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Stresses around two parallel cracks of equal length in an infinite elastic medium are evaluated
based on the linearized couple-stress theory under uniform tension normal to the cracks. Fourier
transformations are used to reduce the boundary conditions with respect to the upper crack to dual
integral equations. In order to solve these equations, the differences in the displacements and in the
rotation at the upper crack are expanded through a series of functions that are zero valued outside
the crack. The unknown coefficients in each series are solved in order to satisfy the boundary con-
ditions inside the crack using the Schmidt method. The stresses are expressed in terms of infinite
integrals, and the stress intensity factors can be determined using the characteristics of the inte-
grands for an infinite value of the variable of integration. Numerical calculations are carried out
for selected crack configurations, and the effect of the couple stresses on the stress intensity factors
is revealed.

1. Introduction

In the classical theory of elasticity, the differential equations of equilibrium are derived
from the equilibrium of the forces for the rectangular parallelepiped element dx dy dz with
respect to the rectangular coordinates (x, y, z). Since the element dx dy dz is infinitesimal,
the normal stresses and shearing stresses are considered to act only on the surfaces of the
element. The classical theory of elasticity is valid for a homogeneous material. In contrast,
for materials with microstructures, such as porous materials and discrete materials, the
differential equations of equilibrium may be derived from a parallelepiped element, which,
although very small, is not infinitesimal. This produces additional stresses, called couple
stresses, on the surfaces of the parallelepiped element. In the linearized couple stress theory
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(also referred to as the Cosserat theory with constrained rotations), the couple stresses are
assumed to be proportional to the curvature, which yields a new material constant l, the
dimension of which is length [1].

Mindlin evaluated the effect of couple stresses on the stress concentration around a
circular hole in an infinite medium under tension [1], and Itou examined the effect of the
couple stresses on the stress concentration around a circular hole in an infinite elastic layer
under tension [2]. A similar problem has been solved for an infinite medium containing an
infinite row of equally spaced holes of equal diameter under tension in the linearized couple-
stress theory [3]. In these studies [1–3], the values of the stress concentration are shown to
approach those for the corresponding classical solutions as l/r approaches zero, where 2r is
the diameter of the holes.

Sternberg andMuki solved the stress intensity factor around a finite crack in an infinite
Cosserat medium under tension and revealed that the Mode I stress intensity factor is always
larger than the corresponding value for the classical theory of elasticity [4]. Yoffe assumed
that a crack propagates only to the right, maintaining its length 2a to be constant and solved
the stress intensity factor for the propagating crack [5]. For the Yoffe model, Itou evaluated
the stress intensity factor in the linearized couple-stress theory [6]. For the crack problems, it
has been shown that the values of the stress intensity factors are always larger than those for
the classical theory of elasticity and that the values increase as l/a approaches zero.

Savin et al. determined the characteristic length l by measuring the velocity of the
transverse ultrasonic wave for brass, bronze, duralumin, and aluminum [7], and the material
constant l has been shown to be approximately one order of magnitude smaller than themean
grain size [7]. Thus, the effect of the couple stresses does not significantly affect the stress con-
centrations caused by the existence of circular holes, circular inclusions, and notches, whereas
the effect of the couple stresses on the stress intensity factor around a crack is always larger
than the corresponding value in the classical theory of elasticity.

If the weight of airplanes, high-speed trains, and automobiles can be reduced, fuel
consumption can be curtailed considerably. This may be accomplished by using polycar-
bonate honeycomb materials and metal foam materials when designing machine elements.
Mora and Waas performed a compression test of honeycomb materials with a rigid circular
inclusion and estimated that l/d falls in the range 10.0 to 15.0, where d is the diameter of
each cell of the honeycomb [8]. Although no experiment has been performed to determine
the value of the characteristic length l for metal foam materials, l may be expected to have a
value on the order of the mean average value of the diameter of the foam. The metal foam
materials and the polycarbonate honeycomb materials reduce the need for landfills because
these materials are reusable. As such, these materials are increasingly being used for struc-
tural components in airplanes, high-speed trains, and automobiles. As a result, the couple-
stress theory has been used increasingly for the evaluation of the stresses produced in such
materials.

Gourgiotis and Georgiadis solved the Mode II and Mode III stress intensity factors for
a crack in an infinite medium using the couple-stress theory and the distributed dislocation
technique [9]. A Mode I crack problem was later solved by Gourgiotis and Georgiadis for
a crack in an infinite medium [10]. Recently, Gourgiotis and Georgiadis evaluated the stress
field in the vicinity of a sharp notch in an infinite medium under tension and searing stress
using the couple-stress theory [11]. To the author’s knowledge, the stress intensity factors
have been only evaluated for a crack in an infinite medium. In the present paper, stresses are
solved for two equal parallel cracks in an infinite medium under tension using the couple-
stress theory. The Fourier transform technique is used to reduce the boundary conditions with
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Figure 1: Geometry and coordinate system.

respect to the upper crack to dual integral equations. The differences in the displacements
and in the rotation at the upper crack are expanded through a series of functions that vanish
outside the crack. The unknown coefficients in each series are solved using the Schmidt
method [12]. The stress intensity factors and the couple-stress intensity factor are calculated
numerically for several crack configurations.

2. Fundamental Equations

In Cartesian coordinates (x, y), the upper crack is located between −a and a at y = 0, and the
lower crack is located between −a and a at y = −2h, as shown in Figure 1. Under plane strain
conditions, the force stresses τxx, τyy, τxy, τyx and the couple stresses μx, μy are expressed
as follows:

τxx =
∂2φ

∂y2
− ∂2ψ

∂x∂y
, τyy =

∂2φ

∂x2
+

∂2ψ

∂x∂y
,

τxy = − ∂2φ

∂x∂y
− ∂2ψ

∂y2
, τyx = − ∂2φ

∂x∂y
+
∂2ψ

∂x2
,

μx =
∂ψ

∂x
, μy =

∂ψ

∂y
,

(2.1)

where φ and ψ satisfy the following equations:

∇4φ = 0, ∇2ψ − l2∇4ψ = 0, (2.2)

∂

∂x

(
ψ − l2∇2ψ

)
= −2(1 − ν)l2 ∂

∂y
∇2φ,

∂

∂y

(
ψ − l2∇2ψ

)
= 2(1 − ν)l2 ∂

∂x
∇2φ, (2.3)
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where ∇2 is the Laplacian operator, and l is the new material constant. The rotation ωz and
the strains εx and εy are given as follows:

ωz =
1
2
×
(
∂ν

∂x
− ∂u

∂y

)
,

2Gεy = 2G
∂ν

∂y
= (1 − ν)τyy − ντxx, 2Gεx = 2G

∂u

∂x
= (1 − ν)τxx − ντyy,

(2.4)

where u and ν are the x and y components of the displacement, and G and ν are the shear
modulus and Poisson’s ratio, respectively.

3. Boundary Conditions

If we assume that a tensile stress p is applied perpendicular to the two cracks, the stress field
is symmetric with respect to the plane y = −h, and it is sufficient to solve the problem for
−h < y < ∞ only. For convenience, we refer to the layer −h < y < 0 as layer (1) and to the
upper half-plane 0 < y < ∞ as half plane (2). The boundary conditions can be expressed as
follows:

τ0yy1 = −p, for |x| < a, y = 0, (3.1)

τ0yx1 = 0, for |x| < a, y = 0, (3.2)

μ0
y1 = 0, for |x| < a, y = 0, (3.3)

u01 = u
0
2, for a < |x|, y = 0, (3.4)

v0
1 = v

0
2 , for a < |x|, y = 0, (3.5)

ω0
z1 = ω

0
z2, for a < |x|, y = 0, (3.6)

τ0yy1 = τ
0
yy2, for |x| <∞, y = 0, (3.7)

τ0yx1 = τ
0
yx2, for |x| <∞, y = 0, (3.8)

μ0
y1 = μ

0
y2, for |x| <∞, y = 0, (3.9)

τ−hyx1 = 0, for |x| <∞, y = −h, (3.10)

v−h
1 = 0, for |x| <∞, y = −h, (3.11)

ω−h
z1 = 0, for |x| <∞, y = −h, (3.12)

where subscripts 1 and 2 indicate layer (1) and half plane (2), respectively, and superscripts
0 and −h indicate the values at y = 0 and y = −h, respectively.
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4. Analysis

In order to find the solution, the Fourier transforms are introduced as follows:

f(ξ) =
∫∞

−∞
f(x) exp(iξx)dx, (4.1)

f(x) =
1
2π

∫∞

−∞
f(ξ) exp(−iξx)dξ. (4.2)

Applying (4.1) to (2.2) yields the following:

d4φ

dy4
− 2ξ2

d2φ

dy2
+ ξ4φ = 0,

l2
d4ψ

dy4
−
(
2ξ2l2 + 1

)d2ψ

dy2
+ ξ2

(
ξ2l2 + 1

)
ψ = 0.

(4.3)

The solutions for (4.3) take the following forms for i = 1 and 2:

φ1 = A1 cosh
(
ξy

)
+ B1y cosh

(
ξy

)
+ C1 sinh

(
ξy

)
+D1y sinh

(
ξy

)
,

ψ1 = E1 cosh
(
ky

)
+ F1 cosh

(
ξy

)
+H1 sinh

(
ky

)
+ I1 sinh

(
ξy

)
,

φ2 =
(
A2 + B2y

)
exp

(−|ξ|y),
ψ2 = E2 exp

(−|ξ|y) + F2 exp
(−ky),

(4.4)

whereA1, B1,C1,D1, E1, F1,H1, I1,A2, B2, E2, and F2 are unknown coefficients, and k is given
by:

k =

√(
ξ2l2 + 1

)

l2
. (4.5)

Using the Fourier transformed expressions of (2.3), the coefficients I1, F1, and E2 can
be represented by the coefficients D1, B1, and B2 as follows:

I1 = −4i(1 − ν)l2ξD1, F1 = −4i(1 − ν)l2ξB1, E2 = −4i(1 − ν)l2ξB2. (4.6)

Thus, the stresses, the displacements, and the rotation can be expressed by nine unknown
coefficients in the Fourier domain.

Using (3.10) through (3.12), which are valid for −∞ < x < +∞, unknowns C1, D1, and
E1 are given as follows:

C1 = A1c11 + B1c12 + iH1c13, D1 = A1c21 + B1c22 + iH1c23,

iE1 = A1c31 + B1c32 + iH1c33,
(4.7)
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where the expressions of the known functions cij (i, j = 1, 2, 3) are omitted. Then, the Fourier-
transformed expressions of the stresses, the displacements, and the rotation in layer (1) can
be expressed in terms of only three unknown coefficients, that are, A1, B1, andH1. Thus, the
displacements 2Gu01 and 2Gν01 at y = 0 and the rotation 4Gω0

z1 at y = 0 can be expressed in
terms of three unknown coefficients, that are, A1, B1, andH1. In contrast, coefficients A1, B1,
andH1 can be expressed as 2Gu01, 2Gν

0
1, and 4Gω0

z1, and then the stresses, the displacements,
and the rotation can be expressed in terms of 2Gu01, 2Gv

0
1, and 4Gω0

z1 in the Fourier domain.
For examples, τ0yy1, τ

0
yx1, and μ

0
y1 have the following forms:

τ0yy1 =
(
−iu01

)
k11(ξ) + ν

0
1k

1
2(ξ) +

(
−iω0

z1

)
k13(ξ),

τ0yx1 =
(
−iu01

)
ik14(ξ) + ν

0
1ik

1
5(ξ) +

(
−iω0

z1

)
ik16(ξ),

μ0
y1 =

(
−iu01

)
ik17(ξ) + ν

0
1ik

1
8(ξ) +

(
−iω0

z1

)
ik19(ξ),

(4.8)

where the expressions of the known functions k1i (ξ) (i = 1, 2, 3, . . . , 9) are omitted.
As for the upper half plane (2), the stresses, the displacements, and the rotation are

shown by the three unknown coefficients A2, B2, and F2. Thus, the displacements 2Gu02 and
2Gν02 at y = 0 and the rotation 4Gω0

z2 at y = 0 can be described by three unknown coefficients
A2, B2, and F2. In a similar manner to the case for layer (1), the unknown coefficients A2, B2,
and F2 are represented by 2Gu02, 2Gν

0
2, and 4Gω0

z2. Then, the stresses, the displacements, and
the rotation can be expressed in terms of 2Gu02, 2Gν

0
2, and 4Gω0

z2 in the Fourier domain. For
examples, τ0yy2, τ

0
yx2, and μ

0
y2 have following forms:

τ0yy2 =
(
−iu02

)
k21(ξ) + ν

0
2k

2
2(ξ) +

(
−iω0

z2

)
k23(ξ),

τ0yx2 =
(
−iu02

)
ik24(ξ) + ν

0
2ik

2
5(ξ) +

(
−iω0

z2

)
ik26(ξ),

μ0
y2 =

(
−iu02

)
ik27(ξ) + ν

0
2ik

2
8(ξ) +

(
−iω0

z2

)
ik29(ξ),

(4.9)

where the expressions of the known functions k2i (ξ) (i = 1, 2, 3, . . . , 9) are omitted.
Using (3.7), (3.8) and (3.9) the following relations are obtained:

(
−iu01

)
k11(ξ) + ν

0
1k

1
2(ξ) +

(
−iω0

z1

)
k13(ξ)

=
(
−iu02

)
k21(ξ) + ν

0
2k

2
2(ξ) +

(
−iω0

z2

)
k23(ξ),

(
−iu01

)
ik14(ξ) + ν

0
1ik

1
5(ξ) +

(
−iω0

z1

)
ik16(ξ)

=
(
−iu02

)
ik24(ξ) + ν

0
2ik

2
5(ξ) +

(
−iω0

z2

)
ik26(ξ),

(
−iu01

)
ik17(ξ) + ν

0
1ik

1
8(ξ) +

(
−iω0

z1

)
ik19(ξ)

=
(
−iu02

)
ik27(ξ) + ν

0
2ik

2
8(ξ) +

(
−iω0

z2

)
ik29(ξ).

(4.10)
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Equation (4.10) can be solved for (−iu 0
1), ν

0
1 and (−iω 0

z1) as follows:

(
−iu01

)
=
(
−iu02

)
l1(ξ) + ν

0
2l2(ξ) +

(
−iω0

z2

)
l3(ξ),

ν01 =
(
−iu02

)
l4(ξ) + ν

0
2l5(ξ) +

(
−iω0

z2

)
l6(ξ),

(
−iω0

1

)
=
(
−iu02

)
l7(ξ) + ν

0
2l8(ξ) +

(
−iω0

z2

)
l9(ξ),

(4.11)

where the expressions of the known functions li(ξ) (i = 1, 2, 3, . . . , 9) are omitted.
In order to satisfy (3.4), (3.5), and (3.6) the differences in the displacements and in the

rotation at y = 0 are expanded by the following series:

π
(
ν01 − ν02

)
=

∞∑
n=1

cn cos
[
(2n − 1)sin−1

(x
a

)]
for |x| ≤ a

= 0 for a ≤ |x| ≤ ∞,

(4.12)

π
(
u01 − u02

)
=

∞∑
n=1

dn sin
[
2n sin−1

(x
a

)]
for |x| ≤ a

= 0 for a ≤ |x| ≤ ∞,

(4.13)

π
(
ω0
z1 −ω0

z2

)
=

∞∑
n=1

en sin
[
2n sin−1

(x
a

)]
for |x| ≤ a

= 0 for a ≤ |x| ≤ ∞,

(4.14)

where cn, dn, and en are the unknown coefficients that are to be determined. The Fourier
transforms of (4.12) through (4.14) are

(
ν01 − ν02

)
=

∞∑
n=1

cn
(2n − 1)

ξ
J2n−1(aξ)

(
u01 − u02

)
= i

∞∑
n=1

dn
2n
ξ
J2n(aξ)

(
ω0
z1 −ω0

z2

)
= i

∞∑
n=1

en
2n
ξ
J2n(aξ)

(4.15)

where Jn(ξ) is the Bessel function.
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Substituting (4.11) into (4.15), we obtain the following equations:

(
−iu02

)
l4(ξ) + ν

0
2[l5(ξ) − 1] +

(
−iω0

z2

)
l6(ξ) =

∞∑
n=1

cn
(2n − 1)

ξ
J2n−1(aξ),

(
−iu02

)
[l1(ξ) − 1] + ν02l2(ξ) +

(
−iω0

z2

)
l3(ξ) =

∞∑
n=1

dn
2n
ξ
J2n(aξ),

(
−iu02

)
l7(ξ) + ν

0
2l8(ξ) +

(
−iω0

z2

)
[l9(ξ) − 1] =

∞∑
n=1

en
2n
ξ
J2n(aξ).

(4.16)

Equations (4.16) can be solved for (−iu02), ν02 and (−iω0
z2) as follows:

(
−iu02

)
=

∞∑
n=1

cn
m1(ξ)(2n − 1)

ξ
J2n−1(aξ) +

∞∑
n=1

dn
m2(ξ) × 2n

ξ
J2n(aξ)

+
∞∑
n=1

en
m3(ξ) × 2n

ξ
J2n(aξ),

ν02 =
∞∑
n=1

cn
m4(ξ)(2n − 1)

ξ
J2n−1(aξ) +

∞∑
n=1

dn
m5(ξ) × 2n

ξ
J2n(aξ)

+
∞∑
n=1

en
m6(ξ) × 2n

ξ
J2n(aξ),

(
−iω0

z2

)
=

∞∑
n=1

cn
m7(ξ)(2n − 1)

ξ
J2n−1(aξ) +

∞∑
n=1

dn
m8(ξ) × 2n

ξ
J2n(aξ)

+
∞∑
n=1

en
m9(ξ) × 2n

ξ
J2n(aξ),

(4.17)

where the expressions of the known functions mi(ξ) (i = 1, 2, 3, . . . , 9) are omitted. At this
stage, the stresses, the displacements, and the rotation are represented by only three unknown
coefficients, that are, cn, dn, and en. For example, stresses τ0yy2, τ

0
yx2, and μ

0
y2 are expressed as

follows:

τ0yy2 =
∞∑
n=1

cn
(2n − 1)

π
×
∫∞

0

q1(ξ)
ξ

J2n−1(aξ) cos(ξx)dξ

+
∞∑
n=1

dn
2n
π

×
∫∞

0

q2(ξ)
ξ

J2n(aξ) cos(ξx)dξ

+
∞∑
n=1

en
2n
π

×
∫∞

0

q3(ξ)
ξ

J2n(aξ) cos(ξx)dξ,

(4.18)
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τ0yx2 =
∞∑
n=1

cn
(2n − 1)

π
×
∫∞

0

q4(ξ)
ξ

J2n−1(aξ) sin(ξx)dξ

+
∞∑
n=1

dn
2n
π

×
∫∞

0

q5(ξ)
ξ

J2n(aξ) sin(ξx)dξ

+
∞∑
n=1

en
2n
π

×
∫∞

0

q6(ξ)
ξ

J2n(aξ) sin(ξx)dξ,

(4.19)

μ0
y2 =

∞∑
n=1

cn
(2n − 1)

π
×
∫∞

0

q7(ξ)
ξ

J2n−1(aξ) sin(ξx)dξ

+
∞∑
n=1

dn
2n
π

×
∫∞

0

q8(ξ)
ξ

J2n(aξ) sin(ξx)dξ

+
∞∑
n=1

en
2n
π

×
∫∞

0

q9(ξ)
ξ

J2n(aξ) sin(ξx)dξ,

(4.20)

where the known expressions q1(ξ), q2(ξ), . . . , q8(ξ), and q9(ξ) are omitted. Functions q i(ξ)/
ξ (i = 2, 3, 4, 6, 7, 8) decrease rapidly as ξ increases. Functions qi(ξ)/ξ (i = 1, 5, 9) have the
following property when ξ increases:

qi(ξ)
ξ

−→ qLi , (4.21)

where constants qLi (i = 1, 5, 9) can be calculated as

qLi =
qi(ξL)
ξL

, (4.22)

with ξL being a large value of ξ .
Finally, the remaining boundary conditions (3.1), (3.2), and (3.3) can be reduced to the

following equations:

∞∑
n=1

cnKn(x) +
∞∑
n=1

dnLn(x) +
∞∑
n=1

enMn(x) = −u(x),

∞∑
n=1

cnOn(x) +
∞∑
n=1

dnPn(x) +
∞∑
n=1

enQn(x) = −ν(x),

∞∑
n=1

cnRn(x) +
∞∑
n=1

dnSn(x) +
∞∑
n=1

enTn(x) = −w(x) for |x| ≤ a,

(4.23)
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with

Kn(x) =
(2n − 1)

π
×
{∫∞

0

[
q1(ξ)
ξ

− qL1
]
J2n−1(aξ) cos(ξx)dξ

+
qL1 cos

[
(2n − 1)sin−1(x/a)

]

(a2 − x2)1/2

}
,

Ln(x) =
2n
π

∫∞

0

q2(ξ)
ξ

J2n(a ξ) cos(ξ x)dξ,

Mn(x) =
2n
π

∫∞

0

q3(ξ)
ξ

J2n(aξ) cos(ξx)dξ,

On(x) =
(2n − 1)

π

∫∞

0

q4(ξ)
ξ

J2n−1(aξ) sin(ξx)dξ,

Pn(x) =
2n
π

×
{∫∞

0

[
q5(ξ)
ξ

− qL5
]
J2n(aξ) sin(ξx)dξ

+
qL5 sin

[
2n sin−1(x/a)

]

(a2 − x2)1/2

}
,

Qn(x) =
2n
π

∫∞

0

q6(ξ)
ξ

J2n(aξ) sin(ξx)dξ,

Rn(x) =
(2n − 1)

π

∫∞

0

q7(ξ)
ξ

J2n−1(aξ) sin(ξx)dξ,

Sn(x) =
2n
π

∫∞

0

q8(ξ)
ξ

J2n(aξ) sin(ξx)dξ,

Tn(x) =
2n
π

×
{∫∞

0

[
q9(ξ)
ξ

− qL9
]
J2n(aξ) sin(ξx)dξ

+
qL9 sin

[
2n sin−1(x/a)

]

(a2 − x2)1/2

}
,

(4.24)

u(x) = p, ν(x) = 0, w(x) = 0. (4.25)

The unknown coefficients cn, dn, and en in (4.23) can be solved by the Schmidt method [12].
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M
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a
√ π

a
)

Figure 2: Values ofKI ,KII , andM0 plotted with respect to l/a for h/a = 5.0 (broken lines show the values
for l/a = 0.0).

5. Stress Intensity Factors

If we slightly modify the integrands in (4.18) through (4.20) and use the relations

∫∞

0
Jn(aξ)[cos(ξx), sin(ξx)]dξ

=
{
−an

(
x2 − a2

)−1/2[
x +

(
x2 − a2

)−1/2]−n
sin

(nπ
2

)
,

an
(
x2 − a2

)−1/2[
x +

(
x2 − a2

)−1/2]−n
cos

(nπ
2

)}
, for a < x,

(5.1)

the stress intensity factors and the couple-stress intensity factor can be determined as follows:

KI = [2π(x − a)]1/2τ0yy2
∣∣∣
x→a+

=
∞∑
n=1

cn
(2n − 1)(−1)nqL1

(πa)1/2
,

KII = [2π(x − a)]1/2τ0yx2
∣∣∣
x→a+

=
∞∑
n=1

dn
(2n)(−1)nqL5
(πa)1/2

,

M0 = [2π(x − a)]1/2μ0
y2

∣∣∣
x→a+

=
∞∑
n=1

en
(2n)(−1)nqL9
(πa)1/2

.

(5.2)
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Table 1: Values of KI/(p
√
πa) for h/a = 5.0. (Values in parentheses were obtained from the diagram in

[4]).

l/a 0.1 0.2 0.5 1.0

KI/(p
√
πa ) 1.238 1.209 1.122 1.061

(1.231) (1.202) (1.120) (1.063)
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a
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Figure 3:Values ofKI, KII , andM0 plotted with respect to l/a for h/a = 0.5 (broken lines show the values
for l/a = 0.0).

6. Numerical Examples

Numerical calculations are performed with quadruple precision using a Fortran program for
which overflow and underflow do not occur within the range of from 10−5500 to 10+5500. The
stress intensity factors and the couple-stress intensity factor are calculated for h/a = 5.0, 0.5,
and 0.1 with a Poisson’s ratio of ν = 0.25.

The values of the functions qi(ξa)/(ξa) (i = 2, 3, 4, 6, 7, 8) are verified to decay rapidly
as (ξa) increases, and the values of the functions qi(ξa)/(ξa) (i = 1, 5, 9) are verified to
rapidly approach constants qLi (i = 1, 5, 9) as (ξ a) increases. Thus, the semi-infinite integrals
in (4.24) can be evaluated numerically. The Schmidt method, truncated to 12 terms for an
infinite series, was then applied to solve for coefficients cn, dn, and en in (4.23). The values of
the left-hand side of (4.23) are verified to coincide with those of the right-hand side of (4.23).
Then, coefficients cn, dn, and en are verified to be successfully determined by the Schmidt
method.

The values of the Mode I stress intensity KI/(p
√
πa) are shown for h/a = 5.0

in Table 1, in which the values in parentheses are obtained from the diagram in [4]. For
h/a = 5.0, the distance between two cracks is 10a, and the lower crack is considered not
to affect the stress field around the upper crack and vice versa. Both values in Table 1 are well
coincident with each other, and the accuracy of the method described in the present paper is
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Figure 4:Values ofKI, KII , andM0 plotted with respect to l/a for h/a = 0.1 (broken lines show the values
for l/a = 0.0).

considered to be superior. The values of KI, KII , and M0 are plotted with respect to l/a for
h/a = 5.0, 0.5, and 0.1, respectively, in Figures 2, 3, and 4, in which the straight broken lines
indicate the corresponding value for l/a = 0.0.

7. Conclusion

Based on the numerical calculations described above, the following conclusions are obtained.

(i) The values of KI/(p
√
πa) for h/a = 5.0 are considered to be approximately coin-

cident with those for a crack in an infinite medium, and the values of KII/(p
√
πa)

are considered to be approximately equal to zero.

(ii) As l/a approaches zero, KI/(p
√
πa)and KII/(p

√
πa) do not approach the cor-

responding values calculated using the classical theory of elasticity, whereas the
values ofM0/(pa

√
πa) approach zero, which is the value calculated by the classical

theory of elasticity.

(iii) The values of KI/(p
√
πa) decrease as h/a decreases, and the same behavior is

observed for the absolute values ofM0/(pa
√
πa).

(iv) The new material constant l may be comparatively small, even for materials with
microstructures. Therefore, the key value is KI/(p

√
πa), even for materials with

microstructures, because the values of KII/(p
√
πa) and M0/(pa

√
πa) are consid-

erably smaller than the value of KI/(p
√
πa).
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