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If three or more GPS antennas are mounted properly on a platform and differences of GPS
signals measurements are collected simultaneously, the baselines vectors between antennas can
be determined and the platform orientation defined by these vectors can be calculated. Thus, the
prerequisite for attitude determination technique based on GPS is to calculate baselines between
antennas to millimeter level of accuracy. For accurate attitude solutions to be attained, carrier
phase double differences are used as main type of measurements. The use of carrier phase
measurements leads to the problem of precise determination of the ambiguous integer number
of cycles in the initial carrier phase (integer ambiguity). In this work two algorithms (LSAST and
LAMBDA) were implemented and tested for ambiguity resolution allowing accurate real-time
attitude determination using measurements given by GPS receivers in coupled form. Platform
orientation was obtained using quaternions formulation, and the results showed that LSAST
method performance is similar to LAMBDA as far as the number of epochs which are necessary
to resolve ambiguities is concerned, but with processing time significantly higher. The final result
accuracy was similar for both methods, better than 0.1◦ to 0.2◦, when baselines are considered in
decoupled form.

1. Introduction

Global Navigation Satellite Systems (GNSSs) are satellite-based radionavigation systems,
providing to worldwide users precise position and timing. System satellites transmit radio-
frequency signals containing information required for the user equipment to compute its
navigation solution (position, velocity, and time). GNSS can also be used to determine
attitude of a platform, in which three or more antennas are needed to calculate attitude
parameters [1].
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If three or more GNSS antennas properly mounted on a platform and differences of
GNSS signals measurements are collected simultaneously, baselines vectors formed between
antennas can be determined, and orientation of the platform defined by these vectors can be
calculated. Thus, the prerequisite for the attitude determination technique based on GNSS
systems is to calculate the baselines between the antennas.

Accurate attitude solutions can be obtained using carrier phase double difference
observables as the main type of measurements, including all independent combinations
of antenna positions. Baselines between antennas must be determined in millimeter level
of accuracy. Typically, the distance between the antennas is a few meters or less, and all
spatially correlated errors between the antennas are almost eliminated in differencing (single
and double) process, including orbital, ionospheric, and tropospheric errors. Therefore, main
error sources affecting attitude determination are the multipath, receiver internal noise, and
antenna phase center variation [2].

The use of carrier phase measurements leads to the problem of determining precisely
the ambiguous initial carrier phase integer number of cycles (integer ambiguity). To increase
confidence and accelerate the process by limiting the search space, three types of restrictions
can be established from prior knowledge of the antenna fixed geometry: (i) length of the
baseline, (ii) angle between baselines, and (iii) knowledge of the geometry of the antennas
as a network in which double difference ambiguities must satisfy a closed loop condition [2].
Recently, several studies have focused on increasing the success rate of resolving ambiguity
process using the restrictions, as in [3, 4]. References [5, 6] show phase measurements
usage and performance of solving integer ambiguity methods in positioning applications.
[7] Reference develops a procedure to determine satellite attitude in three axes with GPS
associated with a gyro, and resolving ambiguities with the method described in [8]. Thus,
the resolving ambiguity process is an important step to determine an accurate baseline vector,
resulting in an accurate attitude determination.

A common attitude representation is done by Euler angles. This parameterization
has difficult computation in general, because of the use of trigonometric functions
and the appearance of a singularity in the motion modeling. Another way to attitude
parameterization is using quaternions. This parameterization has some advantages over
Euler angles; it is computationally efficient, there is no singularity, and it does not depend
on trigonometric functions [9].

So, in this work an implementation and analysis of algorithms for integer ambiguity
resolution allowing accurate attitude determination in real time, using measurements
provided by GPS receivers, will be tested. Algorithm tests, using quaternions for attitude
representation, will be implemented with real data, collected at INPE and described in [7]. In
this experiment, three antennas were fixed on a structure with known baseline lengths (1m)
and angle between baselines of 90◦. The tests were executed with the methods LAMBDA and
LSAST for ambiguity resolution.

least-squares ambiguity decorrelation adjustment (LAMBDA) method is a procedure
for integer ambiguity estimation in carrier phase measurements. This method executes the
integer ambiguity estimation through a Z transform, in which ambiguities are decorrelated
before the integer values search process. Then, a minimization problem is approached as
a discrete search inside an ellipsoidal region defined by decorrelated ambiguities, which is
smaller than original ones. As a result, integer least-squares estimates for the ambiguities are
obtained. This method was introduced in [10, 11]. References [12, 13] show computational
implementation aspects and ambiguity search space reducing performance.
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Least-Squares Ambiguity Solution Technique (LSAST)method, also known as LSAST
method, was proposed in [14]. This method involves a modified sequential least-squares
technique, in which ambiguity parameters are divided into two groups: primary ambiguities
(typically three double difference ambiguities), and the secondary ambiguities. Only the
primary ambiguities are fully searched, in ±5 cycles around the corresponding float
ambiguity, after rounded to the nearest integer. For each set of the primary ambiguities, there
is a unique set of secondary ambiguities. Therefore, the search dimension is smaller and the
computation time is significantly shorter than the full search approach. The choice of primary
group measurements is based on GDOP value. geometric dilution of precision (GDOP) is a
quantity which measures the influence of satellite geometry on positioning errors. Satellites
with low GDOP will lead to a search with less-potential solutions. However, GDOP cannot
be very low, in order to avoid the position uncertainty including more than one solution for
secondary groupmeasurements. The procedure is to choose primary group of satellites which
have a reasonable GDOP.

2. Attitude Representation

Euler angles are a means of representing the spatial orientation of any coordinate system
as a composition of rotations from a frame of reference. These angles uniquely determine
the orientation of a rigid body in three-dimensional space. There are several conventions for
defining the Euler angles, depending on the choice of axes and the order in which rotations
about these axes are performed. A matrix expression can be found for any frame given its
Euler angles, performing three rotations in sequence. Here, Euler angles are denoted as θ is
pitch, φ is roll, and ψ is yaw. The resulting rotation matrix is given in convention

R
(
θ, ψ, φ

)
= Rx

(
φ
)
Ry(θ)Rz

(
ψ
)
. (2.1)

Expanding the rotation matrix,

R =

⎡

⎣
cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ cos θ sinφ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cos θ cosφ

⎤

⎦. (2.2)

Quaternion q is determined in function of rotation angle ϕ and rotation axis n̂ and is
composed by a scalar term q4 and a vector term �q [15]

q =
[
q1 q2 q3 q4

]T
=
[
�qT q4

]T
, (2.3)

with

�q =
[
q1 q2 q3

]T = sin
(ϕ
2

)
n̂, q4 = cos

(ϕ
2

)
. (2.4)

Rotation matrix is given in terms of quaternions as

R(q) =
(∣∣q4

∣∣2 − ∣∣�q
∣∣2
)
I3 + 2�q�qT + 2q4��q�, (2.5)
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where I3 is an third-order identity matrix, and

��q� =

⎡

⎣
0 q3 −q2

−q3 0 q1
q2 −q1 0

⎤

⎦. (2.6)

Or explicitly,

R(q) =

⎡

⎣
q21 − q22 − q23 + q24 2

(
q1q2 + q3q4

)
2
(
q1q3 − q2q4

)

2
(
q1q2 − q3q4

) −q21 + q22 − q23 + q24 2
(
q2q3 + q1q4

)

2
(
q1q3 + q2q4

)
2
(
q2q3 − q1q4

) −q21 − q22 + q23 + q24

⎤

⎦. (2.7)

Euler angles can be calculated from rotation matrix as

⎡

⎣
φ
θ
ψ

⎤

⎦ =

⎡

⎣
atan2

[
2
(
q2q3 + q1q4

)
, −q21 − q22 + q23 + q24

]

asin
[
2
(
q2q4 − q1q3

)]

atan2
[
2
(
q1q2 + q3q4

)
, q21 − q22 − q23 + q24

]

⎤

⎦. (2.8)

3. Ambiguity Resolution

When distance between receivers is short (until 10 km), ionospheric and tropospheric
residuals are small compared to multipath and internal receiver noise errors. Thus, for a short
baseline, carrier phase double-difference measurements (φij

ub
) are [16]

φ
ij

ub
=
(
1ib − 1j

b

)
· xub + λNij

ub
+ εij

ub,φ
, (3.1)

where 1i
b
is unit vector pointing from base to satellite i, xub is baseline vector, Nij

ub
is the

integer ambiguity, and ε is a vector representing unmodeled errors. If m satellites were in
view simultaneously, then there are (m− 1) double difference measurements. In matrix form,
takingM as master satellite, (3.1) becomes

⎡

⎢⎢
⎣

φ1M
ub
...

φ
(m−1)M
ub

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

11b − 1Mb
...

1(m−1)
b

− 1M
b

⎤

⎥⎥
⎦xub + λ

⎡

⎢⎢
⎣

N1M
ub
...

N
(m−1)M
ub

⎤

⎥⎥
⎦ + ε, (3.2)

or

y = Hxub + λN + ε. (3.3)

Equation (3.3) is the measurement model considered for ambiguity resolution. Results were
obtained for ambiguity resolution from the same estimation process using a Kalman filter,
and processing code and carrier phase measurements. Ambiguity resolution is done epoch to
epoch, applying LAMBDA and LSAST methods on real-valued (float) ambiguities given by
the Kalman filter.
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Figure 1: Antenna configuration in data acquisition.

4. Results

Data used in this study were originally collected for use in [7] on March 30th, 2005. Three
GPS receivers were used, and their antennas were fixed on a frame allowing the knowledge
of the baseline lengths (1m) and the angle between them (90◦). The sampling rate was
1Hz, collected only in L1 carrier frequency. Figure 1 illustrates that the antenna mounting
configuration and equipments used are listed below:

(i) 3 AllStar CMC GPS receivers (Canadian Marconi Space Company) and

(ii) 3 AllStar CMC model AT 575-70 GPS antennas.

GPS measurements were processed to obtain a precise baseline length. Ambiguity
resolution was made using LAMBDA and LSASTmethods. Each baseline was independently
determined to form a frame, whose attitude is calculated referred to the east-north-up
reference system. Rotation matrix, obtained by quaternions, is transformed to Euler angles
using (2.8), in order to give a geometric view of orientation. All algorithmswere implemented
in Matlab language, using a computer with 4 Gb RAM, Intel Core i3 processor, and Windows
7 operating system. Three data sets were tested.

Data Set 1

In this test, same 8 satellites were kept in view (SV04, SV08, SV13, SV19, SV23, SV27, SV28 e
SV31), resulting in 7 double difference measurements. SV13 was chosen as master satellite,
because of its high elevation. Ambiguity resolution methods use a Kalman filter to obtain
real-valued (float) ambiguities. Kalman filter needs some epochs to converge to an ambiguity
solution, and thus to a given baseline. Data were free of cycle slips.

In this way, LAMBDA method presents a solution with correct values of ambiguities
after 107 epochs, while LSAST method takes 157 epochs to reach the correct values. Graphs
in Figure 2 show Euler angles values after the correct solution is reached.

Table 1 shows the statistics for the angle values in each method after ambiguities
are correctly solved. These results show that baseline orientation could be determined with
accuracy better than 0.1◦ in bothmethods although LSASTmethod has taken longer to deliver
the correct solution.

LSAST method sweeps a fixed number of cycles in satellite primary set, leading to
a slower search. This method had a mean processing time of 140 ± 32ms for resolving 7
ambiguities. Mean processing time of LAMBDA method was 11 ± 1ms after ambiguities are
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Figure 2: Euler angles for data set 1.
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Figure 3: Euler angles for data set 2.

solved due to small search space of candidate ambiguities. Considering whole set, processing
time was 18±25ms because search space was larger. Processing time is shown on Figure 5(a).

Data Set 2

In this set, 7 satellites were visible (SV08, SV13, SV19, SV23, SV27, SV28, and SV31), resulting
in 6 double difference measurements. SV13 was taken as master satellite. Data were free of
cycle slips.

Graphs in Figure 3 show platform roll, pitch, and yaw angles. For this set, both
LAMBDA and LSAST methods converged to correct ambiguity values after 141 epochs.
Table 2 shows mean and standard deviation values for Euler angles after a stable solution
is reached. The accuracy is very similar in both methods, once number of epochs necessary
for getting ambiguity solution is the same.
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Figure 4: Euler angles for data set 3.
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Figure 5: Processing time for all data sets.
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Table 1: Mean and standard-deviation (SD) for data set 1.

LAMBDA LSAST

Angle [◦] Mean SD Mean SD

Roll 0.136 0.132 0.097 0.014
Pitch 0.482 0.060 0.520 0.028
Yaw −6.488 0.045 −6.478 0.001

Table 2: Mean and standard-deviation (SD) for data set 2.

LAMBDA LSAST

Angle [◦] Mean SD Mean SD

Roll 1.839 0.190 1.839 0.190
Pitch −0.820 0.079 −0.820 0.079
Yaw −5.608 0.056 −5.608 0.056

Table 3: Mean and standard deviation (SD) for data set 3.

LAMBDA LSAST

Angle [◦] Mean SD Mean SD

Roll 1.049 0.306 1.049 0.306
Pitch 0.557 0.116 0.557 0.116
Yaw −5.612 0.178 −5.612 0.178

In this test, mean processing time was 11 ± 17ms for LAMBDA method in whole set,
and 8 ± 1ms after reaching correct solution. For LSAST, processing time was 154 ± 55ms to
solve 6 ambiguities (Figure 5(b)).

Data Set 3

This data set had the same visible satellites as Data Set 2. Both LAMBDA and LSAST
methods present solutions for ambiguities after 320 epochs. Graphs in Figure 4 show the
Euler angles obtained by both ambiguities resolution methods. Table 3 shows mean and
standard deviation values for roll, pitch, and yaw angles.

The average processing time for ambiguity resolution step, whenever a successful
solution is obtained, is 7 ± 2ms, and whole set processing time was 9 ± 11ms with LAMBDA
method, and 137 ± 39ms with LSAST method. Processing time in LSAST method increases
along the time due to changing satellite geometry (Figure 5(c)).

5. Conclusions

Due to short baseline (1m), both methods have a tendency to solve ambiguities for the same
number of epochs, as filter converges. Both LAMBDA and LSAST methods had a similar
performance in number of epochs needed to give the correct solution; however, processing
time of LSAST method was significantly longer. This is due to the fact that LSAST method
performs a systematic search throughout the primary set of measurements, while LAMBDA
optimizes the search space as a whole. Processing time for LAMBDA method is search space
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size dependant [13]. The smaller search space, the shorter processing time. This can be
verified by mean time to process the whole set compared to partial solution.

The accuracy of final result is also similar for both methods, better than 0.1◦ to 0.2◦,
once they find the same ambiguity set. The small variations are due to difference in number
of epochs to obtain the solution. Data Set 2 and Data Set 3 showed same mean values and
standard deviation for Euler angles. This occurs because the only difference in algorithms is
resolution ambiguity routine. Once ambiguities were resolved to the same values, statistics
must be equal. LAMBDA method also has an extensive series of studies documented in the
literature.

Attitude estimation using quaternions led to the same values when using a rotation
matrix based on Euler angles, as results showed in [17]. The main difference is processing
time, slightly longer with quaternions. This is probably due to conversion of results to Euler
angles, which uses trigonometric functions. However, quaternions can be useful to avoid
singularity situations.

Using dual frequency measurements is not necessary for the mitigation of ionospheric
errors since the baselines are short but can be useful for a faster ambiguity resolution, for
example, using widelane technique. If compared with the use of GPS alone, measurements
from two different GNSS systems can certainly improve the attitude determining accuracy
as result of increased number of measurements and improved satellite geometry. This can be
accomplished with the use of GPS/GLONASS and future GPS/Galileo receivers.
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