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Most of the engineering problems are modeled as evolutionary multiobjective optimization
problems, but they always ask for only one best solution, not a set of Pareto optimal solutions.
The decision maker’s subjective information plays an important role in choosing the best solution
from several Pareto optimal solutions. Generally, the decision-making processing is implemented
after Pareto optimality. In this paper, we attempted to incorporate the decider’s subjective sense
with Pareto optimality for chromosomes ranking. A new ranking method based on subjective
probability theory was thus proposed in order to explore and comprehend the true nature of the
chromosomes on the Pareto optimal front. The properties of the ranking rule were proven, and its
transitivity was presented as well. Simulation results compared the performance of the proposed
ranking approach with the Pareto-based ranking method for two multiobjective optimization
cases, which demonstrated the effectiveness of the new ranking approach.

1. Introduction

Evolutionary multiobjective optimization (EMO) is widely used in various engineering
fields for analyzing the complex criteria [1]. The general evolutionary algorithms (EAs) first
generate the Pareto optimal solutions based on Pareto optimality [2–4], and then choose the
best one by the user’s interaction [5]. The first step to achieve the Pareto optimal set is usually
not only time consuming, but also generates many redundant solutions. In fact, most of the
engineering cases only require one solution without any additive choices. However, little
efforts have been put into incorporating the subjective information with Pareto optimality to
reduce the search space in the first step. So this paper tried to propose a new rank method to
generate one solution which is consist with the subjective information in one step.

The paper is organized as follows. The next section introduces a biobjective
optimization case where the proposed method is initiated from. Based on the simple case,
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the new ranking method based on subjective probability is proposed in Section 3. In order to
ensure the efficiency of the new method, several theory proof are presented to demonstrate
its properties in Section 4. In Section 5, our proposed method is applied to two different EMO
algorithms, genetic programming and particle swarm optimization, to certify its validity for
ranking large numbers of chromosomes. The first simulation test is implemented to identify
the model design of a classical nonlinear autoregressive with extra inputs (NARX) model,
which is the most popular method as a foundation for model construction [6]. In addition, in
the second simulation, the test function with multimodality is also discussed. Experimental
results are also presented along with a comparison to the corresponding Pareto-based EMO
approaches. Concluding remarks are given in Section 6.

2. Preliminary

In this part, I would like to give an example to introduce the idea of ranking chromosomes
based on subjective probability theory as following.

Consider that we would wait for a line to buy a ticket, and there are two strategies: the
ticket costs 1 but we have to wait for 100 minutes; or we can only spend 70 minutes waiting
and cost 2. Which choice will you make if considering the absolute lost/earn amounts of
money and time? On the other hand, which choice will you make if considering the lost/earn
percentage of money and time?

Obviously, it is a biobjective minimization problem, and time and money are two
objectives. Assume f1 and f2 denote the two objectives, u = {u1, u2} and v = {v1, v2}
are two points on the Pareto front. Two strategies described in this problem can be expressed
as u = {100, 1} and v = {70, 2}.

First, assume that a decision maker’s attitude is influenced by the absolute difference
between values of two strategies for each objective. That is, |u1 − v1| = |100 − 70| = 30,
|u2 − v2| = |1 − 2| = 1. Suppose that the decision maker holds the first strategy, he has two
choices: change his assets and hold the second strategy; not change his assets and still hold
the first strategy. If he changes his mind to take the second strategy, he would save 30 minutes
and cost 1 more; otherwise, he would lose the opportunity of saving 30 minutes but save 1 at
the same time. In contrast, suppose that he holds the second strategy, if he changes his mind
from the second strategy to the first strategy, he would lose 30 minutes and save 1; otherwise,
he would save 30 minutes and cost 1.

Table 1 shows the decision table of this case, by using the multicriteria decision-
making model. For our problem, there are four actions and two criteria to evaluate the
decision maker’s attitude. Since both of the objectives are minimized, we can consider that
the positive consequencemeans the degree of satisfactory if the corresponding action is taken;
the negative one means the degree of disappointment if the action is taken. Then, the decision
maker will choose the action with a higher degree of satisfactory in terms of two criteria. In
order to balance two criteria, we can compare the consequences of different actions based on
the utility function U(time, money) or according to the weighted function

∑2
i=1 wi ∗ fi, where

wimeans the importance index of different criteria (such as,w1 for time andw2 for money).
But it is limited to measure the decision maker’s evaluation only according to

the absolute difference of two consequences. Always, the decision maker will change the
evaluation as his possessive assets change. This is the basis of the proposed method to
comprehend the true nature of the chromosomes on the Pareto optimal front. For example,
when the decision maker holds the first strategy, his current assets are 100 minutes and 1,
if he changes to the second strategy, his time asset will obtain (100 − 70)/100 = 0.3 benefit
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Table 1: The decision table for the example without considering the decision maker’s current assets.

Actions
Consequences

Criterion 1: time (f1) Criterion 2: money (f2)

Change from u to v 30 −1
No change from u to v −30 1
Change from v to u −30 1
No change from v to u 30 −1

with reference to his present time asset (100mins), and his money asset will lose (2−1)/1 = 1
benefit with reference to his present money asset (2.1). In contrast, when his current assets are
70 minutes and 2, if he gives up what he owns in order to achieve 100 minutes and 1, his time
asset will lose (100−70)/70 = 3/7 benefit with reference to his present money asset (70mins),
and his money asset will obtain (2 − 1)/2 = 0.5 benefit with reference to his present money
asset (3.1). Therefore, if the situation of the decision maker changes, then so may his attitude.
This is an important nature we should take into account for chromosome ranking. Based on
such conclusion, we proposed a new ranking method that can assess the decision maker’s
attitude in the context of his current assets, and then redetermine the evaluation according
to the change of his current assets. Table 2 presents the decision table when the new ranking
method is applied to our example.

In Table 2, the positive consequence means the degree of belief if the corresponding
action is taken; the negative value means the degree of unbelief of the corresponding action.
So we define the belief/unbelief degree of an action changing from ui to vi as

bi(u, v) =
ui − vi

ui
. (2.1)

It can be seen that even though the absolute differences of time criterion of four actions
are the same, the degree of belief and the degree of unbelief differ too much, when the current
asset of the decision maker changes. In Table 1, the degree of satisfaction of changing from u
to v is the same as that of not changing from v to u, so does the degree of disappointment.
But in Table 2, when the decision maker holds with u, the degree of belief of changing from
u to v is 0.3 with respect to time and not changing is 1 with respect to money; on the other
hand, when the decision maker holds with v, the degree of belief of changing from v to u is
0.5 with respect to money, and not changing is 3/7 with respect to time. Hence, the rank of v
and u cannot be determined by using the traditional utility functions. A new ranking rule is
then proposed in the following part.

3. A Ranking Rule Based on Subjective Probability

From the above example, we acknowledge an implicit assumption that a decision maker’s
degrees of belief/unbelief are always conditional upon his current situation. Thus, we define
a decision maker’s subjective probability P(A | x) to denote the probability of the decision
maker taking action A when his current fortune is x.

Assume that there are two actions {A1, A2} in the event space. When the decision
maker stands at the point u, A1 denotes “change from u to v” is approved while A2 denotes
“change from u to v” is not approved. Thus, P(A1 | u) + P(A2 | u) = 1.
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Table 2: The decision table for the example considering the decision maker’s current assets.

Actions
Consequences

Criterion 1: time (f1) Criterion 2: money (f2)

Change from u to v 30/100 = 0.3 −1/1 = −1
No change from u to v −30/100 = −0.3 1/1 = 1
Change from v to u −30/70 = −3/7 1/2 = 0.5
No change from v to u 30/70 = 3/7 −1/2 = −0.5

If P(A1 | u) > P(A2 | u), the decision maker will change u to v. In another saying,
he believes v is better than u. Otherwise, he prefers u to v. Thus, we propose to model the
decision maker’s preference based on his subjective probability for ranking.

The decision maker’s subjective probabilities, P(Ai | u), is expressed according to the
degree of subjective belief/unbelief for the actionAiwhen the decision maker owns u. As we
have seen, in Table 2, the consequences show the degrees of subjective belief/unbelief of each
action in the context of the decision maker’s current assets. It is noted that the range of belief
degree is (0,+∞) and the range of unbelief degree is (−∞, 0). In order to avoid the infinite
issue because of the denominator of the belief/unbelief degree equation being zero, there are
two postprocessing ways for bi(u, v) from (2.1). One way is to add an infinitesimally small
number to the denominator of the belief/unbelief degree equation when its value is zero,
and such small number should be almost zero-influence for the outcome of the optimization.
Another way is to apply the property of some special utility function to bi(u, v) to transfer the
infinite space to the finite space, such as, ant-tangent function. But the second postprocessing
way would bring about a risk that the choice of the priorities of the different criteria on the
outcome of the optimization is hard to determine for the user because a nonlinear utility
function changed the relationships of these criteria. Therefore, here the first postprocessing
way is used to avoid the infinite issue for the belief/unbelief degree equation, which makes
the ranking strategy intuitive for the user.

Since different criteria are considered to be in the different priority level, we define ω1

and ω2 as the weights of belief/unbelief degree of criterion 1 and 2, respectively, ω1 +ω2 = 1.
In order to make sure P(Ai | u) ∈ [0, 1], the subjective probabilities are written as

P(A1 | u) = ω1 ∗ ((u1 − v1)/u1) +ω2 ∗ ((u2 − v2)/u2) + 1
2

, (3.1)

P(A2 | u) = ω1 ∗ ((v1 − u1)/u1) +ω2 ∗ ((v2 − u2)/u2) + 1
2

. (3.2)

The same derivation also works for the situation when the decision maker stands at
the point v, thus we have

P(A1 | v) = ω1 ∗ ((v1 − u1)/v1) +ω2 ∗ ((v2 − u2)/v2) + 1
2

,

P(A2 | v) = ω1 ∗ ((u1 − v1)/v1) +ω2 ∗ ((u2 − v2)/v2) + 1
2

.

(3.3)
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Suppose d(u, v) = ω1 ∗ ((u1 − v1)/u1) + ω2 ∗ ((u2 − v2)/u2), d(v, u) = ω1 ∗ ((v1 − u1)/v1) +
ω2 ∗ ((v2 − u2)/v2), we propose a new ranking rule described as follows.

(1) If d(u, v) > d(v, u), then we have P(A1 | u) > P(A2 | u), thereby u should be
substituted by v. Therefore, in this case, v � u, that is, rank(v) < rank(u).

(2) If (u, v) < d(v, u), then we have P(A1 | u) < P(A2 | u), thereby u should not be
substituted by v. Therefore, in this case, v ≺ u, that is, rank(v) > rank(u).

(3) If d(u, v) = d(v, u), thus v ∼ u, that is, rank(v) = rank(u).

4. Method Analysis

This part illustrates the analysis of ranking two tradeoffs u and v with the proposed method.

Theorem 4.1. When P(A1 | u) > P(A2 | u), then P(A1 | v) < P(A2 | v).

Proof. Since P(A1 | u) > P(A2 | u), then ω1 ∗ ((u1 − v1)/u1) +ω2 ∗ ((u2 − v2)/u2) > 0,
For the multiobjective optimization problem, one term is positive and another is

negative. They would yield to the same solution. Hence, here we assume ω1 ∗ |((u1 −
v1)/u1)| > ω2 ∗ |((u2 − v2)/u2)|, u1 > v1, u2 < v2. Derived from this assumption, we have
ω1 ∗ |((v1 − u1)/v1)| > ω2 ∗ |((u1 − v1)/u1)|; ω2 ∗ |((v2 − u2)/v2)| < ω2 ∗ |((u2 − v2)/u2)|.
Consequently, ω1 ∗ |((v1 − u1)/v1)| > ω2 ∗ |((v2 − u2)/v2)|, that is, P(A1 | v) < P(A2 | v).

As a conclusion, when P(A1 | u) > P(A2 | u), then P(A1 | v) < P(A2 | v) is certain.
In other words, when d(u, v) > 0, then d(v, u) < 0. In this case, the decision maker prefers to
hold v instead of u. It is observed that this theorem consists with the ranking rule 1.

Theorem 4.2. When P(A1 | u) < P(A2 | u), the relation of P(A1 | v) and P(A2 | v) yields to the
final rank sequence.

Proof. According to P(A1 | u) < P(A2 | u), we haveω1∗|((u1−v1)/u1)| < ω2∗|((u2−v2)/u2)|.
But it is found that ω1 ∗ |((v1 − u1)/v1)| > ω2 ∗ |((u1 − v1)/u1)|; ω2 ∗ |((v2 − u2)/v2)| <
ω2 ∗ |((u2−v2)/u2)|, so the comparison ofω1 ∗ |((v1−u1)/v1)| andω2 ∗ |((v2−u2)/v2)| is still
unknown. Therefore, we should consider the following situations corresponding to different
relations of P(A1 | v) and P(A2 | v).

(1) When d(v, u) > 0, that is, P(A1 | v) > P(A2 | v), the ranking model is if d(u, v) < 0,
and d(v, u) > 0, thus v ≺ u, that is, rank(v) > rank(u). This case obeys the ranking
rule 2.

(2) When d(v, u) < 0, that is, P(A1 | v) < P(A2 | v), P(A1u), and P(A1 | v) are
compared and the point with the higher probability should be changed, that is,

(i) if P(A1 | u) > P(A1 | v), that is, d(u, v) > d(v, u), thus v � u, that is, rank(v) <
rank(u);

(ii) if P(A1 | u) < P(A1 | v), that is, d(u, v) < d(v, u), thus v ≺ u, that is, rank(v) >
rank(u);

(iii) if P(A1 | u) = P(A1 | v), that is, d(u, v) = d(v, u), thus v ∼u, that is, rank(v) =
rank(u).

As a conclusion, when P(A1 | u) < P(A2 | u), different relations of P(A1 | v) and P(A2 | v)
would cause different ranking, and still obey the proposed ranking model.
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Theorem 4.3. Transitivity property: when w1 = w2, if d(u, v) > d(v, u) and d(v,w) > d(w,v),
then d(u,w) > d(w,u).

Proof. Since d(u, v) − d(v, u) = −ω1 ∗ (v1/u1 − u1/v1) −ω2 ∗ (v2/u2 − (u2/v2)), assume that
k1 = (v1/u1) > 1, k2 = (u2/v2) > 1, then we have d(u, v) − d(v, u) = −ω1 ∗ (k1 − 1/k1) +ω2 ∗
(k2 − 1/k2).

In the case with w1 = w2, d(u, v) − d(v, u) = ω1 ∗ (k2 − k1)(1 + 1/k1 k2). Because
ω1, k1, k2 > 0, d(u, v) − d(v, u) > 0, it can be derived that k2 > k1.

Similarly, assume that m1 = (w1/v1) > 1, m2 = (v2/w2) > 1, according to d(v,w) >
d(w,v), we can get that m2 > m1.

Hence, u and w can be ranked based on

d(u,w) − d(w,u) = ω1 ∗
(

u2
w2

− w1
u1

)(

1 +
1

w1u2/u1w2

)

= ω1 ∗ (k2m2 − k1m1)
(

1 +
1

k1m1k2m2

)

> 0.

(4.1)

5. Simulation

In the simulation part, as an extension, we applied the proposed approach ranking
hundreds of candidates to a general EMO approach and discussed the improvement. Genetic
programming (GP) and particle swarm optimization (PSO), two popular evolutionary
algorithms for multiobjective optimization, are used to combine with the proposed ranking
method in the following simulations.

5.1. The Proposed Ranking Method with MOGP

From the previous researchers [7, 8], it is found that multiobjective genetic programming
(MOGP) was a good EMO tool to discover and optimize the structure of nonlinear models.
So, we take into account a nonlinear systems design problem, and then compare the
application performance of the proposed approach and the traditional Pareto-based EMO
methods.

Assume an unknown system expressed in the form of a general regression model as

y = 10x4x3 + 5x3 + 5 + n, (5.1)

where y is the output vector that is observed after the input data went through an unknown
system in the presence of the additive white noise n, with zero mean and variance 0.01. The
input data is actually expressed by an input regression matrix with four different features
X = {x1, x2, x3, x4}. The vectors x1, x2, x3 are independent variables generated by random
while x4 is the sum of x1 and x2. That means the diversity of structures is increased and
more candidate solutions have the same approximate performance but different structure
complexity. Three objectives are required for this problem, that is, minimizing the complexity
of the model structure, minimizing the number of features involved in the model and
minimizing the mean squared error (MSE) of the output.
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Thereby, the Pareto-based EMO methods would generate more Pareto optimal
solutions in the first step. Here, we first used a popular Pareto-based EMO method,
the nondominated sorting genetic algorithms (NSGA-II) described in [9] to identify the
unknown nonlinear system. NSGAII-GP is implemented in two steps: Pareto optimality
and final decision making. For the nonlinear system design problem, the final decision
generally prefers to the smallest approximate error in the Paretooptimal set. Consequently,
its results are compared with those results obtained after applying the proposed ranking
approach to solve this problem. For the proposed ranking approach, we defined all the
weights parameters as 1.

We used 2000 records in the training data. All of the genetic programming algorithms
defined the same simulation parameters: population size = 100, generation = 20, maximum
depth of trees = 5, crossover probability = 0.7, andmutation probability = 0.3. Table 3 presents
the results of the proposed ranking approach and NSGAII-GP in 10 trails.

Through the comparison of the results of (a) and (b) in Table 3, it can be found that
NSGAII-GP cannot obtain the optimal structure of models while the new GP method with
the proposed ranking approach can easily converge to the best solution. Actually, NSGA-II
can only find the Paretooptimal set, from which designers should use multicriteria decision
making (MCDM) techniques to obtain the best solution. But the realization of MCDM always
needs a complex ranking procedure among all the Pareto optimal solutions. Hence, the new
MOGP algorithm using the proposed ranking approach provides a better way to solve the
nonlinear system design problem without much complex comparison of candidate solutions
and be able to obtain the satisfied solution.

5.2. The Proposed Ranking Method with MOPSO

Multiobjective particle swarm optimization (MOPSO) is widely used in a variety of applica-
tions, such as, neural network, with the outstanding advantages of simple implementation
and low computational cost [10]. This section applied the proposed ranking method to the
MOPSO algorithm to generate a new algorithm. The test function T4 proposed by Zitzler [11]
is taken into account to test the new algorithm’s ability to deal with multimodality.

As we know, the test function T4 contains 219 local Pareto optimal sets, as the red
triangles in Figure 1; the global Pareto optimal front is formed with the function g = 1, as the
blue line formed by the red circles in Figure 1. Thus, the general Paretooptimality methods
usually sank into the local Pareto optimal fronts and hard to totally obtain the global Pareto
front. From Figure 1, it is seen that there are more than one local Pareto optimal front in this
simulation problem and additionally not all local Paretooptimal sets are distinguishable in the
objective space. This issue caused the general Pareto optimality methods tend to stop at some
local Pareto optimal solutions and miss some global Pareto optimal solutions. Therefore, the
MOPSO using the Pareto optimal ranking method has much trouble to obtain the global
Pareto optimal sets in the Paretooptimality step. Consequently, it is probable that the global
optimal solution was omitted in the Paretooptimality step, which would directly make the
performance of the decision-making step worse.

However, when the proposed ranking method with the MOPSO is applied to solve
this problem, it works very well, more importantly, there is no risk about missing the global
optimal solution and only one step is implemented to obtain the final unique result. Assume
that the first objective f1 is at a higher priority level than the second objective f2, then the
weights of belief/unbelief degree of the objective f1 and f2 are defined to have the following
relationship: w1/w2 = 2. Figure 2 presents the convergence curve in terms of the objective f1
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Table 3: Comparison of the new GP algorithm with the proposed ranking approach and NRGAII-GP
for a classical nonlinear system design problem: (a) model results of the new MOGP algorithm with the
proposed ranking approach for 10 trials; (b)model results of NRGAII-GP for 10 trials.

(a)

Trials
Results of the MOGP algorithm with the proposed ranking approach

Structure Number of features MSE

1 x3 + x3x4 2 1.8479e-4
2 x3 + x4x3 2 1.8265e-4
3 x3 + x4x3 2 1.8143e-4
4 x4x3 + x3 2 1.7979e-4
5 x3 + x3x4 2 1.7688e-4
6 x3 + x4x3 2 1.7720e-4
7 x4x3 + x3 2 1.8062e-4
8 x4x3 + x3 2 1.7902e-4
9 x3 + x3x4 2 1.8638e-4
10 x3 + x4x3 2 1.7611e-4

(b)

Trials
Results of the MOGP algorithm with NSGA-II

Structure Number of
features MSE

1 (x3 + x2) + x1 + (x1x2x3x2) + (x4 + x3)(x3 + x4) + x1x1 + x3x4 4 1.8479e-4
2 ((x4 + x1) + x3x4) + x1x1x1 + (x4x4)(x3x4) 3 1.8265e-4
3 (x4x3)(x4x2)(x4 + x2)x3x2 + (x4 + x3) + (x3x4) 3 1.8143e-4
4 x2x3 + x4x3 + (x2 + x3) + x4 + (x4 + x3)x4x4(x3x3)(x2x2) 3 1.7979e-4
5 (x2x2)(x2x3)(x3x1) + (x3 + x4 + x3x4) + (x2 + x3x3) 4 1.7688e-4
6 x1x1 + ((x3 + x4) + x4x3) + (x4x3(x4x4))(x2x3) 4 1.7720e-4
7 ((x1x1)x1 + x1) + (x4x3x4x2) + (x3 + x4x4) 3 1.8062e-4
8 ((x1x1) + x4x3) + ((x1 + x3) + x3x3) + x3x3x4x4 + x4 3 1.7902e-4
9 (x1x1x1) + x1x2 + x3 + x2 + x4x3 + x3x3 + x1 4 1.8638e-4
10 (x3 + x4x3) + x1x1x1x1 + (x4 + x4x3)((x2 + x2)x3x2) 4 1.7611e-4

(black) and f2 (blue), respectively. It is found that the proposed rankingmethod canmake the
objective with a higher priority quickly converge to the global minimum or maximum, and
then other objectives naturally converge to the global minimum or maximum that satisfied
the first objective. This simulation has been worked for 100 times and the results are stable.
Therefore, it is concluded that the proposed ranking method with the MOPSO can achieve
the final result that located on the goal Pareto front and throw off the local optimums when
the multiobjective optimization problem is multimodality.

6. Summary

A new ranking approach for evolutionary multiobjective optimization was presented.
Compared with the Pareto-based EMO algorithms, the main advantage of this proposed
ranking approach is to conduct the final solution which consists with the subjective
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Figure 1: The Pareto optimal sets for the test function T4 include the global Pareto optimal sets (circles)
and the local Pareto optimal sets (triangles).
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Figure 2: The convergence curve in terms of the objective f1 (black) and f2 (blue), respectively, when the
proposed ranking method with the MOPSO is applied to the test function T4.

information in one step without Pareto optimality. More importantly, this approach used the
belief/unbelief degree to express a subjective choice of the user instead of the conventional
absolute difference of two consequences, because the belief/unbelief degree takes the current
asset into account instead of measuring different species on the same scale. Therefore, the
proposed function can comprehend the true nature of the chromosomes ranking better than
a simple weighted sum of the objective. The validity of this approach for ranking large
numbers of candidate solution in EMO is demonstrated by two simulations. First simulation
test is about nonlinear system design. Simulation results present that the results of the MOGP
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with the proposed ranking approach show higher solution accuracy and faster convergence
than a popular multiobjective GP algorithm, NSGAII-GP. Furthermore, the proposed ranking
approach is applied to the MOPSO to present its performance to deal with the multimodality
optimization problem. After being compared with the general Paretooptimality method, it
is found that the proposed ranking approach with the subjective preference information
performs better to obtain the final global optimal solution.
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