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This paper investigates the potential application of artificial neural networks in permanent
deformation parameter identification for rockfill dams. Two kinds of neural network models,
multilayer feedforward network (BP) and radial basis function (RBF) networks, are adopted
to identify the parameters of seismic permanent deformation for Zipingpu Dam in China. The
dynamic analysis is carried out by three-dimensional finite element method, and earthquake-
induced permanent deformation is calculated by an equivalent nodal force method. Based on
the sensitivity analysis of permanent deformation parameters, an objective function for network
training is established by considering parameter sensitivity, which can improve the accuracy of
parameter identification. By comparison, it is found that RBF outperforms the BP network in this
problem. The proposed inverse analysis model for earth-rockfill dams can identify the seismic
deformation parameters with just a small amount of sample designs, and much calculation time
can be saved by this method.

1. Introduction

The dynamic response of rockfill dams under earthquake actions, mainly including
absolution acceleration and permanent deformation, attracts more and more attention from
engineers. The former is used to assess the dynamical load and seismic resistance of the dam.
The latter is adopted to provide a basis for the dam height reserved during the design phase.
So the prediction of permanent deformation is an essential problem in the seismic design
for rockfill dams. As a result, it is important to select model parameters of rockfill dams
reasonably, which makes for improving the accuracy of the numerical calculation.

However, it is not easy to carry out. Because of the difference of construction tech-
nology and construction quality and so on, the spatial distribution of material properties
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is considerably random in each project. Along with the development of construction
technology, the maximum particle size of materials of rockfill damsmay be bigger and bigger,
but the model parameters are usually measured in the laboratory by using samples with
much smaller size. The prepared experimental samples in the laboratory are different from
the construction conditions. Therefore, the mechanical properties of samples determined
in the laboratory may be more or less differing from those in situ. And then the stress
and deformation acquired with laboratory parameters deviate far from the actual values
inevitably. As a consequence, it is necessary to take measures to get model parameters in
accord with the results of dam observation and make an accurate evaluation of dam safety
and stability after that. Displacement backanalysis is an effectivemethod to check andmodify
the parameters of soils.

In recent years, reverse analysis is mainly based on two methodologies: optimization
algorithms and neural networks [1–5]. There are three types of optimization algorithms
that have been frequently used in inverse analysis. The first type is gradient-based direct
search algorithms, such as Levenberg-Marquardt method. The second type is the relatively
simple direct search methods making no use of gradient, such as the simplex search method.
The last type is kinds of intelligent global search algorithms, such as genetic algorithms,
differential evolution, particle swarm optimization, and ant colony optimization. The first
and the second type algorithms both have an advantage of estimating the solutions in
relatively short computational time, but the results are affected by the initial values, and
premature convergence is likely to happen. As an alternative to the direct search algorithms,
intelligent global search algorithms are being widely adopted in reverse analysis, but they
have a disadvantage of being time consuming.

In the geotechnical engineering field, intelligent backanalysis methods based on
artificial neural networks (ANNs) and genetic algorithms [6, 7] are often adopted. As
for generic algorithms, the range and trial values of the undetermined parameters should
be given before the analysis, and then the time-consuming finite element method (FEM)
calculation is performed repeatedly, so it is hard to ideally solve complicated nonlinear
problems with a lot of finite elements. That is why it has been primarily used for seeking
answers to static problems and two-dimensional problems so far. They need relatively few
iterations and finite elements. Comparatively speaking, the strong nonlinear relationship
between the known and unknown quantity in geotechnical engineering can be mapped well
by using ANNs. And neural network approach can obtain inversion parameters quickly with
just a small amount of sample designs.

The aim of this paper is to present an inverse analysis model for seismic permanent
deformation parameters of earth-rockfill dams based on artificial neural networks. Section 2
presents the theories of forward computational models for static analysis, dynamic response
analysis, permanent deformation analysis, and sensitivity analysis of design parameters.
Section 3 introduces backprorogation neural networks (BPNNs) and radial basis function
neural networks (RBFNNs). Section 4 shows the performance of both ANNs. Finally,
conclusions are made in Section 5.

2. The Mathematical Model

2.1. Static Analysis

Duncan and Chang’s E-B model [8] is used to simulate the mechanical behavior of the rockfill
materials. It is a nonlinear elastic model with wide application and is characterized by seven
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parameters: cohesion c, friction ϕ (or ϕ0,Δϕ), failure ration Rf , modulus numberK, modulus
exponent n, bulk modulus number Kb, and bulk modulus exponentm. The nonlinear stress-
strain relation of rockfill is represented by a hyperbola, whose instantaneous slope is the
tangent modulus Et. According to the conventional triaxial tests, Et can be expressed as
follows:

Et =

[
1 − Rf

(
1 − sinϕ

)
2c × cosϕ + 2σ3 sinϕ

(σ1 − σ3)
]2

×K × Pa
(
σ3
Pa

)n
. (2.1)

The E-B model follows the Mohr-Coulomb criterion, and the wider the range of pressure
involved the greater the curvature of the Mohr-Coulomb envelopes, since friction ϕ becomes
smaller with the increase of minor principal stress σ3. So as to coarse-grained soil, friction
ϕ is not constant everywhere in dams. This variation in property may be represented by an
equation of the form:

ϕ = ϕ0 −Δϕlg
(
σ3
Pa

)
, (2.2)

where ϕ0 is the value of ϕ for σ3 = Pa and Δϕ is the reduction of ϕ for a 10-fold increase in σ3.
And the bulk modulus can be expressed as

B = KbPa

(
σ3
Pa

)m
. (2.3)

2.2. Dynamic Analysis

Equivalent linear elastic model [9] is used to simulate the dynamic properties of the earth-
rock mixtures with two basic characteristics: nonlinearity and hysteresis. Soils have been
deemed to be viscoelasticity in the model, and the dynamic stress-strain relationship is
reflected with equivalent shear modulus G and equivalent damping ratio λ. The key of
the model is to determine the relation between maximum dynamic shear modulus Gmax

and mean effective principal stress σ0, as well as the variation of G and λ along with the
amplitude of dynamic shear strain. Based on a large number of experiments conducted by
China Institute of Water Resources and Hydropower Research (IWHR), maximum dynamic
shear modulus Gmax can be expressed as

Gmax = K × Pa ×
(
σ0
Pa

)n
, (2.4)

where K,n are modulus and exponent usually determined by experiments. Pa is the
atmospheric pressure. In the experiments, the three-axis instrument and wave velocity
test device were used. In regard to G and λ, a relation curve is achieved firstly through
experiments, which describes the variation of the dynamic shear modulus ratio G/Gmax and
damping ratio λ with dynamic shear strain γ . Then γ is normalized by reference shear strain
γr to make instantaneous G and λ easy to get through interpolation.
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The effects of hydrodynamic pressure have to be considered when analyzing the
dynamic interaction between dam and water in reservoir, since reservoirs may not always
operate at a low water level during an earthquake. An ideal way to consider the effects is
to divide finite element grids regarding the water and dam body as a whole, and interface
element is utilized between contacting surfaces. However, it requires the computer with
sufficient memory for the process and is very time consuming. Besides, stiffness coefficient of
the interface element is hard to determine. So the additional mass method has been widely
used so far. The effects of dynamic water pressure on seismic response of the dam are taken
into account with the equivalent additional mass, and the dynamic analysis is done by adding
the equivalent mass and the mass of the dam itself.

In this paper, equivalent additional mass is calculated by the lumped-mass method.
The equivalent additional mass focusing on node i is calculated by simplified Westergaard
formula [10]:

mwi =
ψ

90
7
8
ρ
√
H0yiAi, (2.5)

where ψ is the angle between the upstream slop and the horizontal planeH0 is depth of water
from the surface to the bottom of reservoirs. yi is depth of water from the surface to node i,
and Ai is the corresponding control area of node i.

2.3. Permanent Deformation Analysis

2.3.1. The Model of Permanent Deformation

There have been several models for permanent deformation calculation at present, such as
IWHR model [11], Debouchure model, Shen Zhujiang model [12], and improved models
about them [13, 14], among which Shen Zhujiang model owns the broadest application so
that the model is expressed in an incremental form, and permanent deformations in various
conditions including different vibrations, dynamic shear strain, and stress levels can be
calculated with only a set of parameters. Compared with the other models, Shen Zhujiang
model not only has a consideration on both shearing deformation and volume deformation,
but also is easier to use. Residual volumetric strain εvr and residual shear strain γr can be
written as

εvr = cvr lg(1 +N),

γr = cdr lg(1 +N),

cvr = c1
(
γd
)c2 exp(−c3S2

l

)
,

cdr = c4
(
γd
)c5S2

l ,

(2.6)

where γd is dynamic shear strain amplitude, Sl is stress level,N is the number of vibrations,
and c1, c2, c3, c4, and c5 are experimental parameters. The parameter c3 is assumed to have
nothing to do with cνγ , that is, c3 = 0.

However, studies in recent years have suggested that the deformations calculated by
Shen Zhujiang model are larger than actual performance, and it is adverse to an accurate
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evaluation of the seismic behavior of faced rockfill dams. So it is necessary to appropriately
improve the model. Zou Degao focused on the influence of stress level on the residual shear
deformation and presented an improved model based on a large number of cycle triaxial
experiments [13]. When the earthquake-induced permanent deformations are calculated
with FEM, the improved model can be expressed as an incremental form as follows:

Δενr = c1
(
γd
)c2 exp(−c3S2

l

) ΔN
1 +N

,

Δγr = c4
(
γd
)c5Sl ΔN

1 +N
,

(2.7)

whereΔεvr ,Δγr are increments of residual volumetric strain and residual shear strain, respec-
tively.

2.3.2. The Method of Permanent Deformation Analysis

The major ways of overall seismic deformation analysis are based on the method of
equivalent nodal force and modulus soften model [15] now. The calculation process of
modulus soften model is relatively complicated, so the method of equivalent nodal force is
a better choice for the permanent deformation analysis; the ideal about it is that the residual
strain during an earthquake is determined firstly by an empirical formula, then the residual
strain is converted to equivalent node force of finite elements, and the contributions of
residual strain to the dam are replaced by the displacement calculated with the equivalent
nodal force. The procedure comprises the following three steps.

(1) Perform static calculation for the dam with midpoint incremental method, to get
the initial static stress σ0 and stress level Sl.

(2) Perform dynamical calculation through the approach on the basis of equivalent
linear viscoelastic model, to get the dynamic stress of soil, then convert the
dynamic stress to stress state in laboratory, and get residual strain potential εpv, Δγ

p
r

according to (2.7). And strain potential of finite elements is obtained according to
the following formula:

{
Δξp
}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δξx
Δξy
Δξz
Δγxy
Δγyz
Δγzx

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=
1
3
Δεpv

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
1
1
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+
Δγprmax

q

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σx − p
σy − p
σz − p
2τxy
2τyz
2τzx

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
, (2.8)

where q is generalized shear stress, p is average principal stress, and {Δξp} is
increment of residual strain in Cartesian coordinates.

(3) Calculate the equivalent nodal force with the converted strain potential according
to the formula that

{ΔF} =
∫∫∫

v

[B]T [D]
{
Δξp
}
dV, (2.9)
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where [B] is the conversion matrix of strain [D] is the elastic matrix. Then
permanent deformations are calculated with the equivalent nodal force applied on
finite elements.

3. Permanent Deformation Parameters Inversion Using
Artificial Neural Networks

3.1. BP Neural Networks

For a BPNN with a structure m-k-p, that is, a vector input x(x1, x2, . . . , xm), k hidden
units, and an output vector y(y1, y2, . . . , yp) as in Figure 1, the equation that expresses the
relationship between the input and output can be written as

yj = foutput

[
k∑
h=1

wjhfhidden

(
m∑
i=1

whixi + bias1h

)]
+ bias2j , (3.1)

where m is the number of input units, k is the number of neurons in the hidden layer, xi is
the ith input unit, ωhi is the weight parameter between input i and hidden neuron h, ωjh is
the weight parameter between hidden neuron h and output neuron j, fhidden is the activation
function of the hidden layer, and foutput is the transfer function of output layer.

The weights were estimated and adjusted in the learning process with an aim of
minimizing an error function Ed as follows:

ED =
n∑
i=1

(
yi − ti

)2 = n∑
i=1

e2i , (3.2)

where n is the number of input and output examples of the training dataset and t is the target
value. The errors were fed backward through the network to adjust the weights until the
error ED was acceptable for the network model. Once the ANN is satisfied in the training
process, the synaptic weights will be saved and then used to predict the outcome for the
new data. To minimize ED, optimal parameters of weights and biases have to be determined.
One of the algorithms for solving this problem is the Levenberg-Marquardt (LM) algorithm.
This algorithm is a modification of the Newton algorithm for finding optimal solutions to a
minimization problem. Theweights of an LMNN are calculated using the following equation:

wi+1 = wi −
(
JTi Ji + μiI

)−1
JTi ei, (3.3)

where J is the Jacobian matrix of output errors, I is the identity matrix, and μ is an adaptive
parameter. When μ = 0, it becomes the Gauss-Newton method using the approximate
Hessian matrix. If μ is large enough, the LM algorithm becomes a gradient descent with a
small step size (the same as in the standard backpropagation algorithm).
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Figure 1: Structure of BP neutral network.
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Figure 2: Structure of RBF neutral network.

3.2. RBF Neural Networks

RBFNN is a kind of feedforward neural network and generally consists of three components:
input layer, hidden layer, and output layer. Figure 2 displays an RBF network with a structure
m-k-p that there arem inputs, k hidden units and p outputs. x = (x1, x2, . . . , xm)

T ∈ Rm is the
input vector. W is the weight matrix of inputs and W ∈ Rk×p, b1, . . . , bp are offset of output
units. y = (y1, . . . , yp)

T ∈ Rp is the output vector of the network, and fi(‖x − ci‖) is the
activation function of the hidden unit i; one common function is the Gaussian function:

ϕ(x) = exp

(
− x2

2σ2

)
, (3.4)

where σ is spread constant, the role of which is to adjust sensitivity of the Gaussian function.
The final output of unit i can be expressed as

yi =
k∑
j=1

wij exp

(∥∥x − cj
∥∥2

2σ2
j

)
+ bi, (3.5)

where wij is the weight of output layer and σj is spread constant of the base function.
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Figure 3: Central composite design schemes for three factors.

3.3. Sample Set Designs

The prediction accuracy of neural networks is determined by sample quality to some extent,
the samples used for inversion have to be accurate and balanced, so as to be representative
enough, and it is better to reflect inner characters of the model system. In this paper,
the methods of central composite design [16] and orthogonal design are utilized to design
samples. The central composite design was presented by Box and Wilson. It consists of
the following three parts: a full factorial or fractional factorial design, a central point, and
an additional design, often a star design in which experimental points are at a distance
α from its center. Figure 3 illustrates the full central composite design for optimization of
three variables. Full uniformly rotatable central composite designs present the following
characteristics:

(1) require an experiment number according toN = k2 + 2k + cp, where k is the factor
number and cp is the replicate number of the central point.

(2) α-values depend on the number of variables and can be calculated by α = 2(k−p)/4.
For two, three, and four variables, it equals 1.41, 1.68, and 2.00, respectively.

(3) All factors are studied in five levels (−α,−1, 0,+1,+α).
As a result, samples designed by both methods embody not only inner but also outer

conditions of the cube within certain realms, and they have good density distribution and
representativeness.

3.4. Parameter Sensitivity Analysis

Sensitivity analysis can estimate the influence of parameter variation on outputs andmake us
have a more intuitive understanding about the parameters to be considered. Morris method
[17] was more applied in sensitivity analysis. It figured out the influence of arguments on
the dependent variable through disturbing a parameter and keeping the others the same.
The corrected Morris method changed arguments at a fixed step size, calculated the value of
influence in each condition, and then took the average like this:

S =
q−1∑
i=1

((Yi+1 − Yi)/Y0)/((Pi+1 − Pi)/100)(
q − 1

) , (3.6)
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Table 1: The principal parameters for static calculation.

Material zoning ρ (kg/m3) ϕ (◦) Δϕ (◦) Rf K n Kb m

Cushion layer 2300 57.51 10.65 0.84 1274 0.44 1260 −0.026
Transition layer 2250 57.63 11.44 0.75 1153 0.38 1085 −0.089
Main rockfill 2160 55.39 10.60 0.75 1120 0.32 490 0.12
Secondary rockfill 2150 55.39 10.60 0.71 1033 0.38 338 0.03
Covering layer 2150 49.00 10.00 0.80 820 0.40 430 0.25

where S is the sensitivity factor, Yi is the output of condition i, Y0 is the output derived from
the initial parameters, pi is the percentage of parameter variations in condition i compared to
the initial parameters, and q is the number of conditions.

4. Example Analysis

4.1. Brief Introduction to the Project

The Zipingpu dam is located in a valley, 9 km away in northwest from the Chengdu City,
Sichuan province. It is one of the high CFRDs more than 150m in China, with a maximum
height of 156m and the crest length 663.77m. It encountered the Sichuan 8.0-magnitude
earthquake which was higher than its actual design level. The dam body emerged obvious
damage, and it provided rich and precious materials [18, 19] for earthquake engineering
research on CFRDs.

4.2. Results of Static Calculation

Static parameters were directly selected from the experimental results coming from the
IWHR, considering as well the results from Professor Zhu Cheng who partly backanalyzed
the parameters of the project by immune genetic algorithm. Integrating both results, the
parameters of rockfill were determined in Table 1. Besides, the linear elastic model was
adopted for the calculation of concrete panels, concrete strength grade was C25, and the
correspondingmaterial parameters were density ρ = 2400 kg/m3, E = 2.8×104 MPa, Poisson’s
ratio μ = 0.167.

To simulate the process of construction and impoundment of the CFRD, midpoint
incremental method and multistage loading process were used in the calculations. The dam
was meshed into 6772 finite elements with total 6846 nodes, as shown in Figure 4. And the
main results of a typical cross-section in rockfill zone were shown as in Figures 5 and 6, which
were at operational water level before the earthquake.

4.3. Results of Dynamic Calculation

Due to influence of all kinds of factors, Zipingpu dam had no acceleration recordings of the
actual principle shock of base rock. According to analysis [20, 21] of many scholars, the
actual input ground motion was likely to be more than 0.5 g. Referring to the attenuation
relationship [22] given by Yu et al., and considering the hanging wall and footwall effects,
Professor Zhu Cheng deduced that the peak accelerations of dam site in three directions,
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Figure 4: 3D mesh of the dam for calculation.
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Figure 6: Continuous contours of major stress of the dam before earthquake (MPa).

respectively, were 0.52 g in east-west, 0.46 g in north-south, and 0.43 g in vertical. And based
on the materials concerned in [22], the relative position of seismometer stations and dam
site was shown in Figure 7. Finally, the seismograms of Wolong Station (051WCW) closer
to the dam site were selected as the ground motion input; meanwhile the acceleration time
histories were scaled in accordance with the peak accelerations as aforementioned, as shown
in Figure 8.

According to the calculation results, the basic frequency of dam vibration was about
1.65Hz and the maximum acceleration responses at dam crest were 0.86 g along the river,
0.74 g in vertical, and 1.36 g along the dam axial, which were consistent with the analysis
results obtained by Kong et al. [21]. Under the three-dimensional earthquake, the maximum
acceleration response lay in the downstream dam crest, and rockfill slid when its acceleration
response exceeded yield acceleration, which qualitatively explained the phenomenon on
Zipingpu dam that some grains in the downstream dam crest loosened and tumbled.



Mathematical Problems in Engineering 11

51SFB

51MXD

51WCW

Legend
Epicenter
Fault

Station
Zipingpu Dam

Gansu province
33◦N

32◦N

31◦N

30◦N

33◦N

32◦N

31◦N

30◦N
103◦E 104◦E 105◦E 106◦E

103◦E 104◦E 105◦E 106◦E

Figure 7: Epicenter of “5.12” Wenchuan Earthquake and observation stations.

0 50 100 150 200
−0.6
−0.4
−0.2

0
0.2
0.4
0.6

ac
cl

er
at

io
ns

(N
S)

0 50 100 150 200
−0.6
−0.4
−0.2

0
0.2
0.4
0.6

ac
cl

er
at

io
ns

(E
W

)

0 50 100 150 200
−0.6
−0.4
−0.2

0
0.2
0.4
0.6

ac
cl

er
at

io
ns

(U
D

)

t (s)

t (s)

t (s)

Figure 8: Acceleration time histories of dam site (a/g).

4.4. Backanalysis of the Project

Though the dam has different material zoning, material sources are same the and the
construction control indexes are very near; therefore dynamic properties of different zones
will not vary much. To reduce the workload, all rockfills were thought to have the same set
of permanent deformation parameters, they were c1, c2, c4, c5 but c3 was out of the inversion
range for that it was a constant as mentioned in (2.6). Reference [23] listed several project
cases at home and abroad and gave the test values of corresponding permanent deformation
parameters [24–27]. However, parameters of different projects varied entirely; as a result, a
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Table 2: Ranges of parameters to be inversed and initial values.

Parameter variation c1 c2 c4 c5

Inversion range of parameters 0.005 0.5 0.1 0.75
∼0.01 ∼1.0 ∼0.2 ∼1.50

Initial parameters 0.0064 0.75 0.18 1.33

set of initial parameters were determined firstly referring to the similar engineering and the
inversion range of parameter was preliminarily determined as Table 2.

4.4.1. Parameter Sensitivity Analysis

Disturb a parameter with a fixed step size 10% and keep the other parameters the same. And
then sensitivity analysis of the dam on maximum subsidence was performed, and the result
was shown in Figures 9 and 10.

According to the classification results in [17], parameter sensitivity was graded into
four levels: |Si| ≥ 1 highly sensitive, 0.2 ≤ |Si| < 1 sensitive, 0.05 ≤ |Si| < 0.2 moderately
sensitive, and 0 ≤ |Si| < 0.05 insensitive. Figure 10 shows that c1 is a moderately sensitive
parameter, c2, c4 are sensitive ones, and c5 is highly sensitive. Besides, Figure 9 shows that
the subsidence under earthquake increases with the increase of c1, c4 and decreases with the
increase of c2, c5.

4.4.2. Comparison of RBF and BP Networks in Inversion

In order to improve the generalization ability of neural network, a training method [28]
was taken that samples were partitioned into several subsets, and then the network was
trained and appraisal was done at the same time with the change of spread constant. Samples
were partitioned into three subsets here for training, validation, and testing. The training
and validation datasets were used to determine synoptic weights of the network model
whereas the testing dataset is used to evaluate the prediction results. If the performance
index (generally mean square error, (MSE)) of errors of training dataset was satisfied, then
determine the optimal network according to that of verification dataset.

There were 90 training samples in all generated by the methods of central composite
design and orthogonal design, and 9 samples generated at random among which 6 ones were
used for verification, and the others were for testing. With observation displacement as input
vector and permanent deformation parameter as an output vector, the neural network could
be trained. One of the common ways to evaluate performance of the network was by error of
mean square root (RMSE). However, backanalysis of permanent deformation parameters by
neural network was a problem of multi-input-output, if the network performance was still
evaluated like that:

RMSE =

√√√√ n∑
i=1

p∑
j=1

(
yij − tij

)2
n

. (4.1)

Then it could not reflect the error influence of different parameters; that is to say, the results
calculated by inversion parameters might deviate considerably from the actual value since
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Figure 10: Result of parameter sensitivity analysis.

the forecasting error of highly sensitive parameter was relatively big, though the total error
was small. So in this paper, an objective function for evaluating network performance was
put forward to improve fitting accuracy of high sensitive parameter, where sensitivity factors
were taken as weights of error, as follows:

RMSE =

√√√√ n∑
i=1

p∑
j=1

[(
yij − tij

) ∗ Sj]2
n

, (4.2)

where n is the sample number of validation dataset, p is the dimension of the output vector,
and yij and tij are final parameter output and the actual parameter value, respectively.

The key of RBF network training is to determine the neural number of hidden
layer. It has been a common method at present to gradually increase the neural number
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automatically by checking the output error, starting from zero. So the process of establishing
a network is also the one of training. Spread constant σ was adjusted until the prediction
accuracy of testing samples met the engineering requirements, and then the trained network
can be practically used for parameter inversion. It is beneficial for the generalization
of neural network to adjust spread constant, the higher the σ, the more smooth the
fitting, but not the higher the better, if σ is too high, all outputs are likely to become
common and the base functions tend to overlap completely. Its value generally depends
on the distance between the input vectors. To analyze the effectiveness of the training, the
transition of the RMSE was traced with the change of σ as shown in Figure 11. It can be
seen that the RMSE decreases rapidly in the initial stages and almost remains the same
after σ = 1.6.

The process of BP network training was similar to the RBF network; after MSE of
training dataset was satisfied, then determine the optimal network according to RMSE of
verification dataset. The maximum number of training epochs was set to 3000. The MSE goal
was set to 0.001. The initial value of adaptive parameter μ was set to 0.001. μ increased by 10
and decreased by 0.1 until performance value reduced, and its maximum value is set to 1e10.
During the training phase, the data were processed several times to see whether any changes
occurred due to the assignment of random initial weights. Figure 12 describes the results that
the value of RMSE decreases from the largest value of 0.98 with one hidden neuron to the
value of 0.18 with 11 hidden neurons. RMSE was then stable at this value with an increasing
number of hidden neurons.

To test the prediction accuracy of the networks, the outputs of the testing samples
were listed in Table 3. For the three samples, the prediction accuracy of all parameters by
RBFNN is around 5%whereas not all the results by BPNN are satisfactory. However, for both
networks, the forecasting error of parameter c5 is generally smaller, which indicates that it
has a pronounced effect on improvement of highly sensitive parameters with the function of
error evaluation, in the problem of multiple parameter inversion.

To further check the error precision of influence on subsidence, the predictive
parameters by RBFNN were used for finite element calculations. Owing to space reasons,
for the second sample only, the results were compared with the actual value as in Figure 13,
and the observation points were on central axis of the typical section. It can be seen that
the computation values are very close, which indicates that the prediction effect by the RBF
network can basically meet engineering accuracy.

With actual observation displacement of Zipingpu dam as input vector, permanent
deformation parameters of rockfill were backanalyzed by the trained RBF network, and the
results are shown in Table 4.

The permanent displacement calculated by the inversion parameters is shown in
Figure 14, and the marked values are actual displacements of the dam. It can be seen that
the vertical displacements increase with the increment of dam height, which accords with
the law of the measured settlement, and both values are also very close. Figure 15 shows the
deformed mesh for finite element calculations, where deformation has already been enlarged
to see clearly. Besides, the dam section becomes smaller and the slopes of both upstream
and downstream shrink inward, which embodies the macroscopic character of rockfill
under earthquake action. Due to the upstream water load, the maximum of the horizontal
permanent deformation points to the downstream of the dam but the earthquake-induced
permanent deformation is predominantly vertical settlement. In summary, the results are
qualitatively rational, which indicates that it is feasible to calculate the earthquake-induced
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Figure 12: History of RMSE along with the number of hidden neurons.

Table 3: Comparison of predicted results and actual values of the test samples’ parameters.

Testing samples
RBF BP

c1 c2 c4 c5 c1 c2 c4 c5

1
Actual value 0.0064 0.7500 0.1850 1.3300 0.0064 0.7500 0.1850 1.3300

Predictive value 0.0064 0.7658 0.1894 1.3263 0.0073 0.8075 0.1851 1.3250

Error/% 0.0000 2.1067 2.3784 −0.2782 14.5467 7.6702 0.0876 0.3763

2
Actual value 0.0058 0.6750 0.1665 1.1970 0.0058 0.6750 0.1665 1.1970

Predictive value 0.0062 0.7226 0.1753 1.1950 0.0070 0.7525 0.1675 1.1895

Error/% 6.8966 7.05185 5.2853 −0.1671 20.7000 11.4833 0.6283 0.6293

3
Actual value 0.0070 0.8250 0.2035 1.4630 0.0070 0.8250 0.2035 1.4630

Predictive value 0.0068 0.8127 0.1954 1.4354 0.0077 0.8645 0.1982 1.4496

Error/% −2.8571 −1.4909 −3.9803 −1.8865 9.7816 4.7920 2.5910 0.9153
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Figure 13: Comparison of dam subsidence.

Table 4: Backanalysis results of rockfill deformation parameters.

Material c1 c2 c4 c5

Rockfill 0.0072 0.8000 0.1342 1.4477

permanent deformation by the method of equivalent nodal force on the basis of improved
Shen Zhujiang model.

5. Conclusions

In the process of conventional back/inverse analysis, it is necessary to perform FEM analysis
frequently. For a large-scale multiple parameter and nonlinear problem such as backanalysis
of displacement of an earth-rockfill dam, the workload is so daunting that sometimes the
backanalysis cannot be carried out. In this paper, ANNs were introduced in the field of
dynamic parameter inversion of earth-rockfill dam, BP and RBF networks were compared,
then on the basis of RBFNN, a backanalysis model for earthquake-induced permanent
deformation parameters was proposed, and it was used for backanalysis of parameters for
Zipingpu CFRD. The results indicate the following:

(1) The RBFNN model appears more robust and efficient than BPNN model for
backanalysis of earthquake-induced permanent deformation parameters of the
earth-rockfill dam. Due to the assignment of random initial weights, the structure
of BPNN is difficult to determine, network training results are unstable, and it can
easily be trap in a local optimum; all of the problems are still to be resolved, and so
RBFNN is a better choice.

(2) It is an easy and effective way to backanalysis of earthquake-induced permanent
deformation parameters of the earth-rockfill dam with RBF network model. In
this way, the inversion range of parameters is determined according to the similar
engineering, and several samples are generated through the experimental design
methods; then after the neural network is trained, the residual deformation
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parameters can be acquired quickly by putting in actual permanent deformations
of the dam.

(3) The existing theory and method of dynamic calculation can basically reflect the
earthquake-resistant behavior of earth-rockfill dam, but it is still an extremely
complex subject to research; many factors such as seismic input and calculation
model may lead to great gap between calculated value and actual value. Thereby,
further study on dynamic analysis method will make the inversion of permanent
deformation parameters more meaningful.
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