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A new design procedure for a robust H2 and H∞ control of continuous-time singularly perturbed
systems via dynamic output feedback is presented. By formulating all objectives in terms of a
common Lyapunov function, the controller will be designed through solving a set of inequalities.
Therefore, a dynamic output feedback controller is developed such that H∞ and H2 performance
of the resulting closed-loop system is less than or equal to some prescribed value. Also,H∞ andH2
performance for a given upperbound of singular perturbation parameter ε ∈ (0, ε∗] are guaranteed.
It is shown that the ε-dependent controller is well defined for any ε ∈ (0, ε∗] and can be reduced to
an ε-independent one so long as ε is sufficiently small. Finally, numerical simulations are provided
to validate the proposed controller. Numerical simulations coincide with the theoretical analysis.

1. Introduction

It is well known that the multiple time-scale systems, otherwise known as singularly
perturbed systems, often raise serious numerical problems in the control engineering field. In
the past three decades, singularly perturbed systems have been intensively studied by many
researchers [1–8].

In practice, many systems involve dynamics operating on two or more time-scales
[3]. In this case, standard control techniques lead to ill-conditioning problems. Singular
perturbation methods can be used to avoid such numerical problems [1]. By utilizing the time
scale properties, the system is decomposed into several reduced order subsystems. Reduced
order controllers are designed for each subsystems.

In the framework of singularly perturbed systems, H∞ control has been investigated
by many researchers, and various approaches have been proposed in this field [9–14].
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However, to the best of our knowledge, the problem of multiobjective control for linear
singular perturbed systems is still an open problem. By multiobjective control, we refer to
synthesis problems with a mix of time- and frequency-domain specifications ranging from
H2 and H∞ performances to regional pole placement, asymptotic tracking or regulation, and
settling time or saturation constraints.

In [12], the H∞ control problem is concerned via state feedback for fast sampling
discrete-time singularly perturbed systems. A new H∞ controller design method is given
in terms of solutions to linear matrix inequalities (LMIs), which eliminate the regularity
restrictions attached to the Riccati-based solution. In [13], the H∞ control problem via state
feedback for fast sampling discrete-time singularly perturbed systems is investigated. In
fact, a new sufficient condition which ensures the existence of state feedback controllers is
presented such that the resulting closed-loop system is asymptotically stable. In addition, the
results were extended to robust controller design for fast sampling discrete-time singularly
perturbed systems with polytopic uncertainties. Presented condition, in terms of a linear
matrix inequality (LMI), is independent of the singular perturbation parameter.

Undoubtedly, output feedback stabilization is one of the most important problems in
control theory and applications. In many real systems, the state vector is not always accessible
and only partial information is available via measured output. Furthermore, the reliability of
systems and the simplicity of implementation are other reasons of interest in output control
which is adopted to stabilize a system.

LMI’s have emerged as a powerful formulation and design technique for a variety
of linear control problems. Since solving LMI’s is a convex optimization problem, such
formulations offer a numerically tractable means of attacking problems that lack an analytical
solution. Consequently, reducing a control design problem to an LMI can be considered as a
practical solution to this. Since the nonconvex formulation of the output feedback control, its
conditions are restrictive or not numerically tractable [15]. It has been an open question how
to make these conditions tractable by means of the existing software. Many research results
on such a question have been reported in [15–20].

In [1, 2], the dynamic output feedback control of singular perturbation systems
has been investigated. However, to the best of our knowledge, the design of dynamic
output feedback for robust controller via LMI optimization is still an open problem. The
main contribution of this paper is to solve the problem of multiobjective control for linear
singularly perturbed systems. Considered problem consists of H∞ control, H2 performance,
and singular perturbation bound design. For given an H∞ performance bound γ or H2

performance bound υ, and an upperbound ε∗ for the singular perturbation, an ε-dependent
dynamic output feedback controller will be constructed, such that for all ε ∈ (0, ε∗]. Due to
this, the closed-loop system is admissible and the H∞ norm (H2 norm) of the closed-loop
system is less than a prescribed γ (prescribed υ). Sufficient conditions for such a controller
are obtained in form of strict LMIs. A mixed control H2/H∞ problem for singular systems
is also considered in this paper. It is shown that the designed controller is well-defined for
for all ε ∈ (0, ε∗]. It is shown that if ε is sufficiently small, the controller can be reduced to an
ε-independent one. Numerical examples are given to illustrate the main results.

The paper is organized as follows. Section 2 gives the problem statement and
motivations. Section 3 presents the main results. The theorems for H2, H∞ and multiobjective
H2/H∞ design via output feedback control are presented in this section. Due to proposed
theorems, robust H2, H∞, and multiobjective performance of continuous-time singularly
perturbed systems via dynamic output feedback for a linear systems will be accessible.
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Section 4 illustrates numerical simulations for the proposed theorems. Finally, conclusions
in Section 5 close the paper.

Notation. A star (∗) in a matrix indicates a transpose quantity. For example: (∗)+A > 0 stands
for AT +A > 0, or in a symmetric matrix

[
A ∗
B C

]
stands for

[
A BT

B C

]
.

2. Problem Statement

Consider the following singularly perturbed system with slow and fast dynamics described
in the standard “singularly perturbed” form:

ẋ1 = A1x1 +A2x2 + B1u + Bw1w,

εẋ2 = A3x1 +A4x2 + B2u + Bw2w,

z1 = Cz11x1 + Cz12x2 +Dzu1u +Dzw1w

z2 = Cz21x1 + Cz22x2 +Dzu2u,

y = Cy1x1 + Cy2x2 +Dyww,

, (2.1)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 form the state vector, u(t) ∈ Rp is the control input vector,
y(t) ∈ Rm1 is the output, w(t) is a vector of exogenous inputs (such as reference signals,
disturbance signals, sensor noise) and z1, z2 are regulated outputs.

By introducing the following notations:

x =

[
x1

x2

]

, A =

[
A1 A2

A3 A4

]

,

B =

[
B1

B2

]

, Cy =
[
Cy1 Cy2

]
,

Cz1 =
[
Cz11 Cz12

]
, Cz2 =

[
Cz21 Cz22

]
,

Bw =

[
Bw1

Bw2

]

.

(2.2)

The system (2.1) can be rewritten into the following compact form:

Eεẋ = Ax + Bu + Bww,

z1 = Cz1x +Dzu1u +Dzw1w,

z2 = Cz2x +Dzu2u,

y = Cyx +Dyww.

(2.3)
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By applying dynamic output feedback controller in the following form:

ẋc1 = Ac1xc1 +Ac2xc2 + Bc1y,

εẋc2 = Ac3xc1 +Ac4xc2 + Bc2y,

u =
[
Cc1 Cc2

]
⎡

⎣
xc1

xc2

⎤

⎦ +Dcy.

(2.4)

The controller (2.4) can be rewritten into the following compact form:

Eεẋc = Acxc + Bcy,

u = Ccxc +Dcy,
(2.5)

where

Ac =

⎡

⎣
Ac1 Ac2

Ac3 Ac4

⎤

⎦, Bc =

[
Bc1

Bc2

]

, Cc =
[
Cc1 Cc2

]
. (2.6)

The closed loop system is

[
Eε 0

0 I

][
ẋ

ẋc

]

=

[
A + BDcCy BCc

E−1
ε BcCy E−1

ε Ac

][
x

xc

]

+

[
Bw + BDcDyw

E−1
ε BcDyw

]

w(t),

zi =
[
Czi +DzuiDcCy DzuiCc

]
[
x

xc

]

+
(
Dzwi +DzuiDcDyw

)
w(t), for i = 1, 2,

(2.7)

where Dcl 2 = 0 and

Ee = diag(Eε, I), Eε = diag(I, εI), xcl =
[
xT xTc

]T
,

Acl =

[
A + BDcCy BwCc

E−1
ε BcCy E−1

ε Ac

]

,

Bcl =

[
Bw + BDcDyw

E−1
ε BcDyw

]

,

Ccl i =
[
Czi +DzuiDcCy DzuiCc

]
,

Dcl 1 =
(
Dzw1 +Dzu1DcDyw

)
.

(2.8)

Note, following definitions and lemmas are useful in next sections.
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Definition 2.1. For a linear time-invariant operator G : ω ∈ L2(R+) → z ∈ L2(R+), G is L2

stable if ω ∈ L2(R) implies z ∈ L2(R). Here, G is said to have L2 gain less than or equal to
γ > 0 if and only if

∫T

0
‖z(t)‖2dt ≤ γ2

∫ t

0
‖w(t)‖2dt (2.9)

for all T ∈ R+.

Lemma 2.2 (see [21]). For system G : (A,B,C,D), the L2 gain will be less than γ > 0 if there exist
a positive definite matrix X = XT > 0 such that

⎡

⎢⎢
⎣

XA +ATX XB CT

BTX −γI DT

C D −γI

⎤

⎥⎥
⎦ < 0. (2.10)

Definition 2.3. For a linear time-invariant operator G : w → z, H2 norm G is defined by

‖G‖2
2 =

1
2π

trace
∫∞

−∞
G
(
jω
)
G
(
jω
)∗
dω. (2.11)

Lemma 2.4 (see [21]). For stable system G : (A,B,C) the H2 performance will be less than v if
there exist a matrix Z and a positive definite matrix X = XT > 0 such that the following LMIs are
feasible:

[
ATX +XA XB

BTX −I

]

< 0,

[
X CT

C Z

]

> 0,

trace(Z) < ν.

(2.12)

Lemma 2.5 (see [22]). For a positive scalar ε∗ and symmetric matrices S1, S2, and S3 with
appropriate dimensions, inequality

S1 + εS2 + ε2S3 > 0 (2.13)

holds for all ε ∈ (0, ε∗], if

S1 ≥ 0,

S1 + ε∗S2 > 0,

S1 + ε∗S2 + ε∗
2S3 > 0.

(2.14)



6 Mathematical Problems in Engineering

3. Main Result

Here, we address stability, H∞ stability, H2 performance, and multiobjective H2/H∞
performance for a singularly perturbed system via dynamic output feedback control.

3.1. Stability Problem

Consider closed loop system (2.7) without disturbance w(t):

Eeẋcl =

[
A + BDcCy BCc

E−1
ε BcCy E−1

ε Ac

]

xcl, (3.1)

where A, B, Cy were defined in (2.2). In the following theorem, we propose design
procedure for obtaining controllers parameters such that the closed loop system (3.1)
becomes asymptotically stable.

Theorem 3.1. Given an upperbound ε∗ for the singular perturbation ε, if there exist matrices
Ak, Bk, Ck,Dk, Y11,Y12, Y22, X11, X12, and X22 satisfying the following LMIs

Υ11(0) ≤ 0, (3.2)

Υ11(ε∗) < 0, (3.3)

⎡

⎢⎢⎢⎢
⎣

[
Y11 ε∗Y12

ε∗YT
12 ε∗Y22

] [
I 0

0 ε∗I

]

[
I 0

0 ε∗I

] [
X11 ε∗X12

ε∗XT
12 ε∗X22

]

⎤

⎥⎥⎥⎥
⎦
> 0, (3.4)

[
Y11 I

I X11

]

> 0, (3.5)

where

Υ11(ε∗) =

⎡

⎢⎢⎢⎢
⎣

A

[
Y11 ε∗Y12

YT
12 Y22

]

+ BCk + (∗) A + BDkCy +AT
k

(∗)
[
X11 XT

12

ε∗X12 X22

]

A + BkCy + (∗)

⎤

⎥⎥⎥⎥
⎦
. (3.6)

Then, for any ε ∈ (0, ε∗], the closed-loop singularly perturbed system (3.1) is asymptotically stable
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via dynamic output controller (2.4), also controller parameters are obtained from following equations:

Dc = Dk,

Cc = (Ck −DcCQ11),

Bc = ϑ−1
ε

(
Bk − PT11BDc

)
,

Ac = ϑ−1
ε

(
Ak −

(
PT11

(
A + BDcCy

)
Q11 + ϑεBcCyQ11 + PT11BCc

))
,

(3.7)

where

P11 =

[
X11 εX12

XT
12 X22

]

, Q11 =

[
Y11 εY12

YT
12 Y22

]

,

ϑε =

[
I − ϑ1 − εϑ2 −ϑ3

−εϑ4 I − εϑT2 − ϑ5

]

,

ϑ1 = X11Y11, ϑ2 = X12Y
T
12, ϑ3 = X11Y12 +X12Y22,

ϑ4 = XT
12Y11 +X22Y

T
12, ϑ5 = X22Y22.

(3.8)

Proof. Choose the Lyapunov function as

V (t) = xTcl(t)EePεxcl(t), (3.9)

where

EePε = PTε Ee > 0, (3.10)

Pε =

[
P11 P12

PT12Eε P22

]

. (3.11)

From (3.10), it is concluded that

EePε = PTε Ee =⇒
[
EεP11 EεP12

PT12Eε P22

]

=

[
PT11Eε EεP12

PT12Eε PT22

]

(3.12)

and from (3.12), P11 has following structure:

EεP11 = PT11Eε =⇒ P11 =

[
X11 εX12

XT
12 X22

]

. (3.13)
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Now, define invert of EePε as follow

(EePε)−1 = P−1
ε E−1

e ,

P−1
ε = Qε =

[
Q11 E−1

ε Q12

QT
12 Q22

] (3.14)

and Q11 has following structure:

Qε(Ee)−1 = E−1
e Q

T
11 =⇒

[
Q11E

−1
ε E−1

ε Q12

QT
12E

−1
ε Q22

]

=

[
E−1
ε Q

T
11 E−1

ε Q12

QT
12E

−1
ε Q22

]

, Q11 =

[
Y11 εY12

YT
12 Y22

]

. (3.15)

Using the following equality:

[
EεP11 EεP12

PT12Eε P22

][
Q11E

−1
ε E−1

ε Q12

QT
12E

−1
ε Q22

]

=

[
I 0

0 I

]

, (3.16)

we also have the constraint that

Eε
(
P11Q11 + P12Q

T
12

)
E−1
ε = I =⇒ P11Q11 + P12Q

T
12 = I. (3.17)

Here, we define new matrices Π1 and Π2 as follows:

Π1 =

[
Q11 I

QT
12 0

]

, (3.18)

PεΠ1 = Π2 (3.19)

and Π2 is obtained from (3.17) as follows:

[
P11 P12

PT12Eε P22

][
Q11 I

QT
12 0

]

=

[
P11Q11 + P12Q

T
12 P11

PT12EεQ11 + P22Q
T
12 PT12Eε

]

, Π2 =

[
I P11

0 PT12Eε

]

. (3.20)

The derivative of the Lyapunov function (3.9) is

V̇ = ẋTclEePεxcl + xTclEePεẋcl,

V̇ < 0 =⇒ xTcl

(
AT

clPε + P
T
ε Acl

)
xcl < 0,

(3.21)

where Acl is defined in (2.8).
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Sufficient condition to satisfy (3.21) is

AT
clPε + P

T
ε Acl < 0. (3.22)

Equation (3.22) will hold if and only if

ΠT
1A

T
clPεΠ1 + ΠT

1P
T
ε AclΠ1 < 0, (3.23)

where Π1 is defined in (3.18).
From (3.19), equation (3.23) can be rewritten as

ΠT
1A

T
clΠ2 + ΠT

2AclΠ1 < 0. (3.24)

With substituting Π1 and Acl from (3.18) and (2.8), respectively, we have

[
I 0

PT11 EεP12

][
A + BDcC BCc

E−1
ε BcC E−1

ε Ac

][
Q11 I

QT
12 0

]

+ (∗) < 0. (3.25)

Now, we define the new variables:

Ck = DcCQ11 + CcQ
T
12,

Bk = PT11BDc + EεP12E
−1
ε Bc,

Ak = PT11

(
A + BDcCy

)
Q11 + EεP12E

−1
ε BcCyQ11 + PT11BCcQ

T
12 + EεP12E

−1
ε AcQ

T
12.

(3.26)

Then, from (3.13), (3.15), and (3.26), equation (3.25) can be rewritten as

Υ11(ε) =

⎡

⎢⎢⎢⎢
⎣

A

[
Y11 εY12

YT
12 Y22

]

+ BCk + (∗) A + BDkCy +AT
k

(∗)
[
X11 XT

12

εX12 X22

]

A + BkCy + (∗)

⎤

⎥⎥⎥⎥
⎦
< 0. (3.27)

Also, the condition (3.10) holds if and only if

ΠT
1EePεΠ1 > 0 =⇒

⎡

⎢⎢⎢⎢
⎣

[
Y11 εY12

εYT
12 εY22

] [
I 0

0 εI

]

[
I 0

0 εI

] [
X11 εX12

εXT
12 εX22

]

⎤

⎥⎥⎥⎥
⎦
> 0. (3.28)

According to Lemma 2.5, the conditions (3.27) and (3.28) are valid for all ε ∈ (0, ε∗], If
(3.2), (3.3), (3.4), and (3.5) are satisfied.
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For computing controller parameters we obtain P11 andQ11 from solving LMIs in (3.2),
(3.3), (3.5), and (3.6). Then from constraint (3.17) with assumption Q12 = I we have

P12 = I − P11Q11 = I −
[
X11 εX12

XT
12 X22

][
Y11 εY12

YT
12 Y22

]

= I −
[
ϑ1 + εϑ2 εϑ3

ϑ4 εϑT2 + ϑ5

]

,

EεP12E
−1
ε =

[
I − ϑ1 − εϑ2 −ϑ3

−εϑ4 I − εϑT2 − ϑ5

]

,

(3.29)

where

ϑ1 = X11Y11, ϑ2 = X12Y
T
12,

ϑ3 = X11Y12 +X12Y22, ϑ4 = XT
12Y11 +X22Y

T
12,

ϑ5 = X22Y22.

(3.30)

Also From (3.29) and (3.26) we can obtain controller parameters from (3.7). Also from
(3.7) controllers parameters are always well defined for all ε ∈ (0, ε∗] and limε→ 0+

[
Ac Bc
Cc Dc

]

become

Dc0 = Dk,

Cc0 = (Ck −DcCQ110),

Bc0 = ϑ−1
ε0

(
Bk − PT110BDc

)
,

Ac0 = ϑ−1
ε0

(
Ak −

(
PT110

(
A + BDcCy

)
Q11 + ϑε0BcCyQ110 + PT110BCc0

))
,

(3.31)

where ϑ1, ϑ3, ϑ5 are defined in (3.30) and

P110 =

[
X11 0

XT
12 X22

]

, Q110 =

[
Y11 0

YT
12 Y22

]

,

ϑε0 =

[
I − ϑ1 −ϑ3

0 I − ϑ5

]

.

(3.32)

This completes the proof.

Remark 3.2. Throughout the paper, it is assumed that the singular perturbation parameter
ε is available for feedback. Indeed, in many singular perturbation systems, the singular
perturbation parameter ε can be measured. In these cases, ε is available for feedback,
which has attracted much attention. For example, ε-dependent controllers were designed
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for singular perturbation systems in [22–24]. Since ε is usually very small, an ε-dependent
controller may be ill-conditioning as ε tends to zero. Thus, it is a key task to ensure the
obtained controller to be well defined. This problem will be discussed later.

3.2. H∞ Performance

Consider the closed loop system (2.7) with regulated output z1. In following theorem,
we proposed a procedure for obtaining controller parameters such that the closed loop
singular perturbed system (2.7) with regulated output z1 becomes asymptotically stable and
guarantees the H∞ performance with attenuation parameter γ .

Theorem 3.3. Given an H∞ performance bound γ and an upperbound ε∗ for the singular perturbation
ε, if there exist matricesAk, Bk,Ck,Dk, Y11, Y12, Y22,X11,X12, andX22 satisfying the following LMIs

ψ11(0) =

⎡

⎢⎢
⎣

Υ11(0) Υ12(0)

(∗)
−γI Dzw1 +Dzu1DkDyw

(∗) −γI

⎤

⎥⎥
⎦ ≤ 0,

ψ11(ε∗) =

⎡

⎢⎢
⎣

Υ11(ε∗) Υ12(ε∗)

(∗)
−γI Dzw1 +Dzu1DkDyw

(∗) −γI

⎤

⎥⎥
⎦ < 0,

(3.33)

where Υ11(ε∗) defined in (3.6) Υ12(ε∗) is

Υ12(ε∗) =

⎡

⎢⎢⎢⎢
⎣

Bw + BDkDyw

[
Y11 YT

12

ε∗Y12 Y22

]

CT
z + CT

kD
T
zu1

[
X11 XT

12

ε∗X12 X22

]

Bw + BkDyw CT
z1 + C

T
yD

T
k
DT
zu1

⎤

⎥⎥⎥⎥
⎦
. (3.34)

Then, for any ε ∈ (0, ε∗], the closed-loop singularly perturbed system (2.7) is asymptotically stable
and with anH∞-norm less than or equal to γ , also parameters controller are obtained from (3.7).

Proof. According to Lemma 2.2, the closed-loop singularly perturbed system (2.7) is
asymptotically stable and the L2 gain will be less or equal γ if (3.10) and following inequality
are satisfied:

⎡

⎢⎢
⎣

AT
clPε + P

T
ε Acl PTε Bcl CT

cl 1

(∗) −γI DT
cl 1

(∗) (∗) −γI

⎤

⎥⎥
⎦ < 0. (3.35)

Also Acl, Bcl, Ccl 1, and Dcl 1 are defined in (2.8).
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By pre- and postmultiplying with matrices diag(Π1, I, I) and diag(ΠT
1 , I, I), respec-

tively, it is concluded that:

⎡

⎢⎢
⎣

ΠT
1A

T
clΠ2 + ΠT

2AclΠ1 ΠT
2Bcl ΠT

1C
T
cl 1

(∗) −γI DT
cl 1

(∗) (∗) −γI

⎤

⎥⎥
⎦ < 0, (3.36)

where Π1 is defined in (3.18). According to proof of Theorem 3.1, ΠT
1A

T
clΠ2 + ΠT

2AclΠT
1 is

obtained. Also ΠT
2Bcl and ΠT

1C
T
cl 1 are presented as follows:

ΠT
2Bcl =

[
I 0

PT11 EεP12

][
Bw + BDcDyw

E−1
ε BcDyw

]

=

[
Bw + BDkDyw

PT11Bw + PT11BDkDyw + EεP12E
−1
ε BcDyw

]

=

[
Bw + BDkDyw

PT11Bw + BkDyw

]

,

ΠT
1C

T
cl 1 =

[
QT

11 Q12

I 0

][
CT
z1 + C

T
yD

T
c D

T
zu1

CT
c D

T
zu1

]

=

[
Q11C

T
z1 +Q11C

T
yD

T
c D

T
zu1 +Q12C

T
c D

T
zu1

CT
z1 + C

T
yD

T
c D

T
zu1

]

=

[
Q11C

T
z1 + C

T
kD

T
zu1

CT
z1 + C

T
yD

T
k
DT
zu1

]

.

(3.37)

From (3.36), and (3.37), we have

ψ11(ε) =

⎡

⎢
⎣

Υ11(ε) Υ12(ε)

ΥT
12(ε)

−γI Dzw1 +Dzu1DkDyw

(∗) −γI

⎤

⎥
⎦ < 0, (3.38)

where Υ11(ε) defined in (3.27) and

Υ12(ε) =

⎡

⎢⎢⎢⎢
⎣

Bw + BDkDyw

[
Y11 YT

12

εY12 Y22

]

CT
z1 + C

T
kD

T
zu1

[
X11 XT

12

εX12 X22

]

Bw + BkDyw CT
z1 + C

T
yD

T
k
DT
zu1

⎤

⎥⎥⎥⎥
⎦
. (3.39)

According to Lemma 2.5, the condition (3.38) is satisfied for all ε ∈ (0, ε∗], if (3.33) is
satisfied. (3.4) and (3.5) compute from procedure similar to proof of Theorem 3.1 and this
completes the proof.

3.3. H2 Performance

Consider the closed loop system (2.7) with regulated output z2, assumeAcl is stable,Dzw2 = 0
and Dyw = 0. In following theorem, we proposed a procedure for obtaining controller
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parameters such that the closed loop singularly perturbed system (2.7) with regulated output
z2 guarantees the H2 performance with attenuation parameter v. First we propose the
following lemma that is effective in proof of Theorem 3.5.

Lemma 3.4. The closed-loop singularly perturbed G : (Acl, Bcl, Ccl) has the H2 performance with
attenuation parameter v if following LMIs hold

[
AT

clPε + P
T
ε Acl PTε Bcl

(∗) −I

]

< 0, (3.40)

[
PTε Eε PTε C

T
cl

(∗) Z

]

> 0, (3.41)

trace(Z) < v. (3.42)

Proof. Consider the following closed-loop singular perturbed system:

ẋ(t) = E−1
e Aclx(t) + E−1

e Bclv(t),

z = Cclx(t),
(3.43)

where Ee is defined in (2.8). From Definition 2.3 we have the following equality:

‖G‖2
H2

=
∫∞

0
trace

(
Ccle

E−1
e AcltE−1

e BclB
T
clE
−1
e e

AT
clE
−1
e tCT

cl

)
dt. (3.44)

Now we define symmetric matrix Wε as follows:

Wε =
∫∞

0

(
eE

−1
e AcltE−1

e BclB
T
clE
−1
e e

AT
clE
−1
e t
)
dt. (3.45)

‖G‖2
H2

is obtained from the following equality:

‖G‖2
H2

= trace
(
CclWεC

T
cl

)
. (3.46)

We can be obtained from the following equation:

E−1
e AclWε +WεA

T
clE
−1
e + E−1

e BclB
T
clE
−1
e = 0. (3.47)

Suppose that there exist the matrix Xε with following structure:

Xε =

[
X′11 E−1

ε X
′
12

X′T12 X′22

]

(3.48)
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that satisfies the following inequality:

Wε < XεE
−1
e (3.49)

From (3.49), equation (3.47) can be rewritten as follow:

E−1
e AclXεE

−1
e + E−1

e X
T
ε A

T
clE
−1
e + E−1

e BclB
T
clE
−1
e < 0. (3.50)

Now, pre- postmultiplying (3.50) with Ee we have

AclXε +XT
ε A

T
cl + BclB

T
cl < 0. (3.51)

Also, from (3.46) and (3.49) we have

‖G‖2
H2

= trace
(
CclWεC

T
cl

)
< trace

(
CclXεE

−1
e C

T
cl

)
< v. (3.52)

This is equivalent to the existence of Z such that

CclXεE
−1
e C

T
cl < Z,

trace(Z) < v
(3.53)

by using of Schur complement on (3.51) and (3.53) we can conclude

[
XT
ε A

T
cl +AclXε Bcl

(∗) −I

]

< 0, (3.54)

[
EePε CT

cl

(∗) Z

]

> 0 (3.55)

with assumption X−1
ε = Pε and pre- and postmultiplying (3.54) by diag(PTε , I) and diag(Pε, I),

respectively, we have

[
AT

clPε + P
T
ε Acl PεBcl

(∗) −I

]

< 0,

[
EePε PTε C

T
cl

(∗) Z

]

> 0,

trace(Z) < v .

(3.56)

This completes the proof.
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Theorem 3.5. Given anH2 performance bound v and an upperbound ε∗ for the singular perturbation
ε, if there exist matrices Ak, Bk, Ck, Dk, Y11, Y12, Y22, X11, X12, and X22 such that trace(Z) < v
andsatisfying the following LMIs:

ψ̃11(0) =

[
Υ11(0) Υ̃12(0)

(∗) −I

]

≤ 0,

ψ̃11(ε∗) =

[
Υ11(ε∗) Υ̃12(ε∗)

(∗) −I

]

< 0,

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

⎡

⎢⎢⎢⎢⎢
⎣

Y11 0 I 0

0 0 0 0

I 0 X11 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦

[
Y11 Y12

0 Y22

]

CT
z2 + C

T
kD

T
zu2

CT
z2 + C

T
yD

T
kD

T
zu2

∗ Z

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,

⎡

⎢⎢⎢⎢⎢⎢
⎣

⎡

⎢⎢⎢⎢
⎣

[
Y11 ε∗Y12

ε∗YT
12 ε∗Y22

] [
I 0

0 ε∗I

]

[
I 0

0 ε∗I

] [
X11 ε∗X12

ε∗XT
12 ε∗X22

]

⎤

⎥⎥⎥⎥
⎦

[
Y11 Y12

ε∗YT
12 Y22

]

CT
z2 + C

T
kD

T
zu2

CT
z2 + C

T
yD

T
kD

T
zu2

(∗) Z

⎤

⎥⎥⎥⎥⎥⎥
⎦

> 0,

(3.57)

where Υ11(ε∗) defined in (3.6) and Υ̃12(ε∗) is

Υ̃12(ε∗) =

⎡

⎢⎢
⎣

Bw
[

X11 XT
12

ε∗X12 X22

]

Bw

⎤

⎥⎥
⎦. (3.58)

Then, for any ε ∈ (0, ε∗], the closed-loop singularly perturbed system (2.7) is asymptotically stable

and with anH2-norm less than or equal to v, also parameters controller are obtained from (3.7).

Proof. The proof is similar to proof of Theorem 3.3. From Lemma 3.4, the closed-loop
singularly perturbed system (2.7) has H2 performance less than or equal v if (3.40), (3.41)

and (3.42) are satisfied.

From (3.18) and (3.37), multiplying inequalities (3.40) and (3.41), by the matrices
diag(Π1, I, I) and diag(ΠT

1 , I, I), gives
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ψ̃11(ε) =

[
Υ11(ε) Υ̃12(ε)

(∗) −I

]

< 0, (3.59)

⎡

⎢⎢⎢⎢⎢⎢
⎣

⎡

⎢⎢⎢⎢
⎣

[
Y11 εY12

εYT
12 εY22

] [
I 0

0 εI

]

[
I 0

0 εI

] [
X11 εX12

εXT
12 εX22

]

⎤

⎥⎥⎥⎥
⎦

[
Y11 Y12

εYT
12 Y22

]

CT
z2 + C

T
k
DT
zu2

CT
z2 + C

T
yD

T
kD

T
zu2

(∗) Z

⎤

⎥⎥⎥⎥⎥⎥
⎦

> 0, (3.60)

where:

Υ̃12(ε) =

⎡

⎢⎢
⎣

Bw + BDkDyw
[
X11 XT

12

εX12 X22

]

Bw + BkDyw

⎤

⎥⎥
⎦ (3.61)

According to Lemma 2.5, the inequalities (3.59) and (3.60) are valid for all ε ∈ (0, ε∗],
if (3.57) is satisfied and proof is complete.

3.4. Multiobjective H2/H∞ Performance

Now we have got the LMIs in Theorems 3.3 and 3.5 thus we can solve the multiobjective
H2/H∞ synthesis problem easily for closed-loop singularly perturbed system (2.7) with
regulated outputs z1 and z2.

Theorem 3.6. Given anH∞ performance bound γ ,H2 performance bound v and an upperbound ε∗

for the singular perturbation ε, if there exist matricesAk, Bk, Ck,Dk, Y11, Y12, Y22,X11,X12, andX22

such that trace(Z) < v satisfying the LMIs (3.4), (3.5), (3.33), and (3.57). Then, for any ε ∈ (0, ε∗],
the closed-loop singularly perturbed system (2.7) is asymptotically stable and with anH∞-norm less
than or equal to γ , an H2-norm less than or equal to v, also parameters controller are obtained from
(3.7).

Proof. It is from the proof of Theorems 3.3 and 3.5 and omitted for save of brevity.

4. Numerical Example

In this section, we present a numerical results to validate the designed dynamic output
feedback controller for singularly perturbed systems with H∞ or H2 performance.
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Figure 1: Simulation for full-order system (4.1) with ε∗ = 0.1.
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Figure 2: Simulation for full-order system (4.1) with ε∗ = 0.001.
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Figure 3: Simulation for reduced order system (4.3).
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Figure 4: Simulation for full-order system (4.4) for ε∗ = 0.1, 0.025.
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Figure 5: Band-limited white noise.
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Figure 6: Regulated output z2 for ε∗ = 0.001.
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Figure 7: Regulated output z2 for ε∗ = 0.1.
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Figure 8: Regulated output z2 for ε∗ = 0.001.
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Figure 9: Regulated output z2 for ε∗ = 0.1.
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Figure 10: Disturbance signal w(t).

4.1. H∞ Performance

Consider the following two-dimensional system and performance index [10]

[
ẋ1(t)

εẋ2(t)

]

=

[
2 1

−1 −2

][
x1

x2

]

+

[
2

1

]

u(t) +

[
1

3

]

w(t),

z1 =
[
2 0.1

]
[
x1

x2

]

+ 0.1w(t),

y(t) =
[
1 0
]
[
x1

x2

]

+w(t).

(4.1)
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Figure 11: Regulated output z2 with ε∗ = 0.1.
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√∫ t

0 z
T
1 (s)z1(s)/

∫ t
0 w

T (s)w(s) with ε∗ = 0.1.
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From Theorem 3.3, for ε∗ = 0.1 minimum of γ is obtained as 0.11942. Controller parameters
are as follows:

Ac =

[
−108.89 −31.42

91.35 5.201

]

,

Bc =

[
−.22

0.05

]

,

Cc =
[
−1793.2 −536.1

]
,

Dc = −4.7658.

(4.2)

For upperband ε∗ = 0.001, minimum γ is calculated as 0.1. As we expect γε∗=0.001 ≤ γε∗=0.1.
From ε = 0, we obtain reduced order dynamic as follows:

ẋ1(t) = 1.5x1(t) + 2.5u(t) + 2.5w(t),

z1 = 1.95x1(t) + 0.05u(t) + 0.15w(t),

y(t) = x1(t) +w(t).

(4.3)

Here, minimum value γ is calculated as 0.029. For w = e−0.1t sin(10t), Figures 1, 2, and 3

exhibit
√∫ t

0 z
T
1 (s)z1(s)ds/

∫ t
0 w

T (s)w(s)ds, respectively.

As a new example for H∞ performance, now consider an F-8 aircraft model [25]:

[
ẋ1

εẋ2

]

=

([
A1 A2

A3 A4

])[
x1

x2

]

+

([
B1

B2

])

u +

[
Bw1

Bw2

]

w,

z =
[
Cw1 Cw2

]
[
x1

x2

]

,

y =
[
Cy1 Cy2

]
[
x1

x2

]

+

[
1

1

]

w

(4.4)

with
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A1 =

[
−0.01357 −0.0644

0.06 0

]

, A2 =

[
−0.003087 0

0.040467 0

]

,

A3 =

[
−0.0453775 0

0.07125 0

]

, A4 =

[
−0.03055 0.075

−0.075083 −0.01674

]

,

B1 =

[
−0.0004333

0.0697

]

, B2 =

[
−0.052275

0.019712

]

,

Bw1 =

[
−0.463

6.07

]

, Bw2 =

[
−4.5525

−11.262499

]

,

Cy1 =

[
0 0

1 0

]

, Cy2 =

[
0 0.02

0 0

]

.

(4.5)

From Theorem 3.3, for ε∗ = 0.025 minimum of γ is obtained as 1.908. Controller parameters
are as follows:

Ac =

⎡

⎢⎢⎢⎢⎢
⎣

−17.0078 41.1022 −62.0967 0.15894

800.6192 −2017.7 3070.05 −5.964

−1964.9 4954.9 −7541 15.033

39387 −109682.3 165444.1 −407.4100

⎤

⎥⎥⎥⎥⎥
⎦
,

Bc =

⎡

⎢⎢⎢⎢⎢
⎣

−0.5966 0.5893

29.39 −28.98

−72.249 70.9783

1586.7 −1406.2

⎤

⎥⎥⎥⎥⎥
⎦
,

Cc =
[
−3643.8 7991 −6482 336.66

]
,

Dc =
[
−76.567 −4.3010

]
.

(4.6)

For upperband ε∗ = 0.1, minimum γ is calculated as 3.96. As we expect γε∗=0.025 ≤ γε∗=0.1.

For w = e−0.1t sin(10t), Figure 4 exhibits
√∫ t

0 z
T
1 (s)z1(s)ds/

∫ t
0 w

T(s)w(s)ds.
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4.2. H2 Performance

Consider singular perturbed system (3.60) as

[
ẋ1(t)

εẋ2(t)

]

=

[
−2 1

−1 −2

][
x1(t)

x2(t)

]

+

[
2

1

]

u(t) +

[
1

3

]

w(t),

z2 =
[
4 0
]
[
x1(t)

x2(t)

]

+ 2u(t),

y(t) =
[
1 0
]
[
x1(t)

x2(t)

]

.

(4.7)

By utilizing Theorem 3.5, minimum value of ν for ε∗ = 0.1 is obtained as 0.074. The
controller parameters are as follows:

Ac =

[
−2558.6 −4.289

2566620 −195.16

]

,

Bc =

[
1.62

−163.03

]

,

Cc =
[
−0.034 0.011

]
,

Dc = −4.1.

(4.8)

For upperband ε∗ = 0.001, minimum v is calculated as 0.0002. As we expect vε∗=0.001 ≤ vε∗=0.1.
Figures 5, 6, and 7 show input noise and regulated output z2, respectively.

As a new example for H2 performance, now consider singular perturbed system as

[
ẋ1(t)

εẋ2(t)

]

=

[
−1 0.5

1 −2

][
x1(t)

x2(t)

]

+

[
2

1

]

u(t) +

[
1

3

]

w(t),

z2 =
[
3 0
]
[
x1(t)

x2(t)

]

+ 2u(t),

y(t) =
[
1 1
]
[
x1(t)

x2(t)

]

.

(4.9)

By utilizing Theorem 3.5, minimum value of ν for ε∗ = 0.1 is obtained as 0.003. The
controller parameters are as follows:
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Ac =

[
5243.9 −14292.8

29566.58 −80500.28

]

,

Bc =

[
−0.167

−9.4145

]

,

Cc =
[
−77312.6 6829.2

]
,

Dc = −3.8 × 10−9.

(4.10)

For upperband ε∗ = 0.001, minimum v is calculated as 0.0004. As we expect vε∗=0.001 ≤ vε∗=0.1.
Input noise is shown in Figures 5, 8, and 9 show the regulated output z2, respectively.

4.3. H∞/H2 Performance

Now, consider singular perturbed system (3.60) as

[
ẋ1

εẋ2

]

=

[
2 1

−1 −2

][
x1

x2

]

+

[
2

1

]

u +

[
1

3

]

w,

z1 =
[
2 0.1

]
[
x1

x2

]

+ 0.1w,

z2 =
[
4 0
]
[
x1

x2

]

+ 2u,

y =
[
1 0
]
[
x1

x2

]

+w.

(4.11)

According to Theorem 3.6, due to minimization of ν+γ for ε∗ = 0.1, the values of ν = 0.14 and
γ = 0.233 are calculated. By similar calculation, due to minimization of ν + γ for ε∗ = 0.001,
the values of ν and γ are calculated as 0.088 and 0.2018, respectively.
Here, controller parameters are as the follows when ε∗ = 0.1:

Ac =

[
−7.4 −9.17

817.41 −0.5

]

,

Bc =

[
4.16

−52.18

]

,

Cc =
[
−0.15 × 10−4 0

]
,

Dc = −3.206.

(4.12)
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Figures 10 and 11 show input signal w(t) and regulated output z2. Based on the H∞/H2,
considered controller is designed to minimize effect of signal w on regulated output z2. Also
the ratio of the regulated output energy to the disturbance energy is shown in Figure 12.

5. Conclusions

In this paper, we addressed robust H2 and H∞ control via dynamic output feedback control
for continuous-time singularly perturbed systems. By formulating all objectives in terms
of a common Lyapunov function, the controller was designed through solving a set of
inequalities. A dynamic output feedback controller was developed such that first, theH∞ and
H2 performances of the resulting closed-loop system is less than or equal to some prescribed
values, and furthermore, these performances are satisfied for all ε ∈ (0, ε∗]. Apart from our
main results, Theorems 3.1 to 3.6 show that the ε-dependent controller is well defined for all
ε ∈ (0, ε∗] and can be reduced to an ε-independent providing ε is sufficiently small. Finally,
numerical simulations were provided to verify the proposed controller.
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