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An indirect eigenfunction marching method (IEMM) is developed to provide step approximations
for water wave problems. The bottom profile is in terms of successive flat shelves separated by
abrupt steps. The marching conditions are represented by the horizontal velocities at the steps in
the solution procedure. The approximated wave field can be obtained by solving a system of linear
equations with unknown coefficients which represents the horizontal velocities under a proper
basis. It is also demonstrated that this solution method can be exactly reduced to the transfer-
matrix method (TM method) for a specific setting. The combined scattering effects of a series of
steps can be described by a single two-by-two transfer matrix for connecting the far-field behaviors
of both sides for this method. The solutions obtained by the IEMM are basically exact for water
wave problems considering step-like bottoms. Numerical simulations were performed to validate
the present and commonly used methods. Furthermore, it also shows that the solutions obtained
by the IEMM converge very well to Roseau’s analytical solutions for both mild and steep curved
bottom profiles. The present method improves the converges of the TM method for solving water
wave scattering over steep bathymetry.

1. Introduction
The scattering of linear water waves over arbitrary bed topography has been of interest for
years. Analytic solutions are rare except for the cases of constant slope and Roseau’s analytical
solution [1]. Consequently, approximations are alternative for solving water waves. For
example, Berkhoff [2] derived a mild-slope equation (MSE) by removing the vertical
coordinate using the integration of depth function, and hence reducing the three-dimensional
problem to a two-dimensional one. The mild-slope equation was later modified and extended
with additional higher-order terms by several researches [3–6]. On the other hand, there
are also other methods applicable for describing water wave problems, such as the integral
equation method [7] and differential equation method in transformed domain [8] and so on.
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For a two-dimensional problem, if the geometry of interest can be divided into
separate regions with a constant fluid depth in each subdomain, the solution in each constant-
depth subdomain is usually constructed in terms of eigenfunctions. The solutions are then
matched at the vertical boundaries, resulting in a system of linear integral equations which
must be truncated to a finite number of terms and solved numerically. Takano [9] used this
direct eigenfunction marching method (DEMM) for solving the cases of waves travelling over
an elevated sill and a fixed surface obstacle of normal wave incidence. Kirby and Dalrymple
[10] extended the DEMM to the problems of waves passing a trench of oblique incidence.
Moreover, Söylemez and Gören [11] applied the DEMM to problems of wave scattering over
rectangle barriers.

On the other hand, Miles [12] innovated a variational formulation by approximating
the horizontal velocity at each step using the corresponding propagating eigenfunction and
incorporating with the wide-spacing approximation [13]. His method is formulated by a
two-by-two scattering matrix for connecting the amplitudes of propagating modes in the
two shelves near a step. Miles [12] used his variational formulation to study Newman’s
problem [14] of wave scattering by a step of infinite or arbitrarily finite depth. Mei and
Black [15] applied the variational formulation to surface-wave scattering over rectangular
obstacles. For waves propagating over a sequence of steps, Devillard et al. [13] generalized
Miles’ variational formulation by introducing a transfer matrix for representing the combined
effects of all steps. For the case of an arbitrary bottom topography, O’Hare and Davies
[16] approximated the smoothly varying bottom configuration using a series of shelves
which are separated by abrupt steps and applied the prescribed method to find the desired
transfer matrix of the problem. Furthermore, O’Hare and Davies [17] demonstrated that
their solutions are comparable with those obtained using the MSE. However, their solutions
converge to pseudosolutions for problems of steep bottom profiles.

In this study, an indirect eigenfunction marching method (IEMM) is developed to
provide step approximations for describing wave propagating over an arbitrary bottom
represented by several flat shelves separated by abrupt steps. In addition, it is demonstrated
that the solution can be exactly reduced to the transfer-matrix (TM) method of Miles [12] and
Devillard et al. [13] if the horizontal velocity at each step is approximated by the propagating
eigenfunction and the wide-spacing approximation [13] is assumed. The accuracy of this
new eigenfunction marching method is investigated to solve the problem of water wave
scattering over steps. Furthermore, its applicability for wave propagating over an arbitrary
bottom topography is examined by using Roseau’s analytical solution [1]. Our results show
that the solutions converge very well for both mild and steep curved beach profiles. This
method circumvents the pseudoconverges for the TM method for solving problems of wave
propagating over steep bottom profiles.

This paper is organized as follows: the wave problem is mathematically modeled in
Section 2. Then, the indirect eigenfunction marching method is developed in Section 3. Its
reduction to transfer-matrix method is given in Section 4. Some numerical experiments are
carried out to validate the prescribed method in Section 5 and the conclusions are drawn in
Section 6.

2. Wave Model

We consider the one-dimensional problem for a monochromatic wave propagating over an
arbitrary bottom configuration with time dependence e−iωt, where t is the time, ω the angular
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Figure 1: Schematic sketch of water wave scattering over a series of steps.

frequency and i the unit of complex number. The sea bottom is represented by a succession
of flat shelves as depicted in Figure 1. In the figure, there are M shelves with depth hm in
the interval of xm−1 < x < xm for m = 1, 2, 3, . . . ,M and M − 1 steps at x = xm for m =
1, 2, 3, . . . ,M − 1. In order to make the formulation easier, it is assumed that x0 = −∞ and
xM = ∞, respectively. The coordinate (x, y) in Figure 1 is defined such that x is the horizontal
direction and y is the vertical direction upwards positively from the still water level on y = 0.

According to Airy’s linear wave theory [18], the velocity potential is governed by
Laplace equation given by

∇2φ = 0, (2.1)

which is subject to the free surface condition

∂φ

∂y
− ω

2

g
φ = 0 (2.2)

and the bottom boundary condition:

∂φ

∂y
= 0 on y = −hm, xm−1 < x < xm for m = 1, 2, 3, . . . ,M (2.3)

and the condition for vertical walls

∂φ

∂x
= 0 on x = xm, −max(hm, hm+1) < y < −min(hm, hm+1) for m = 1, 2, 3, . . . ,M − 1,

(2.4)

where K = ω2/g with g being the acceleration of gravity. The following marching conditions
are required at each step:

φm = φm+1, on x = xm, −min(hm, hm+1) < y < 0 for m = 1, 2, 3, . . . ,M − 1, (2.5)

Um

(
y
)
=
∂φm

∂x
=
∂φm+1

∂x
on x = xm, −min(hm, hm+1) < y < 0 for m = 1, 2, 3, . . . ,M − 1.

(2.6)



4 Mathematical Problems in Engineering

Furthermore, the following far-field conditions are required to make the solution
unique:

φ =
coshκ1

(
y + h1

)

coshκ1h1

(
eiκ1x + Re−iκ1x

)
as x −→ −∞,

φ =
coshκM

(
y + hM

)

coshκMhM

(
TeiκMx

)
as x −→ ∞,

(2.7)

where R and T are the reflection and transmission coefficients, respectively, and κm is the
wavenumber in the interval of xm−1 < x < xm. The wavenumber κm is the positive root of the
dispersion relation expressed by

κm tanhκmhm = K for m = 1, 2, 3, . . . ,M. (2.8)

3. Indirect Eigenfunction Marching Method

According to the linear wave theory, a complete solution on the mth shelf can be constructed
as follows:

φm
(
x, y

)
=
(
Ame

iκmx + Bme−iκmx
)
χm
(
y
)

+
N∑

n=1

(
Cm,ne

km,n(x−xm) +Dm,ne
−km,n(x−xm−1)

)
ψm,n

(
y
)
.

(3.1)

This representation is arbitrarily well if N is sufficiently large. In (3.1), the propagating
eigenfunction χm(y) is written in the form:

χm
(
y
)
=

2
√
κm coshκm

(
y + hm

)

√
2κmhm + sinh 2κmhm

, (3.2)

and the evanescent eigenfunction ψm,n(y) is expressed as

ψm,n
(
y
)
=

2
√
km,n cos km,n

(
y + hm

)

√
2km,nhm + sin 2km,nhm

, (3.3)

where km,n is the nth smallest positive root of

km,n tankm,nhm = −K. (3.4)
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Clearly, the following orthonormal relation can be found based on the Sturm-Liouville theory,
that is,

〈
χm | χm

〉
= 1,

〈
χm | ψm,l

〉
= 0,

〈
ψm,n | ψm,l

〉
= δnl,

(3.5)

where δnl is the Kronecker delta function and 〈F | G〉 is defined by

〈F | G〉 =
∫0

−λ
F
(
y
)
G
(
y
)
dy. (3.6)

In (3.6), F and G are orthonormal eigenfunctions of χm(y) or ψm,n(y), and λ is the
corresponding water depth of the eigenfunction F.

Now, we are in a position to march the solutions on all shelves. Considering a specific
step at x = xm with m = 1, 2, 3, . . . ,M − 1, we apply the Galerkin method to (2.4) and (2.6)
and use the orthonormal relation of (3.5) to obtain the following equations:

∫0

−Hm

Um

(
y
)
χm
(
y
)
dy = iκm

(
Ame

iκmxm − Bme−iκmxm
)
, (3.7)

∫0

−Hm

Um

(
y
)
ψm,n

(
y
)
dy = km,n

(
Cm,n −Dm,ne

−km,n(xm−xm−1)
)

for n = 1, 2, 3, . . . ,N, (3.8)

∫0

−Hm

Um

(
y
)
χm+1

(
y
)
dy = iκm+1

(
Am+1e

iκm+1xm − Bm+1e
−iκm+1xm

)
, (3.9)

∫0

−Hm

Um

(
y
)
ψm+1,n

(
y
)
dy = km+1,n

(
Cm+1,ne

−km+1,n(xm+1−xm) −Dm+1,n

)
for n = 1, 2, 3, . . . ,N,

(3.10)

where Hm is the minimum value between hm and hm+1, that is, Hm = min(hm, hm+1).
Equations (3.7)∼(3.10) are exactly equivalent to (2.4) and (2.6) when N → ∞ since χm(y)
and ψm,n(y) have formed a complete basis. This has been shown by Miles [12]. We make use
of the orthonormal identity, (3.8) and (3.10), and are ready to obtain

Cm,n =

∫0
−Hm

Um

(
y
)
ψm,n

(
y
)
dy − e−km,n(xm−xm−1)

∫0
−Hm−1

Um−1
(
y
)
ψm,n

(
y
)
dy

km,n
(
1 − e−2km,n(xm−xm−1)

) ,

Dm,n =
e−km,n(xm−xm−1)

∫0
−Hm

Um

(
y
)
ψm,n

(
y
)
dy −

∫0
−Hm−1

Um−1
(
y
)
ψm,n

(
y
)
dy

km,n
(
1 − e−2km,n(xm−xm−1)

) ,

(3.11)

for m = 1, 2, 3, . . . ,M.
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On the other hand, the further application of the Galerkin method to the marching
condition in (2.5) and using (3.11) can produce the following equations:

(
Ame

iκmxm + Bme−iκmxm
)〈
χ̃m | χm

〉
−
(
Am+1e

iκm+1xm + Bm+1e
−iκm+1xm

)〈
χ̃m | χm+1

〉

=
N∑

n=1

⎡

⎣

〈
χ̃m | ψm+1,n

〉 ∫0
−Hm+1

Um+1
(
η
)
ψm+1,n

(
η
)
dη

km+1,n sinh km+1,n(xm+1 − xm)

−
〈
χ̃m | ψm+1,n

〉 ∫0
−Hm

Um

(
η
)
ψm+1,n

(
η
)
dη

km+1,n tanhkm+1,n(xm+1 − xm)
−
〈
χ̃m | ψm,n

〉 ∫0
−Hm

Um

(
η
)
ψm,n

(
η
)
dη

km+1,n tanhkm+1,n(xm+1 − xm)

+

〈
χ̃m | ψm,n

〉 ∫0
−Hm−1

Um−1
(
η
)
ψm,n

(
η
)
dη

km,n sinh km,n(xm − xm−1)

⎤

⎦,

(3.12)
(
Ame

iκmxm + Bme−iκmxm
)〈
ψ̃m,j | χm

〉
−
(
Am+1e

iκm+1xm + Bm+1e
−iκm+1xm

)〈
ψ̃m,j | χm+1

〉

=
N∑

n=1

⎡

⎣

〈
ψ̃m,j | ψm+1,n

〉 ∫0
−Hm+1

Um+1
(
η
)
ψm+1,n

(
η
)
dη

km+1,n sinh km+1,n(xm+1 − xm)

−
〈
ψ̃m,j | ψm+1,n

〉 ∫0
−Hm

Um

(
η
)
ψm+1,n

(
η
)
dη

km+1,n tanh km+1,n(xm+1 − xm)
−
〈
ψ̃m,j | ψm,n

〉 ∫0
−Hm

Um

(
η
)
ψm,n

(
η
)
dη

km+1,n tanhkm+1,n(xm+1 − xm)

+

〈
ψ̃m,j | ψm,n

〉 ∫0
−Hm−1

Um−1
(
η
)
ψm,n

(
η
)
dη

km,n sinh km,n(xm − xm−1)

⎤

⎦

(3.13)

for j = 1, 2, 3, . . . , J . In (3.12) and (3.13), χ̃m and ψ̃m,l are defined, respectively, by

χ̃m
(
y
)
=

⎧
⎨

⎩

χm
(
y
)

if hm < hm+1,

χm+1
(
y
)

if hm+1 < hm,

ψ̃m,l
(
y
)
=

⎧
⎨

⎩

ψm,l
(
y
)

if hm < hm+1,

ψm+1,l
(
y
)

if hm+1 < hm.

(3.14)

Note that (3.7), (3.9), (3.12), and (3.13) form a functional problem of Um(y). In order to solve
this functional problem, the horizontal velocities in above steps should be represented by the
complete basis, χ̃m and ψ̃m,l, as follows:

Um

(
y
)
= um,0χ̃m

(
y
)
+

L∑

l=1

um,lψ̃m,l
(
y
)
, (3.15)
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where um,l are unknown coefficients to be determined. Then, substitution of (3.15) into (3.7),
(3.9), (3.12), and (3.13) respectively, yield

um,0
〈
χ̃m | χm

〉
+

L∑

l=1

um,l
〈
ψ̃m,l | χm

〉
= iκm

(
Ame

iκmxm − Bme−iκmxm
)
,

um,0
〈
χ̃m | χm+1

〉
+

L∑

l=1

um,l
〈
ψ̃m,l | χm+1

〉
= iκm+1

(
Am+1e

iκm+1xm − Bm+1e
−iκm+1xm

)
,

(
Ame

iκmxm + Bme−iκmxm
)〈
χ̃m | χm

〉
−
(
Am+1e

iκm+1xm + Bm+1e
−iκm+1xm

)〈
χ̃m | χm+1

〉

= um+1,0

N∑

n=1

{ 〈
χ̃m+1 | ψm+1,n

〉〈
χ̃m | ψm+1,n

〉

km+1,n sinh km+1,n(xm+1 − xm)

}

+
L∑

l=1

um+1,l

N∑

n=1

{〈
ψ̃m+1,l | ψm+1,n

〉〈
χ̃m | ψm+1,n

〉

km+1,n sinh km+1,n(xm+1 − xm)

}

− um,0
N∑

n=1

{〈
χ̃m | ψm+1,n

〉〈
χ̃m | ψm+1,n

〉
+
〈
χ̃m | ψm,n

〉〈
χ̃m | ψm,n

〉

km+1,n tanhkm+1,n(xm+1 − xm)

}

−
L∑

l=1

um,l
N∑

n=1

{〈
ψ̃m,l | ψm+1,n

〉〈
χ̃m | ψm+1,n

〉
+
〈
ψ̃m,l | ψm,n

〉〈
χ̃m | ψm,n

〉

km+1,n tanhkm+1,n(xm+1 − xm)

}

+ um−1,0

N∑

n=1

{ 〈
χ̃m−1 | ψm,n

〉〈
χ̃m | ψm,n

〉

km,n sinh km,n(xm − xm−1)

}

+
L∑

l=1

um−1,l

N∑

n=1

{〈
ψ̃m−1,l | ψm,n

〉〈
χ̃m | ψm,n

〉

km,n sinh km,n(xm − xm−1)

}

,

(
Ame

iκmxm + Bme−iκmxm
)〈
ψ̃m,j | χm

〉
−
(
Am+1e

iκm+1xm + Bm+1e
−iκm+1xm

)〈
ψ̃m,j | χm+1

〉

= um+1,0

N∑

n=1

{〈
χ̃m+1 | ψm+1,n

〉〈
ψ̃m,j | ψm+1,n

〉

km+1,n sinh km+1,n(xm+1 − xm)

}

+
L∑

l=1

um+1,l

N∑

n=1

{〈
ψ̃m+1,l | ψm+1,n

〉〈
ψ̃m,j | ψm+1,n

〉

km+1,n sinh km+1,n(xm+1 − xm)

}

− um,0
N∑

n=1

{〈
χ̃m | ψm+1,n

〉〈
ψ̃m,j | ψm+1,n

〉
+
〈
χ̃m | ψm,n

〉〈
ψ̃m,j | ψm,n

〉

km+1,n tanhkm+1,n(xm+1 − xm)

}

−
L∑

l=1

um,l
N∑

n=1

{〈
ψ̃m,l | ψm+1,n

〉〈
ψ̃m,j | ψm+1,n

〉
+
〈
ψ̃m,l | ψm,n

〉〈
ψ̃m,j | ψm,n

〉

km+1,n tanhkm+1,n(xm+1 − xm)

}

+ um−1,0

N∑

n=1

{〈
χ̃m−1 | ψm,n

〉〈
ψ̃m,j | ψm,n

〉

km,n sinh km,n(xm − xm−1)

}

+
L∑

l=1

um−1,l

N∑

n=1

{〈
ψ̃m−1,l | ψm,n

〉〈
ψ̃m,j | ψm,n

〉

km,n sinh km,n(xm − xm−1)

}

(3.16)

for j = 1, 2, 3, . . . , J .
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To obtain a complete solution in the present model, it is desirable to compare the far-
field behaviors (2.7) with (3.1) for obtaining the following relations:

A1 =

√
2κ1h1 + sinh 2κ1h1

2
√
κ1 cosh κ1h1

,

BM = 0,

(3.17)

B1 =
R
√

2κ1h1 + sinh 2κ1h1

2
√
κ1 cosh κ1h1

,

AM =
T
√

2κMhM + sinh 2κMhM
2
√
κM cosh κMhM

.

(3.18)

It should be noted that the model defined in Section 2 is analytically converted to
the problem of finding um,l and Am and Bm such that (3.16) are satisfied. This conversion is
arbitrarily well if all of N, L, and J are sufficiently large.

To obtain a numerical solution to the prescribed problem, the numbers N, L, and J
should be truncated to finite values. In the model, there are (L + 3)(M − 1) unknowns of
um,l and Am and Bm, except that A1 and BM have been defined in (3.17). Therefore, J = L
should be set to obtain (L + 3)(M − 1) equations as given in (3.16). After the coefficients
Am and Bm are solved, (3.18) can thus be used to obtain the reflection and transmission
coefficients of the water wave problem. These complete the procedure of numerical solutions
in the IEMM. This method has the advantage to solve the velocity Um in a direct manner
instead of solving the velocity potential. If it is required to solve the velocity potential, (3.1),
(3.11) can be implemented to get the solution φm.

4. Transfer-Matrix Method

Equation (3.16) is readily reduced to the TM method of Miles [12] and Devillard et al. [13]
using the wide-spacing approximation [13] subject to J = L = 0, defined as

sinh km+1,n(xm+1 − xm) −→ 0,

tanhkm+1,n(xm+1 − xm) −→ 1.
(4.1)

In (4.1), we assumed that the evanescent eigenfunctions originating at one step are negligible
when they reach the next step. Based on these assumption, (3.16) can be simplified in the
following expressions:

um,0
〈
χ̃m | χm

〉
= iκm

(
Ame

iκmxm − Bme−iκmxm
)
,

um,0
〈
χ̃m | χm+1

〉
= iκm+1

(
Am+1e

iκm+1xm − Bm+1e
−iκm+1xm

)
,

(
Ameiκmxm + Bme−iκmxm

)〈
χ̃m | χm

〉
−
(
Am+1eiκm+1xm + Bm+1e−iκm+1xm

)〈
χ̃m | χm+1

〉
= −um,0Xm,N,

(4.2)
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where

Xm,N =
N∑

n=1

{〈
χ̃m | ψm+1,n

〉〈
χ̃m | ψm+1,n

〉
+
〈
χ̃m | ψm,n

〉〈
χ̃m | ψm,n

〉

km+1,n

}

. (4.3)

Following Devillard et al. [13], (4.2) can solved independently for every single step.
Considering a specific step at x = xm, suppose that the following two quantities on the left
shelf are known as follows:

Ψm = Ame
iκmxm + Bme−iκmxm,

Ωm = − 1
κm

dΨm

dxm
= −iAme

iκmxm + iBme−iκmxm.
(4.4)

Details of these definitions are referred to [19]. Using (4.4), we can replace Am and Bm by Ψm

and Ωm in (4.2). The resultant equations read

um,0
〈
χ̃m | χm

〉
+ κmΩm = 0,

um,0
〈
χ̃m | χm+1

〉
− κm+1(Ψm+1 sin κm+1(xm+1 − xm) −Ωm+1 cosκm+1(xm+1 − xm)) = 0,

Ψm

〈
χ̃m | χm

〉
−
(
Ψm+1 cosκm+1

(
xm+1 −xm

)
+ Ωm+1 sin κm+1(xm+1 − x)

)〈
χ̃m | χm+1

〉

+ um,0Xm,N = 0.

(4.5)

Equations (4.5) are sufficient to obtain the unknowns Ψm+1 and Ωm+1 on the right shelf in
which um,0 have been cancelled as follows:

(
Ψm+1

Ωm+1

)

=

(
cosκm+1(xm+1 − xm) − sin κm+1(xm+1 − xm)

sin κm+1(xm+1 − xm) cos κm+1(xm+1 − xm)

)

×

⎛

⎜
⎜⎜⎜
⎝

〈
χ̃m | χm

〉

〈
χ̃m | χm+1

〉
−κmXm,N〈

χ̃m | χm
〉〈
χ̃m | χm+1

〉

0
κm
〈
χ̃m | χm+1

〉

κm+1
〈
χ̃m | χm

〉

⎞

⎟
⎟⎟⎟
⎠

(
Ψm

Ωm

)

.

(4.6)

Equation (4.6) is the transfer matrix method of Devillard et al. [13] based on the variational
formulation of Miles [12]. Clearly, the combined effect of the series of steps can be achieved
by simply applying matrix multiplications to the transfer matrices of all the steps. We also
notice that (4.6) can be further reduced to the plane-wave approximation of Lamb [20] by
assuming Xm,N = 0. This reduction has been addressed by Miles [12].

5. Numerical Results

The validity of the present approximation is examined by three cases of waves propagating
over a step, a rectangle obstacle, and a trench. All the IEMM, DEMM, TM method, and plane-
wave approximations are applied to solve the prescribed wave-scattering problems. Here,
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Table 1: Reflection by a single step and comparison with the solution of Miles [12].

K, ε 1, 0.5 1, 0.1 0.1, 0.1 1, 5 0.1, 5
IEMM (N = L = 10) 0.122322 0.416221 0.510080 0.064880 0.340511
IEMM (N = L = 20) 0.122484 0.417915 0.510243 0.066488 0.340920
IEMM (N = L = 50) 0.122549 0.418613 0.510310 0.067142 0.341086
IEMM (N = L = 100) 0.122564 0.418769 0.510325 0.067291 0.341125
IEMM (N = L = 200) 0.122569 0.418827 0.510331 0.067347 0.341139
IEMM (N = L = 300) 0.122570 0.418843 0.510332 0.067362 0.341143
TM [12] (L = 0, N = 10) 0.120324 0.418204 0.510261 0.062841 0.340930
TM [12] (L = 0, N = 20) 0.120437 0.419265 0.510367 0.063865 0.341176
TM [12] (L = 0, N = 50) 0.120469 0.419594 0.510400 0.064160 0.341247
TM [12] (L = 0, N = 100) 0.120474 0.419642 0.510405 0.064202 0.341257
TM [12] (L = 0, N = 200) 0.120475 0.419654 0.510406 0.064213 0.341259
TM [12] (L = 0, N = 300) 0.120475 0.419657 0.510406 0.064215 0.341260
Plane-wave (N = L = 0) 0.085914 0.345402 0.503897 0.013111 0.303414
DEMM (N = 100) 0.122564 0.418769 0.510325 0.067291 0.341125
DEMM (N = 200) 0.122569 0.418827 0.510331 0.067347 0.341139
DEMM (N = 300) 0.122570 0.418843 0.510332 0.067362 0.341143
Evans and Linton [19] 0.1223 0.4192 0.5103 — —

h = 1

x

y

ε

Figure 2: Schematic sketch of water wave scattering over a step.

the IEMM is introduced in Section 3. On the other hand, the TM method and plane-wave
approximation are described in Section 4. For completeness, the DEMM of Takano [9] is
briefly reviewed in the Appendix for solving water wave scattering over a series of steps since
all previous studies [9–11] do not consider this general configuration. In all of these cases, the
reflection coefficients are tabulated and compared with the results in the literatures.

If the derived methods were verified well, they can be applied to the problem of water
wave scattering over Roseau’s curved profile. This result demonstrates the applicability of
our method for solving water wave scattering by an arbitrary bottom topography.

5.1. Water Wave Scattering over a Step

We first consider the problem of water wave scattering over a step as depicted in Figure 2.
Miles [12] and Evans and Linton [19] have solved the problem using the variational
formulation and the intermediate mapping technique, respectively. Table 1 presents the
reflection coefficients obtained by the IEMM, TM method, plane-wave approximation, and
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Figure 3: Reflection and transmission coefficients of water wave scattering over a step. (a) up steps; (b)
down steps.

DEMM and a comparison with the solutions of Evans and Linton [19]. In Table 1, we
note that the convergence of the reflection coefficients obtained by the IEMM is significant.
Furthermore, it is very interesting to observe that the solutions of the IEMM and DEMM
are equal to each other up to the sixth decimal places. However, only (L + 3)(M − 1) linear
equations are needed to be solved in the IEMM and this number is quite smaller than that of
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Table 2: Reflection by a rectangle obstacle and comparison with the solution of Mei and Black [15].

K, b/H 0.17, 2 0.06, 4 0.03, 6
IEMM (N = L = 10) 0.318114 0.328488 0.330839
IEMM (N = L = 50) 0.318261 0.328517 0.330844
IEMM (N = L = 100) 0.318271 0.328519 0.330845
IEMM (N = L = 200) 0.318275 0.328520 0.330845
IEMM (N = L = 300) 0.318277 0.328520 0.330845
DEMM (N = L = 300) 0.318277 0.328520 0.330845
TM (L = 0, N = 50) 0.318266 0.328301 0.330648
TM (L = 0, N = 100) 0.318268 0.328302 0.330649
TM (L = 0, N = 200) 0.318268 0.328302 0.330649
Mei and Black [15] (L = 5, N = 25) 0.318330 0.328524 0.330841
Plane-wave (N = L = 0) 0.286598 0.319753 0.327476

Table 3: kH values for full transmission by a rectangle obstacle.

b/H = 6 0.173 0.355 0.556 0.785 1.043 1.32 1.606
b/H = 4 0.252 0.532 0.868 1.26
b/H = 2 0.472 1.099

(2N + 2)(M − 1) in the DEMM. For some specific settings described in Section 4, our codes
can reproduce the solutions of the TM method and plane-wave approximation. It is shown
that they are in good agreement with the results listed in [19] to the third decimal places. This
indicates that the solutions of IEMM or DEMM should converge to the analytical solution if
no round-off errors are cumulated.

Figure 3 gives the reflection and transmission coefficients against kh for various depths
of the downstream shelf ε. This result provides a very good example for the comparison of
other methods.

5.2. Water Wave Scattering over a Rectangle Obstacle

Then, we consider the water wave scattering over a rectangle obstacle as shown in Figure 4.
Here, H/h = 2 is assumed in this example. This problem has also been solved by Mei
and Black [15]. They solved the problem using Miles’ variational formulation without
considering the wide-spacing approximation. Their formulation is in exact agreement with
our formulation of IEMM except the different definition of the coordinate system. In Table 2,
the reflection coefficients for various widths of the rectangle obstacle are obtained by the
IEMM, TM method, plane-wave approximation, and DEMM. A comparison with the solution
of Mei and Black [15] is also presented. A good agreement between the IEMM and DEMM
can also be observed. Note that the reflection coefficients obtained by the IEMM converge
perfectly to the fifth decimal places.

Figure 5 describes the comparison of the reflection coefficients against kH obtained
by the TM method, IEMM, and Mei and Black’s method [15]. Good agreement between the
later two methods can be observed. The reflection and transmission coefficients against kH
are given in Figure 6. Full transmission for some specific kH can be observed as addressed in
[15]. These specific kH values are tabulated in Table 3.
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Figure 4: Schematic sketch of water wave scattering over a rectangle obstacle.
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Figure 5: Comparison of reflection coefficients of water wave scattering over a rectangle obstacle.
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Figure 6: Reflection and transmission coefficients of water wave scattering over a rectangle obstacle.
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h = 1
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y

Figure 7: Schematic sketch of water wave scattering over a trench.

Table 4: Reflection by a trench and comparison with the solution of Kirby and Dalrymple [10].

kh 0.341 0.723 1.296
IEMM (N = L = 32) 0.459568 0.295852 0.0300908

IEMM (N = L = 300) 0.459672 0.295807 0.0297184

DEMM [10] (N = L = 2) 0.455857 0.295939 0.0399653

DEMM [10] (N = L = 4) 0.458108 0.295293 0.0327490

DEMM [10] (N = L = 8) 0.458944 0.295921 0.0319301

DEMM [10] (N = L = 16) 0.459415 0.295879 0.0305612

DEMM [10] (N = L = 32) 0.459568 0.295852 0.0300908

DEMM [10] (N = L = 100) 0.459655 0.295817 0.0297851

DEMM [10] (N = L = 200) 0.459669 0.295810 0.0297332

DEMM [10] (N = L = 300) 0.459672 0.295807 0.0297184

TM (L = 0, N = 300) 0.460213 0.285417 0.0134597

Plane-wave (N = L = 0) 0.389926 0.188591 0.0140776

5.3. Water Wave Scattering over a Trench

The last typical example of water wave scattering over a trench is defined in Figure 7. Here,
b = 10 is assumed since Kirby and Dalrymple [10] have solved this problem by the DEMM.
Table 4 gives the reflection coefficients corresponding to different trench depths obtained
by all the methods mentioned above. The first three decimals of the reflection coefficients
obtained by our implementation are the same as those obtained by Kirby and Dalrymple
[10]. Furthermore, the significant convergence of the DEMM can also be observed. In the
table, only a few reflection coefficients obtained by the IEMM are addressed since they are the
same with the DEMM up to the sixth decimals. Furthermore, the reflection and transmission
coefficients against kh are given in Figure 8. In the figure, the full transmission can also be
reached and its corresponding kh values are addressed in Table 5.
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Figure 8: (a) Reflection and (b) transmission coefficients of water wave scattering over a trench.

5.4. Roseau’s Explicit Solution

Finally, we apply our method of step approximation to water wave scattering over Roseau’s
curved profiles as depicted in Figure 9. The bottom profiles are written in the form

βx = lnμ +
ε − 1

2
ln
(

1 + 2μ cos β + μ2
)
, (5.1)

where

μ =

(

tan
β
(
y + 1

)

1 − ε

)(

sin β −
(

tan
β
(
y + 1

)

1 − ε

)

cos β

)−1

. (5.2)

Equation (5.1) defines a step of depths from 1 to ε with β ∈ (0, π/2) being the steepness of
the step. In the present investigation, three typical cases of mild (β = 0.1), middle (β = 1.0),
and steep (β = 1.0) slopes are all considered. These values are selected according to Evans
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Table 5: kh values for full transmission by a trench.

H/h = 2 0.477 0.882 1.218
H/h = 3 0.576 0.971 1.274
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Figure 9: Roseau’s curved profiles.

and Linton [19]. The analytical reflection coefficient was derived by Roseau [1] and can be
expressed as

|R| =
∣∣
∣∣∣
sinhπβ−1(k− − εk+)
sinhπβ−1(k− + εk+)

∣∣
∣∣∣
, (5.3)

where the plus and minus signs follow from the requirements of progressive and
transmission waves. Their wavenumbers are defined by

K = k− tanhk− = k+ tanh εk+. (5.4)

Table 6 gives the reflection and transmission coefficients obtained by the IEMM and
TM method and its comparison with the results of Evans and Linton [19] and the analytical
solutions obtained by (5.3). In the numerical calculations, we assume N = 30 since it is
sufficient for most of our studies. In the table, it can be seen that more steps (bigger M)
generally produce better results. The best accuracy of all the three cases are basically up
to four decimals. For mild-slope case, the results obtained by the IEMM and TM method
are basically the same because the wide-spacing assumption is reasonable. Furthermore, the
increases of L have little help to the numerical results. On the other hand, for middle-slope
case, the results of TM method basically converge to another value due to the fact that the
wide-spacing approximation is not valid in this slope. Finally, for the steep-slope case the
solutions corresponding to L = 0 are not accurate enough. This implies that the value of L
should be increased to improve the result.
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Table 6: Comparison with the explicit solution of Roseau and the method of Evans and Linton [19] (most
accurate solutions are bold).

K, ε, β 0.1, 0.1, 0.1 1, 0.5, 1 0.1, 0.1, 1.5
|R| |T | |R| |T | |R| |T |

IEMM (M = 11, L = 0) 0.1144 1.7271 0.0748 1.0435 0.4747 1.5301

IEMM (M = 21, L = 0) 0.2857 1.6660 0.0056 1.0464 0.4723 1.5323

IEMM (M = 51, L = 0) 0.0046 1.7385 0.0066 1.0464 0.4791 1.5260

IEMM (M = 101, L = 0) 0.0015 1.7385 0.0071 1.0464 0.4802 1.5250

IEMM (M = 201, L = 0) 0.0017 1.7385 0.0073 1.0464 0.4807 1.5245

IEMM (M = 301, L = 0) 0.0017 1.7385 0.0073 1.0464 0.4809 1.5243

IEMM (M = 11, L = 3) 0.1128 1.7274 0.0757 1.0434 0.4751 1.5298

IEMM (M = 21, L = 3) 0.2853 1.6662 0.0058 1.0464 0.4722 1.5324

IEMM (M = 51, L = 3) 0.0046 1.7385 0.0067 1.0464 0.4782 1.5268

IEMM (M = 101, L = 3) 0.0015 1.7385 0.0071 1.0464 0.4788 1.5262

IEMM (M = 201, L = 3) 0.0017 1.7385 0.0073 1.0464 0.4791 1.5260

IEMM (M = 301, L = 3) 0.0017 1.7385 0.0073 1.0464 0.4791 1.5259

TM (M = 51, N = 30, L = 0) 0.0046 1.7385 0.0068 1.0464 0.4804 1.5248

TM (M = 101, N = 30, L = 0) 0.0015 1.7385 0.0074 1.0464 0.4820 1.5233

TM (M = 201, N = 30, L = 0) 0.0017 1.7385 0.0078 1.0464 0.4828 1.5224

TM (M = 301, N = 50, L = 0) 0.0017 1.7385 0.0080 1.0464 0.4831 1.5221

Evans and Linton [19] 0.0019 1.7385 0.0073 1.0464 0.4791 1.5259

Exact [1] 0.0018 1.7385 0.0073 1.0464 0.4792 1.5258

This study demonstrates the applicability of the IEMM for solving problems of water
wave scattering over smoothly varying bottom profiles for both mild and steep slopes. At the
same time, it is clear that the DEMM is not suitable to this example since its system matrix is
too large. In addition, the IEMM could avoid the pseudoconvergence of the TM method.

6. Discussions and Conclusion

An indirect eigenfunction marching method (IEMM) is derived to solve problems of water
wave scattering over a series of steps. In the solution procedure, the solution is represented by
the horizontal velocity above the steps and a system of linear equations is resulted by using
the Galerkin method. Furthermore, it is demonstrated that the IEMM can be exactly reduced
to the transfer-matrix (TM) method when the wide-spacing approximation is applied.

Numerical methods were carried out to validate the applicability for the proposed
IEMM and TM method and comparisons were made with the direct eigenfunction marching
method (DEMM) and other available results in the literatures. The numerical results
demonstrated that the IEMM has the same accuracy when compared with the DEMM for
problems of water wave scattering over a step, a rectangle obstacle, and a trench. However,
the IEMM has a smaller dimension of matrix to save computer time. For water wave
scattering caused by Roseau’s curved profile, the IEMM also provides accurate reflection and
transmission coefficients up to four decimals whilst the DEMM fails to work due to a very
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large system matrix. Furthermore, the IEMM can avoid the pseudoconvergence of the TM
method for problems of steep-slope bottom profiles.

Appendix

The direct eigenfunction marching method of Takano [9] is governed by the following four
equations:

iκm
(
Ame

iκmxm − Bme−iκmxm
)〈
χm | χm

〉
+

N∑

n=1

km,n
(
Cm,n −Dm,ne

−km,n(xm−xm−1)
)〈
ψm,n | χm

〉

= iκm+1

(
Am+1e

iκm+1xm − Bme−iκm+1xm
)〈
χm+1 | χm

〉

+
N∑

n=1

km+1,n

(
Cm+1,ne

−km+1,n(xm+1−xm) −Dm+1,n

)〈
ψm+1,n | χm

〉
,

(A.1)

iκm
(
Ame

iκmxm − Bme−iκmxm
)〈
χm | ψm,l

〉

+
N∑

n=1

km,n
(
Cm,n −Dm,ne

−km,n(xm−xm−1)
)〈
ψm,n | ψm,l

〉

= iκm+1

(
Am+1e

iκm+1xm − Bme−iκm+1xm
)〈
χm+1 | ψm,l

〉

+
N∑

n=1

km+1,n

(
Cm+1,ne

−km+1,n(xm+1−xm) −Dm+1,n

)〈
ψm+1,n | ψm,l

〉
for l = 1, 2, 3, . . . ,N,

(A.2)

(
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〉
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(
Am+1e

iκm+1xm + Bm+1e
−iκm+1xm
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+
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(
Cm+1,ne
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for l = 1, 2, 3, . . . ,N,

(A.4)
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where

χm
(
y
)
=

⎧
⎨

⎩

χm+1
(
y
)

if hm < hm+1,

χm
(
y
)

if hm+1 < hm,

ψm,l
(
y
)
=

⎧
⎨

⎩

ψm+1,l
(
y
)

if hm < hm+1,

ψm,l
(
y
)

if hm+1 < hm.

(A.5)

In (A.1)∼(A.4), there are (M − 1)(2N + 2) unknowns, A2, . . . , AM, B1, . . . , BM−1, D2, . . . , DM,
C1, . . . , CM−1, and can be solved by the above (M − 1)(2N + 2) equations.
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