) estimation. The benefits of the proposed model are demonstrated
on the standard dataset and satellite images.

1. Introduction

Object category detection is one of the most important problems in computer vision and is
still full of challenges because of various factors such as object deformation, occlusion, and
viewpoint change. To address these challenges, successful object detection methods need to
strike the balance between being flexible enough to model intraclass variability and being
discriminative enough to find objects with ambiguity appearance in complicate scenes [1–3].

Part-based object model, firstly proposed by Fischler and Elschlager [4] in 1973,
has been proved as a powerful paradigm for object category detection and recognition in
numerous researches [5–10], due to its advantages of intuitive interpretation and semantic
expression. In such models, each part is generally represented by small templates or local



2 Mathematical Problems in Engineering

image feature information, and the whole object is modeled as a collection of parts with or
without geometric and cooccurrence constraints. The final discriminate of object is achieved
by solving the probability density function or using a Hough vote mechanism. In the early
researches on part-based approaches, parts are learned purely on the basis of their appearance
by clustering visually similar image patches in the training images and do not exploit any
spatial layout of the parts. Obviously, since the part appearance only reflects local image
characteristics, these models cannot get enough spatial information support. The neglected
contextual interactions that are used to capture geometric relationships between parts of an
object should play a more crucial role in the part-basedmodel to enhance the representational
power of model.

On the other hand, most current part-based approaches can be roughly divided
into two separate groups: generative and discriminative. Generative part-based models [5–
9] have shown high flexibility because of their advantage of handling missing data (i.e.,
the correspondence between local features and parts) in a principled manner. So, each
part can be interpreted in a semantically meaningful way. The most popular generative
approach for part-based object detection was proposed by Fergus et al. [7] in 2003, in which
objects are modeled as flexible constellations of parts and the appearance, spatial relations,
and cooccurrence of local parts are learned in an unsupervised manner. Felzenszwalb and
Huttenlocher [8] proposed a pictorial structure model, in which deformable configuration
is represented by spring-like connections between pairs of parts. By integrating spatial
relationships with “bag of features,” Sudderth et al. [9] developed a hierarchical probabilistic
model to capture the complex structure in multiple object scenes. However, generative
approaches often cannot compete with discriminative manner in the field of object category
detection. The generative framework has natural drawback that it has to assume the
independence of the observed data to make the model computationally. In contrast to the
discriminative model, the generative model may be quite complex even though the class
posterior is simple. Moreover, learning the class density models may become even harder
when the training data is limited [10].

In this paper, we focus on the discriminative random field model, called conditional
random field (CRF), which is originally proposed by Lafferty et al. [11] in 2001. Kumar and
Herbert [12, 13] first introduced the extension of 1D CRFs to 2D graphs over image and
applied it to object detection. By treating object detection problem as a labeling problem, CRF
model cannot only flexibly utilize various heuristic image features, but also get the contextual
interactions among image parts through its classic graphical structure. In order to deal with
multiple labels for object parts, Kumar and Hebert presented a multiclass extension of CRF
[14], and utilized fully labeled data where each object part is assigned a part label to train the
model. By contrast, Quattoni et al. presented an expansion graph structure of CRF framework
[15] that uses hidden variables, which are not observed during training, to represent the
assignment of parts. Moreover, located CRF model [16], proposed by Kapoor and Winn,
introduces global positions to the hidden variables and can model the long-range spatial
configuration and local interactions simultaneously.

The goal of this paper is to introduce a novel contextual hierarchical part-driven CRF
model for object category detection. The main novelty of our approaches lies in the use of
a latent two-layer hierarchical formulation of labels and a weighted minimum spanning
tree neighborhood structure. The model can effectively encode latent label-level context, as
well as observation-level context. Meanwhile, beta-stable local features are also introduced as
observed data to ensure the discriminative and robustness of part description. Such features
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provide a sparse and repeatable manner to express object parts and actually reduce the
computation complexity of the model.

The remainder of this paper is organized as follows. Section 2 gives detailed
introduction on the proposed contextual hierarchical part-driven CRF Model. The parameter
learning and inference algorithms are introduced in Section 3. Experimental results are
presented in Section 4. Finally, in Section 5 we draw the conclusions.

2. Contextual Hierarchical Part-Driven CRF Model

The conditional random field is simply a Markov random field (MRF) [17] globally
conditioned on the observation. It is a discriminative model that relaxes conditional
independence assumption by directly estimating the conditional probability of labels [18, 19].

In other words, let y be the observed data from an input image, where y = {yi}, i ∈ S,
yi is the data from the ith site, and S is the set of sites. The corresponding labels at image sites
are given by x = {xi}, i ∈ S. For labeling problems, the general form of a CRF can be written
as

P
(
x | y, θ) =

1
Z(θ)

exp
{
Φ
(
x, y, θ

)}

=
1

Z(θ)

∏

i∈S
ϕi

(
xi, y, θ

) ∏

(i,j)∈E
ϕij

(
xi, xj , y, θ

)
,

(2.1)

where partition function Z(θ) is a constant normalization with respect to all possible values
of x with parameters θ, E denotes the set of edges, and ϕi and ϕij are the unary and pairwise
potentials, respectively. Here, ϕi encodes compatibility of the label xi with the observed image
y and ϕij encodes the pairwise label compatibility for all (i, j) ∈ E that j ∈ Ni conditioned on
y.

2.1. Problem Formulation

For our object category detection problem, assume that we are given a training set of N
images Y = (y1, . . . , yN), which contains objects from a particular class and background
images. The corresponding labels can be denoted as X = (x1, . . . , xN), each xn is a member
of a set of possible image labels. Since in object detection we only focus on presence or
absence of objects, the possible labels should be limited to binary data, that is, xn ∈ {0, 1}
or xn ∈ {background, object}. Now, our task is to learn a mapping from images Y to labelsX.
For simplicity of notation, we drop the superscript n indicating training instance.

According to the theory of part-based model, assume that each image y can be seen as
a collection of parts y = (y1, . . . , ym), each part yi corresponds to a local observation or local
feature. In order to describe the relationship between these parts, similar to hidden random
field approach [15], we introduce latent labels h = (h1, . . . , hm), hi ∈ H, where hi corresponds
to the “part-label” of part yi, and H corresponds to the actually object parts, for example,
H = {nose, tail, . . . ,wing} for airplane objects.
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Figure 1: The hierarchical graphical structure of proposed contextual hierarchical part-driven CRF model.

Now, we can model the posterior directly by marginalizing out the latent labels h, and
the model can be defined as

P
(
x | y, θ) =

∑

h

P
(
x, h | y, θ) =

∑

h

P(x | h, κ)
︸ ︷︷ ︸

Layer 2

P
(
h | y, λ)

︸ ︷︷ ︸
Layer 1

,
(2.2)

where θ = {κ, λ} is the set of parameters.
Here, we assume that P(x | h, θ) is conditional independence of y given h. This means

that the final object label only relies on the latent middle-level labels rather than on the
original observations. The hypothesis makes sense because it is theoretically possible that
we estimate the object or background occurrence by the spatial distribution of meaningful
object parts in real world. Also, by doing this, we can build distinct two-layer structure of
our proposed model. The hierarchical graphical structure of our contextual hierarchical part-
driven CRF model is shown as Figure 1.

Obviously, both P(x | h, κ) and P(h | y, λ) can be modeled as CRFs. Thus, the whole
model can be seen as the combination of two single-layer CRFs. By modeling the contextual
interactions of these two layers, respectively, our model may have a high level of ability to
describe different levels of context. Note that the latent label h cannot be observed during
training (i.e., unlabelled), so we must learn the models in a unified framework to avoid the
direct use of h. Detailed modeling approach and potential definitions for the two layers will
be described below.
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2.2. Model of Layer 1

Without considering the object label x, the distribution over the latent part labels h given
the observations y may be modeled as a multiclass CRF. In such a model, observations
are linked to local features located at certain spatial positions of the image. Therefore, the
distribution of y may be arbitrary and disorganized due to the uncertainty of local feature
extraction. Meanwhile, different observations may be associated with the same part label,
which corresponded to the meaningful object component. Due to the fact that adjacent or
relevant observations are more likely to have the same label, we should consider label-level
context in our model in addition to observation-level context.

Furthermore, although we cannot use the part labels explicitly, we can theoretically
use them to define the posterior to capture the context structure of layer 1. Considering only
unary and pairwise potentials, the posterior distribution P(h | y, λ) can be modeled as

P
(
h | y, λ) =

1
Z(λ)

∏

i∈S
ϕ
(1)
i

(
hi, y, μ

) ∏

(i,j)∈E
ϕ
(1)
ij

(
hi, hj , y, ν

)
, (2.3)

where the set of parameters is given by λ = {μ, ν}, as shown in Figures 2(a) and 2(b),
ϕ
(1)
i (hi, y, μ) denote the unary potentials and are responsible for modeling part occurrences

based on a single image feature, ϕ(1)
ij (hi, hj , y, ν) denote the pairwise potentials and are

responsible for modeling the cooccurrences of hi and hj based on the corresponding pairwise
image feature. The connectivity of nodes (i, j), that is, neighborhood structure of the
observations, is defined in Section 2.4.

Note that, different from multiclass CRF [14], the definitions of potentials here must
consider themissing label data h. By using the parameter vector, the potentials can be denoted
as

ϕ
(1)
i

(
hi, y, μ

)
= exp

[
μ(hi)

Tfi
(
y
)]
, (2.4)

ϕ
(1)
ij

(
hi, hj , y, ν

)
= exp

[
ν
(
hi, hj

)T
gij

(
y
)]
, (2.5)

where fi(y) and gij(y) refer to the unary feature vector and the pairwise feature vector,
respectively. Parameter vectors of μ(hi) ∈ �d and ν(hi, hj) ∈ �B have the same dimensions
with the corresponding feature vectors.

In comparison with hidden CRF [15], our approach introduces the pairwise potentials
ϕ
(1)
ij to the model and can effectively capture the part label-level context by measuring the

compatibility of different part labels.

2.3. Model of Layer 2

According to the conditional independence assumption mentioned in Section 2.1, the final
image label x only depends on part labels h. In other words, the occurrence of an object can
be estimated by the spatial distribution of object parts.
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Figure 2: (a) Part evidence from single observation, (b) cooccurrence of connected parts, (c) compatibility
between image label and single part label, and (d) compatibility between image label and connected part
labels.

Particularly, part labels h should be regarded as observations in this layer, and the
posterior distribution P(x | h, κ) can be easily defined as

P(x | h, κ) = 1
Z(κ)

∏

i∈S
ϕ
(2)
i (hi, x, α)

∏

(i,j)∈E
ϕ
(2)
ij

(
hi, hj , x, γ

)
, (2.6)

where κ = {α, γ} is the set of parameters, unary potentials ϕ
(2)
i (hi, x, α) describe the

compatibility between image label x and part label hi, pairwise potentials ϕ
(2)
ij (hi, hj , x, γ)

describe the compatibility between image label x, part label hi, and part label hj , as in Figures
2(c) and 2(d).

Note that there is only one image label for an instance, so we do not need to model
label-level context like in layer 1, and the potentials can be defined as

ϕ
(2)
i (hi, x, α) = exp[α(hi, x)], (2.7)

ϕ
(2)
ij

(
hi, hj , x, γ

)
= exp

[
γ
(
hi, hj , x

)]
, (2.8)

where parameter vectors α(hi, x) ∈ � and γ(hi, hj , x) ∈ �.
Now, we can give the complete expression of our part-driven CRF model with the

specific potentials, which can be denoted as
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(2.9)

where the set of parameters is given by θ = {μ, α, ν, γ}.
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2.4. Neighborhood Structure

For probabilistic graphical models, the neighborhood structure is an important factor
affecting the model capability. Moreover, as mentioned above, the observations y in our
model are distributed over the image plane in an arbitrary layout. So, how to define the
neighborhood structure becomes a question we have to consider during the model design
phase.

In [15], Quattoni et al. evaluated a range of different neighborhood structure and come
to the conclusion that the minimum spanning tree (MST) shows better performances than
many other complex connected graph structures. Following this, we adopt MST as the basic
structure and extend it to a novel weighted neighborhood structure (WNS). The basic idea
is to exploit the edge cost, which is discarded in previous work, as heuristic information to
reflect the degree of correlation between two nodes.

In other words, different edges should have different weights during calculating
pairwise potentials. We denote the edge cost between node i and node j as ωij and modify
(2.5) to

ϕ
(1)
ij

(
hi, hj , y, ν

)
= exp

[
ωij · ν

(
hi, hj

)T
gij

(
y
)]
. (2.10)

Similarly, (2.8) is changed by

ϕ
(2)
ij

(
hi, hj , x, γ

)
= exp

[
ωij · γ

(
hi, hj , x

)]
. (2.11)

By doing this, the weighted neighborhood structure can not only describe the
connectivity of nodes, but also encode the assumption that parts that are spatially close are
more likely to be dependent.

3. Parameter Learning and Inference

Given N-labeled training images, the parameters θ = {μ, α, ν, γ} can be learnt by using
maximum A posteriori (MAP) estimation. Gaussian prior p(θ) ∼ exp(‖θ‖2/2σ2) is
introduced to prevent overfitting. So, parameter learning can be achieved by maximizing
the following objective function:

L(θ) =
N∑

n=1

logP
(
xn′ | yn, θ

)
− 1
2σ2 ‖θ‖2. (3.1)

We use gradient ascent to search for the optimal parameter values θ∗ = argmaxθ L(θ).
In our model, the derivatives of the log-likelihood L(θ)with respect to the model parameters
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θ = {μ, α, ν, γ} can be written in terms of local feature vectors, marginal distributions over
individual part label hi, and marginal distributions over pairwise labels hi and hj :

δL(θ)
δμ(h′)

=
∑

i∈s
fi
(
y
) · [p(hi = h′ | x, y, θ) − p

(
hi = h′ | y, θ)],

δL(θ)
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=
∑

i∈s
p
(
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(
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δL(θ)
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=
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(i,j)∈E
ωij · gij

(
y
) · [

p
(
hi = h′, hj = h′′ | x, y, θ) − p

(
hi = h′, hj = h′′ | y, θ)],

δL(θ)
δγ(h′, h′′, x′)

=
∑

(i,j)∈E
ωij ·

[
p
(
hi = h′, hj = h′′ | x, y, θ) − p

(
hi = h′, hj = h′′, x′ | y, θ)].

(3.2)

Note that, all the terms in the derivatives can be calculated using Belief Propagation
(BP) algorithm [17], provided the graphical structure does not contain cycles. Otherwise,
approximate methods, such as loopy BP could be considered. Here, BP is suitable for our
case due to the tree-like neighborhood structure.

For the final class inference, we need to find the image label x̂ that maximizes the
conditional distribution (x | y, θ), given parameters θ∗. For this work, we can also use the
max-product version of BP to find the MAP estimate x̂ = argmaxxP(x | y, θ∗).

4. Experiments

In this section, we demonstrate the capability of the proposed model on two different
datasets: Caltech-4 standard dataset and airplane images collected from Google Earth. The
aim of these experiments is to illustrate the performance of this detection framework using
contextual hierarchical part-driven CRF model and compare with state-of-the-art models.

4.1. Image Features

For the object category detection task, the robustness and distinctiveness are basic
requirements for local features in order to provide powerful expression ability for objects. On
the other hand, the quantity of features corresponds to the quantity of observations and has
an enormous influence on computational complexity. Taking these aspects into consideration,
we should try to use the local features which have the characteristics of sparse, robust, and
discriminative simultaneously.

In our experiments, we use the beta-stable feature extracting method [20] to locate
local features and SIFT descriptor [21] to construct feature vectors. Rather than selecting
features that persist over a wide interval of scales, beta-stable features are chosen at a scale so
that the number of convex and concave regions of the image brightness function remains
constant within a scale interval of length beta. As a result, the beta-stable features have
stronger robustness than SIFT-like features and are better anchored to visually significant
parts. The comparative feature-points detecting results are shown in Figures 3(a) and 3(b).
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(a) (b) (c)

Figure 3: (a) SIFT feature detecting, (b) beta-stable feature detecting, (c) beta-stable features connected by
MST.

The unary feature vector, fi(y), used in this work is represented by the combination of
SIFT descriptor and relative location features. The pairwise feature vector, gij(y), is just the
joint of unary feature vector fi(y) and fj(y).

Given the locations of local observations, we construct graphical models using MST,
as shown in Figure 3(c). The edge cost used in MST construction between two observations
was computed by

cos tij = ε1 × 2D distance
(
i, j

)
+ ε2 ×Distance of color histograms

(
i, j

)
, (4.1)

where ε1 and ε2 are balance factors depending on the actual object, and ε1+ε2 = 1. If the object
has richer shape information than appearance information, we think that the 2D distance
might be more useful for discrimination, so we will take a bigger ε1 than ε2.

4.2. Object Detection on Standard Database

The first dataset that we used to test our model is a subset of the Caltech-4 standard dataset,
which contains images for two object categories, car (rear view) and airplane (side view),
and one background category. Each image contains at most a single instance of the objects
in diverse natural background and, therefore, is suitable for our 2-class detection task. We
randomly split the images into two equal separate subsets for training and testing.

Figure 4 shows the examples of the assignment of parts to local features for two
object categories. It is apparent that the proposed model can effectively associate the mass
of scattered and unordered observations with their corresponding object parts. Note that
multiple observations may be assigned to the same part label with the premise that they
physically belong to the same part. The number of parts can be empirically set according to
the complexity of objects.

4.3. Airplane Detection in Satellite Images

In this section, we verify our model by 170 airplane (top view) satellite images taken from
Google Earth. To gather a sufficiently large learning dataset, we acquire images from different
heights and different directions. Furthermore, a few synthetic images with simulation
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(a) (b)

Figure 4: Examples of the assignment of parts to local features for car object category (a) and airplane
object category (b), which are labeled by different number and colors. The number of parts is set to 5.

Figure 5: Examples of successful detections on satellite images and synthetic images. Note that simulation
airplane models in the last two synthetic images are also correctly detected.

airplane models are also used for testing. All images are resized to 150 ∗ 100 pixels. The
balance factor ε1 used in the weighted neighborhood structure is set to 0.7 to encourage the
use of shape information.

Due to space constraints, we provide a few examples of the detection results (as shown
in Figure 5). We use a simple bounding box located at the center of the efficient observations
to roughly label the detected objects in the test images.
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Table 1: Comparisons of detection performance (EER).

Models Car (rear) Airplane (side) Airplane (top)
Hidden CRF 91.0% 94.1% 93.4%
Located HRF 92.1% 95.6% 97.0%
Multiclass CRF 90.6% 93.8% 92.1%
Our part-driven CRF 94.2% 97.3% 96.5%
Part-driven CRF without WNS 93.4% 94.9% 93.7%

4.4. Performance Comparison

We compare the detection performance of our model with those of three existing models:
hidden CRF [15]model, located HRF [16]model, andmulticlass CRF [14]model. For fairness
of comparison, the local features in these three models are also computed by SIFT descriptors.
In order to measure the influence of neighborhood structures, we also investigate the
performance of an equivalent model without weighted neighborhood structure. The object
categories are car (rear), airplane (side), and airplane (top), which have been mentioned in
previous sections. The equal error rate (EER) defined in [7] is adopted as evaluation criterion,
in which higher EER values means better classification performance. The comparative results
are summarized in Table 1.

As can be seen, our model consistently gives the best results for these three object
categories for the car rear dataset and airplane side dataset. Note that the airplanes (side)
are easier to be discriminated than cars due to their distinct shape structure. On the airplane
top dataset, our model is exceeded slightly in accuracy only by the located HRF model. This
may be caused by overfitting since our model has to use more parameters to encode more
contextual dependencies.

From the results in the last row of Table 1, we can see that incorporating the weights
of neighborhood structures is important since the performance of such a model dropped.
Rather than hypothesizing that all the edges in MST are equally important, the weighted
neighborhood structure uses weights to measure the degree of correlation between connected
nodes and inherently have higher representational power.

Note that, since the local features are extracted automatically during training and
testing, the quantity and structure (constructed by MST) of observations should be
unpredictable. As a result, the computing time of our model is influenced by the object
complexity and image quality. In this experiment, we use about 3 hours for training, and
1.2 second per image on the average for testing on a 2.8GHz computer.

5. Conclusion

In this paper we presented a contextual hierarchical part-driven CRF model for object
category detection. By incorporating two single-level models, the proposed model can
effectively represent latent label-level context and observation-level context simultaneously.
A weighted neighborhood structure is also introduced to capture the degree of correlation
between connected nodes. Experimental results on challenging datasets with high intraclass
variability have demonstrated that the proposed model can effectively represent multiple
context information and give competitive detection performance. Our future researches will
focus on the following directions: introducing more sparse and robust local features to reduce
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the computational complexity and utilizing high-order clique potentials to investigate more
contextual dependencies in images.
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