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Based on the iterated statistically multiscale analysis (SMSA), we present the convergence of
the equivalent mechanical parameters (effective moduli), obtain the error result, and prove
the symmetric, positive and definite property of the equivalent mechanical parameters tensor
computed by the finite element method. The numerical results show the proved results and
illustrate that the SMSA-FE algorithm is a rational method for predicting the equivalent mechanical
parameters of the composite material with multiscale random grains. In conclusion, we discuss the
future work for the inhomogeneous composite material with multiscale random grains.

1. Introduction

Predicting the mechanical parameters of a composite material with the multiscale random
grains is a very difficult problem because there are too many random grains in the composite
material and the range of the scale of the grains is very large in the material field shown
in Figure 1. Many studies on predicting physical and mechanical properties of composite
materials with random grains have been done: the law of mixtures [1], the Hashin-
Shtrikman bounds [2], the self-consistent method [3], the Eshelbys equivalent inclusion
method [4] and the Mori-Tanaka method [5], microanalysis method [6], and so forth. These
methods effectively promoted the development of composite materials, but they simplified
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the microstructure of real materials in order to reduce the computational complexity. The
composite materials with large numbers of grains can be divided into two classes according to
the basic configuration: the composite materials with periodic configurations, such as braided
composites, and the composite materials with random distribution, such as concrete, foamed
plastics. Some physical methods and mathematical methods [7–13] have been proposed
to solve these problems. However, most of these techniques and methods are based on
empirical, semiempirical models or based on the homogenization methods in the periodical
structure. Due to the difference of basic configuration, it is difficult for them to handle the
composite material with large numbers of multiscale random grains. Hence, in order to
evaluate the physical and mechanical performance of the composite material with random
grains, it is necessary to make use of the different advanced numerical methods.

In the recent decades, for the problems with the stationary random distribution,
Jikov et al. [14] developed the homogenization method and proved the existence of the
homogenization coefficients and the homogenization solution, however, not provided with
the numerical techniques to carry out the methods for the stationary random distribution.
In addition, their method only deals with the point randomly distributed, not with random
grains.

For the porous medias with the random distribution, Hou and Wu [15] developed the
the multiscale finite element base function method to compute these problems of the porous
medias; this method is much valid to the problems with random coefficients and problems
with continuous scale. As for the multiscale systems with stochastic effective, Vanden-Eijnden
gave the specific step to carry the multiscale method out [16]; their methods are very effective
to mainly solve the problem with time process. For the perforated domain with small holes,
Wang et al. gave an effective macroscopic model for a stochastic microscopic system, and in
theory, mainly proved that the solutions of the microscopic model converge to those of the
effective macroscopic model in probability distribution as the size of holes diminishes to zero
[17]. However, the above methods are not for the equivalent performance of the composite
material with large numbers of the multiscale random grains.

Duschlbauer et al. developed the homogenization method with the Mori-Tanaka
scheme averaging microfields extracted for individual fibers and the finite element analysis
to estimate the linear thermoelastic and thermophysical behavior of a short fiber reinforced
composite material with planar random fiber arrangement [18]. Kari et al. developed a
representative volume element (RVE) approach that was used to calculate effective material
properties of randomly distributed short fibre composites and analyzed the properties for
the volume of random short fibres [19]. Recently, Kalamkarov et al. gave an asymptotic
homogenization model for the 3D grid-reinforced composite structures with the orthotropic
reinforcements [20, 21], and Wang and Pan obtained the elastic property for the multiphase
composites with the random microstructures [22, 23]. Their methods are the effective
homogenous methods for the equivalent performance of the composites with the random
grains. However, in fact, in the engineering fields, for the composite materials with a large
number of multiscale random grains, such as concrete, asphalt mixture, rock mass, and
foam plastics, owing to the random complexity in configuration and for that the grain
scale range is very large from 10−1 m to 10−6 m [24], shown in Figure 1, the above methods
find it difficult to analyze the mechanical and physical performance. Hence, in order to
deal with the composite materials with multiscale random grains, authors proposed a
kind of statistically multiscale analysis (SMSA) method to predict the effective mechanical
parameters of the composite materials with a large number of random multiscale grains [25–
27]. In previous papers [25–27], we proposed an expression for predicting the equivalent
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mechanical parameters of a composite material with multiscale grains. This method cannot
only show the macrocharacteristics and random configurations of a composite material, but
also show the contribution of the small-scale grains. In addition, this method can greatly
decrease the computing time for the required numerical result.

In these previous papers [25–27], we gave the multiscale formula to compute the
composite material and proved that the expected displacement field is convergent to the
equivalent displacement field based on the multiscale methods in the mathematical theory.
However, we did not discuss the convergence, the error result, and the symmetric, positive
definite property of the equivalent mechanical parameter tensor of the composite material
with random grains by the SMSA-FE method. Therefore, in this paper, the convergence
and the error result based on statistical multiscale analysis (SMSA) shall be presented, and
the symmetric, positive definite property of the equivalent parameters tensor (the random
parameters subjected to the uniform distribution) shall be proved.

The next section reviews a representation of a composite material with multiscale
random grains, some results, and the SMSA-FE procedure [27]. Section 3 is devoted to
proving the convergence of the equivalent mechanical parameters computed by the SMSA-FE
algorithm. Section 4 obtains the error results of the SMSA-FE algorithm on iterated multiscale
analysis. In Section 5, the symmetric, positive definite property of the equivalent mechanics
parameters tensor computed by the SMSA-FE algorithm is proved. In Section 6, the numerical
results are presented to demonstrate the validity, the convergence, and the proved results
of the SMSA-FE algorithm. Finally, we discuss the future work for the inhomogeneous
composites with multiscale random grains.

2. Iterated Multiscale Analysis Model and Algorithm

In the previous papers [27], the author had given the algorithm to compute the equivalent
mechanical parameters in detail. In order to prove the finite element error and the
convergence of the iterated multiscale computed model, we shall review the model and the
algorithm in the brief.

2.1. Iterated Multiscale Analysis Model

For the brief, all of the grains are assumed as the ellipsoids. Set a domain Ω to represent a
composite with multiscale random grains shown in Figure 1(a). Set Ωl to be a set of cube
cells of the size εl shown in Figure 1(b). Based on [27], the iterated multiscale analysis model
can be represented as follows.

(1) Obtain the statistical data of the composites and specify the distributions P of the
ellipsoid’s parameters.

(2) Set N to denote the number of the lth scale ellipsoids in the cell εlQs; we can
describe the lth scale cube cell εlQs as follows:
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where (x10 , x20 , x30) is the center point, a is the long axis, b is the middle axis, c is
the short axis, and θax1x2

, θax1
, θbx1x2

and θbx1
, are the directions for the axis a and b

of the ellipsoids, respectively. One sample ωs
l

is shown in Figure 1(c).



4 Mathematical Problems in Engineering

0

10

10

(a) (b) (c)

Figure 1: (a) Ω with multiscale grains, (b) equivalent matrix with random grains, (c) ε2 cell.

(3) Set the domain Ωl to be logically composed of εl-sized samples: Ωl =⋃
(ωs,t∈Z) ε

l(Qs+t) shown in Figure 1(b). It can be defined asωl = {ωs
l
, x ∈ εQs

l
⊂ Ωl}.

By the SMSA-FE algorithm [27], the equivalent mechanical parameters can be
predicted. Thus, the equivalent material with lth scale random grains in Ωl can
be formed.

(4) Set m to be the scale number in the composites Ω with multiscale random grains.
For l = m − 1, . . . , 1, using the above representation from step (2) to step (3),
recursively and successively, the multiscale random model of Ω can be described.

For example, the asphalt concrete [24] can be considered as the composites with multiscale
random grains, respectively. Set ε2 = 0.01 m; and ε1 = 0.1 m, their configuration can be shown
in Figure 1.

2.2. SMSA Algorithm Based on Finite Element Method

In the previous section, we introduced the equivalent composites Ωl, (l = m,m−1, . . . , 1) with
the lth scale grains. In this section, we shall review the mathematical theory that predicts the
equivalent mechanical parameters of these composites with random grains by the statistical
multiscale analysis (SMSA) [27].

For the domain Ωl, (l = m − 1, m − 2, . . . , 0) shown in Figure 1(b), their corresponding
elasticity equation system and the essential boundary condition can be shown as follows:

∂

∂xj

[
aεijhk

(
x

ε
,ω

)
1
2

(
∂uε

h(x,ω)
∂xk

+
∂uε

k(x,ω)
∂xh

)]
= fi(x), x ∈ Ωl,

uε(x,ω) = u(x), x ∈ ∂Ω,

(2.2)

where i, j, h, k = 1, 2, . . . , n, ω = ωs for x ∈ Ω1, ωs ∈ P , P is the probability space, Ωl =⋃
s∈p,t∈Zn εl(Qs + t) shown in Figure 1, uεh(x,ω) are the displacement field, fi(x) are the loads,

and u(x) is the boundary displacement vector.
In the paper [25–27], we had given the SMSA method [25] and established the finite

element method [27] to compute the equivalent mechanical parameters. If the FE space
(V h0(Qs))n can be established and ξ = x/εl, the equivalent mechanical parameters can be
computed.



Mathematical Problems in Engineering 5

Theorem 2.1. If a composite material with random grains is subjected to the probability distribution
P , the equivalent mechanical parameters of a composite material can be approximated as

âh0
ijhk =

∑M
s=1 â

h0
ijhk(ω

s)

M
, (2.3)

where ωs ∈ P(s = 1, 2, . . . ,M) and âh0
ijhk

(ωs) is computed as

âh0
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s) =
1
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∫
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(
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dξ, (2.4)
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Nh0
α (ξ, ωs) are the FE solutions of (2.6) on unit cell Qs.

∂

∂ξj

(
aijhk(ξ, ωs)εhk(Nαm(ξ, ωs))

)
= −∂aαilm(ξ, ω

s)
∂ξl

, ξ ∈ Qs,

Nα(ξ, ωs) = 0, ξ ∈ ∂Qs. (2.6)

Therefore, the equivalent mechanical parameters can be determined by the following
SMSA-FE algorithm.

SMSA-FE Algorithm

(1) Specify the scale number m of random grains in the composites and set the iterative
number r = m.

(2) Model r-scale random grains in Qs
r and generate meshes of the sample domain

according to the algorithm in [27].

(3) If r = m, aijhk(x/εr, ωs) in Qs
r can be indicated as follows:
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where Q̂s
⋃
Q̃s

⋃
· · ·

⋃
Q̂s = Qs

r and Q̂s
⋂
Q̃s · · ·

⋂
Q̂s = φ, εrQs

r ⊂ Ω denotes the
domain of the basic configuration, εrQ̂s denotes the domain of the matrix, εrQ̃s
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denotes the domain of the random grains in εrQs
r , and εaQ̂s denotes the interface

domain between the grains and the matrix. Go to step (5).

(4) If r < m, aijhk(x/εr, ωs) in Qs
r can be indicated as follows:

aijhk
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x
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)
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(2.8)

where Q̂s
⋃
Q̃s = Qs

r and Q̂s
⋂
Q̃s = φ, εrQs

r ⊂ Ω denotes the domain of the basic
configuration, εrQ̂s denotes the domain of the equivalent matrix, and εrQ̃s denotes
the domain of random grains. Go to step (5).

(5) Compute the FE approximation Nh0
αm(ξr , ωs) according to (2.6), obtain the FE

approximation of sample âh0
ijhk

(εr , ωs) on the rth scale according to (2.4), and
compute the FE approximation of the equivalent mechanical parameter tensor
{âh0

ijhk
(εr)} on the rth scale using (2.3).

(6) Set âijhk(εr) equal to âh0
ijhk(ε

r) on the rth scale and r = r − 1. If r > 1, go to
step (2). Otherwise, the equivalent mechanical parameter tensor âijhk(εr)(ε) is the
equivalent mechanical parameter tensor of the composite material with multiscale
random grains in Ω.

3. Convergence of SMSA-FE Algorithm

Lemma 3.1. IfNh0
αm(ξ, ω) and â

h0
ijhk

(ω) are the finite element approximations of the random variables

Nαm(ξ, ω) and âijhk(ω), respectively, then there exists a constantM2 > 0 such that |âh0
ijhk(ω)| < M2.

Proof. If |aijhk(ξ, ωs)| < M for any sample ωs ∈ P , (2.6) has one unique finite element solution
Nh0

αm(ξ, ωs) ∈ (H1(Qs)) n(n = 2, 3) such that

∥∥∥Nh0
αm(ξ, ωs)

∥∥∥
(H1(Qs))n

< C
∣∣aijhk(ξ, ωs)

∣∣
L∞(Qs) < CM1, (3.1)

where C and M1 are constants and independent of ξ and ωs.
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From (2.4) and (3.1), one can obtain
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where M2 = CM1+M2
1 and M1 is independent of both the random variables ωs and the local

coordinate ξ. Therefore, for the random variable ω in Section 2, |âh0
ijhk

(ω)| < M2.

Lemma 3.2. If ω is a random variable and âh0
ijhk

(ω) are defined as above, then one unique expected

value of the equivalent mechanical parameters tensor Eωâ
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(3.3)

Therefore, there exists one unique expected value of the equivalent mechanical parameters
tensor Eωâ

h0
ijhk

(ω)(i, j, h, k = 1, 2, . . . , n) in the probability space P .
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Lemma 3.3. If âh0
ijhk(ω

s)(i, j, h, k = 1, 2, . . . , n. s = 1, 2, . . . .) have the expected value Eωâ
h0
ijhk(ω) in

the probability space and ω is the random variable, one obtain
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s)

M
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h0
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s) (M −→ ∞). (3.4)

Proof. Because {âh0
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s), s � 1} are the independent and identical distribution random
variables and
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M∑
s=1

âh0
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s) (M = 1, 2, . . .), (3.5)

from Lemma 3.2, |Eωâh0
ijhk

(ωs)| < ∞. Set a1 = Eωâ
h0
ijhk

(ω); from Kolmogorov’s classical strong
law of large numbers, one obtains
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M
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Therefore, we have SM/M
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Theorem 3.4. If âr,h0
ijhk

(ω)(r = m,m− 1, . . . , 1) are computed as the equivalent mechanical parameter
tensor of the composite material with r-scale random grains by the SMSA-FE algorithm, then the
expected values of the equivalent mechanical parameters tensor Eωâ

r,h0
ijhk

(ω) exist in the probability

space P = (Pra)
N × (Pr

b
)N × (Prc )

N × · · · × (Prx0
)N × (Pry0

)N × (Prz0
)N .

Proof. Set r = m; define

aijhk

(
x

εr
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)
=

⎧
⎨
⎩
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ijhk
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(3.8)

because both a1
ijhk

and a2
ijhk

are constants satisfying |max{a1
ijhk

, a2
ijhk
}| < M1. It is easy to

see that aijhk(x/εr, ωs)(i, j = 1, 2, 3) are bounded and measurable random variables. Based
on Lemmas 3.1, 3.2, and 3.3, there exist the expected values Eωâ

r,h0
ijhk

(ω) of the equivalent

mechanical parameter tensor âr,h0
ijhk(ω) of the material with only the rth random grains.

Therefore, the equivalent mechanical parameter tensor of the composites with the rth random
grains can exist as follows:

∑M
s=1 â

r,h0
ijhk(ω

s)

M
a·e→ Eωâ

r,h0
ijhk(ω

s) (M −→ ∞). (3.9)



Mathematical Problems in Engineering 9

Set r = r − 1 and âr,h0
ijhk (x/ε(r+1), ωs) = Eωâ

r,h0
ijhk(ωr), the mechanical parameters of the

equivalent matrix material and the grain material in the equivalent composite material with
the rth random grains can be obtained.

That is,

aijhk

(
x

εr
, ωs

)
=

⎧
⎪⎪⎨
⎪⎪⎩

âr,h0
ijhk

(
x

ε(r+1)
, ωs

)
, x ∈ εQ̂s,

a1
ijhk

, x ∈ εQ̃s,

(3.10)

|aijhk (x/εr , ωs)| < M1. It is easy to see that aijhk(x/εr, ωs)(i, j = 1, 2, 3) are bounded
and measurable random variables. By the iterated loop proof for r as above, based on
Lemmas 3.2 and 3.3, the convergence of the equivalent mechanical parameter tensor Eωâ

r,h0
ijhk

,

(r = m,m − 1, . . . , 1) can be obtained.

4. Error Analysis for Equivalent Mechanical Parameter Tensor
Computed by SMSA-FE Algorithm

Based on the SMSA-FE algorithm, if the equivalent mechanical parameter tensor is computed,
three kinds of errors are considered: the homogenization error, the random error based
on Monte Carlo simulation method, and the finite element computation error. For the
homogenization error, the composite materials with multiscale random grains are the special
cases of the random coefficient problems whose convergence was proved in [14]. For the
random error, we have obtained the convergence of the equivalent mechanical parameter
tensor of the composite material with multiscale random grains as above. Therefore, in the
following section, we will devote to analyzing the finite element error based on SMSA.

Firstly, we give the finite element error estimation of the statistical two-scale analysis.
Then we give the error estimation of the SMSA-FE algorithm.

Lemma 4.1. IfNαm(ξ, ωs), α = 1, 2, . . . n, is the variational solution of (2.6) andNh0
αm(ξ, ωs) is the

corresponding finite element solution of (2.6) andNh0
αm(ξ, ωs) ∈ (H2(Q))n, then we have

‖Nαm

(
ξ, ω

s
)
−Nh0

αm(ξ, ωs)‖(H1
0 (Q))n ≤ Ch0‖Nαm(ξ, ωs)‖(H2(Q))n ,

‖Nαm(ξ, ωs) −Nh0
αm(ξ, ωs)‖(L2(Q))n ≤ Ch0

2‖Nαm(ξ, ωs)‖(H2(Q))n ,

(4.1)

where the constant C > 0 is independent of the size h0 of mesh.

Proof. Since Esαm = Nαm(ξ, ωs) − Nh0
αm(ξ, ωs) ∈ H1

0(Q), based on Korn inequality and the
interpolation theorem, we have that
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‖Esαm‖2
(H1(Q))n ≤ Ca(E

s
αm, E

s
αm)
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(
Nαm(ξ, ωs) −Nh0

αm(ξ, ωs),Nαm(ξ, ωs) − γh0N
h0
αm(ξ, ωs)

)

≤ Ch0‖Nαm(ξ, ωs)‖(H2(Q))n‖Esαm‖(H1(Q))n .

(4.2)

That is,

‖Nαm(ξ, ωs) −Nh0
αm(ξ, ωs)‖(H1(Q))n ≤ Ch0‖Nαm(ξ, ωs)‖(H2(Q))n . (4.3)

Aubin-Nitsche lemma [28] yields

‖Nαm(ξ, ωs) −Nh0
αm(ξ, ωs)‖(L2(Q))n ≤ Ch0

2‖Nαm(ξ, ωs)‖(H2(Q))n . (4.4)

Lemma 4.2. Let Nαpm(ξ, ωs), α1 = 1, 2, . . . , n, be the variational solution of the (2.6) and
Nh0

αpm(ξ, ωs) the finite element solution such thatNαpm(ξ, ωs) ∈W2,∞(Q), and then one has

∥∥∥∇ξ
(
Nαpm(ξ, ωs) −Nh0

αpm(ξ, ωs)
)∥∥∥ ≤ Ch0|lnh0|‖∇2

ξNαpm‖L∞(Q),
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)∥∥∥ ≤ Ch0

2|lnh0|‖∇2
ξNαpm‖L∞(Q).

(4.5)

In fact, based on the idea and the method in [28], it is easy to prove Lemma 4.2.

Lemma 4.3. Let âijhk be the equivalent mechanical parameter tensor matrix based on STSA and
âh0
ijhk

its finite element approximation as above, if there exists one constant N̂ such that for all ωs ∈
P, ‖Nαpm(ξ, ωs)‖H2(Q) ≤ N̂. Then one has

∥∥∥âijhk − âh0
ijhk

∥∥∥
L∞
≤ Ch0|lnh0|N̂. (4.6)

Proof. From the above algorithm, the following equation is held.

âijhk = âh0
ijhk

+ Rijhk, (4.7)

where Rijhk is defined by

Rijhk =

∑M
s=1

∫
Q aiphq(ξ, ω

s)(1/2)
(
H/∂ξp+A/∂ξq

)

M
, (4.8)

whereH denotes ∂(Nkqj(ξ, ωs)−Nh0
kqj

(ξ, ωs)) and A denotes ∂(Nkpj(ξ, ωs) −Nh0
kpj

(ξ, ωs))
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Since ‖R‖∞ denote the maximum norm of matrix (Rijhk)n×n, applying Lemma 4.2 to
the above (4.8), we deduce

‖R‖∞ =

∥∥∥∥∥∥

∑M
s=1

∫
Q aiphq(ξ, ω

s)(1/2)
(
H/∂ξp+A/∂ξq

)

M

∥∥∥∥∥∥
∞

≤ 1
M

M∑
s=1

∥∥∥∥∥
∫

Q

aiphq(ξ, ωs)
1
2

(
H
∂ξp

+
A
∂ξq

)∥∥∥∥∥
∞

≤ C 1
M

h0|lnh0|
M∑
s=1

∥∥∥∇2
ξNk(ξ, ωs)

∥∥∥
L∞
,

(4.9)

Since there exists one constant N̂ such that the function matrices ‖Nα(ξ, ωs)‖ ≤ N̂, the above
inequality (4.9) yields

‖R‖∞ ≤ Ch0

∣∣∣lnh0‖N̂
∣∣∣. (4.10)

Then inequality (4.6) follows from the above inequality (4.10).
Based on the SMSA-FE algorithm, the equivalent mechanical parameter tensor of

the equivalent material with the mth random grains can be obtained. Therefore, the matrix
material with (m − 1)th random grains can be considered as the equivalent matrix material.
Using the loop proof by Lemmas 4.2 and 4.3, it is easy to obtain the following theorem on
the equivalent mechanical parameter tensor of a composite material with m-scale random
grains.

Theorem 4.4. Let ârijhk(r = m,m − 1, . . . , 1) be the equivalent mechanical parameters tensor of the

composite material with r th scale random grains and âr,h0
ijhk

(r = m,m − 1, . . . , 1) its finite element
approximation; set the size of the last mesh of the finite element inQs to be h0; based on the SMSA-FE
algorithm, if there exists one constant N̂ such that for all, ωs ∈ P, ‖Nαpm(ξr , ωs)‖H2(Q) ≤ N̂, (r =
m,m − 1, . . . , 1), then one has

∥∥∥ârijhk − âr,h0
ijhk

∥∥∥ ≤ Ch0|lnh0|N̂, (4.11)

where C is one constant that is independent of h0 but dependent on the sizes of the other finite element
mesh h0r(r = m,m − 1, . . . , 2) in the cell Qr(r = m,m − 1, . . . , 2) with rth random grains.

From Theorem 4.4, it is easy to see the error of the equivalent mechanical parameter
tensor of the composite material with the biggest grains being the main error by the SMSA-
FE algorithm. Hence, we only need to consider the error in the composite material with the
biggest random grains.
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5. Symmetry and Positive Definite Property for Equivalent Mechanical
Parameter Tensor

From [7, 26], if the parameters of the ellipsoids are subjected to the uniform probability P , the
equivalent mechanical parameter tensor âijhk shall satisfy the following conditions:

âijhk = âjikh = âhjik,

μ1ηijηij ≤ âijhkηijηhk ≤ μ2ηijηij ,
(5.1)

where for any symmetry matrix η = (ηij)n×n, μ1 ≥ 0, and μ2 ≥ 0.
Therefore, if the parameters of the ellipsoids are subjected to the uniform probability

P , it is important to keep the symmetric, positive definite property of mechanical parameter
tensor computed by the finite element method. So we shall give the following theorem to
illustrate it.

Lemma 5.1. Let {âijhk} be the equivalent mechanical parameter tensor based on STSA [26] and
âh0
ijhk

its finite element approximation; if there exists one constant N̂ such that for all ωs ∈
P, ‖Nαpm(ξ, ωs)‖H2(Q) ≤ N̂, the matrix âh0

ijhk satisfies the following property:

âh0
ijhk = âh0

jikh = âh0
hjik, (5.2)

K̂1ηijηij ≤ âh0
ijhkηijηhk ≤ K̂2ηijηij (5.3)

for any symmetric matrix η = (ηih)n×n, where K̂1, K̂2 are positive constants.

Proof. Taking into consideration the fact that âijhk(ωs) = âjikh(1s) = âhjik(ωs), based on the
concept of Nh0

α (ξ, ωs), taking into account the idea in [7], we deduce that

âh0
jikh(ω

s) =
1
|Qs|

∫

Qs

⎡
⎣ajikh(ξ, ωs) + ajpkq(ξ, ωs)

1
2

⎛
⎝∂Nh0

hpi(ξ, ω
s)

ξq
+
∂Nh0

hqi(ξ, ω
s)

ξp

⎞
⎠

⎤
⎦dξ

=
1
|Qs|

∫

Qs

⎡
⎣ahjik(ξ, ωs) + ahqip(ξ, ωs)

1
2

⎛
⎝∂Nh0

kpj(ξ, ω
s)

ξq
+
∂Nh0

kqj(ξ, ω
s)

ξp

⎞
⎠

⎤
⎦dξ

= âh0
kjih(ω

s).

(5.4)

So we have proved âh0
jikh(ω

s) = âh0
hjik(ω

s). Let us establish the first equality in (5.2), which is

equivalent to prove (Âh0hk)∗ = Âh0kh, where A∗ denotes the transpose of the matrix A and
Âh0hk is the matrix (âh0

ijhk
)n×n.
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From the integral identity for solution of problem (2.6), for any matrix Mh0(ξ) ∈
(V h0(Qs))n×n, we have

−
∫

Qs

∂(M(ξ)
∂ξp

Apq(ξ, ωs)
∂
(
N∗

k(ξ, ω
s)

)

∂ξq
dξ =

∫

Qs

Apk(ξ, ωs)
(M(ξ))
∂ξp

dξ. (5.5)

Based on the relations (Apq(ξ))∗ = Aqp(ξ) and (AB)∗ = B∗A∗ for matrices A, B, it is
easy to obtain Nα from (5.5) that

−
∫

Qs

∂Nh0
k (ξ, ωs)
∂ξp

Aqp(ξ, ωs)
∂M∗(ξ)
∂ξq

dξ =
∫

Qs

Akq(ξ, ωs)
∂M∗(ξ)
∂ξq

dξ. (5.6)

If we set M =Nh0�
h , the following equations are obtained.

−
∫

Qs

∂Nh0
k (ξ, ωs)
∂ξp

Apq(ξ, ωs)
∂Nh0

h (ξ, ωs)
∂ξq

dξ =
∫

Qs

Akq(ξ, ωs)
∂Nh0

h (ξ, ωs)
∂ξq

dξ. (5.7)

Taking into account the idea in [7], (5.7), and the concept of Nh0∗
h

(ξ, ωs), the following
equations can be obtained.

∫

Qs

∂

∂ξq

(
Nh0

∗

k + ξkE
)
Aqp(ξ, ωs)

∂

∂ξp

(
Nh0

h + ξhE
)
dξ

=
∫

Qs

(
∂Nh0∗

k

∂ξq
Aqp(ξ, ωs)

∂Nh0
h

∂ξp
+ δqkAqp(ξ, ωs)

∂Nh0
h

∂ξp
+
∂Nh0∗

k

∂ξq
Aqp(ξ, ωs)δphE

+ δqkA
qp(ξ, ωs)δphE

)
dξ

=
∫

Qs

(
∂Nh0∗

k

∂ξq
Aqp(ξ, ωs)

∂Nh0
h

∂ξp
+Akp(ξ, ωs)

∂Nh0
h

∂ξp
+
∂Nh0∗

k

∂ξq
Aqh(ξ, ωs) +Akh(ξ, ωs)

)
dξ

=
∫

Qs

(
∂Nh0∗

k

∂ξq
Aqh(ξ, ωs) +Akh(ξ, ωs)dξ

)
=

(
Ah0hk�

)
(ωs).

(5.8)

In the second equation of the above equations, the property of δij is used; in the third
equation, (5.7) is applied. It follows that the equivalent mechanical parameter matrices can
be written in the following form by the relationship of Ajq� = Aqj :

Âh0hk(ωs) =
∫

Q

∂

∂ξq

(
Nh0∗

h + ξhE
)
Apq(ξ, ωs)

∂

∂ξp

(
Nh0

k + ξkE
)
dξ,

Âh0kh(ωs) =
∫

Qs

∂

∂ξq

(
Nh0∗

k
+ ξkE

)
Aqj(ξ, ωs)

∂

∂ξj

(
Nh0

h
+ ξhE

)
dξ.

(5.9)
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Thus

(
Âh0kh

)∗
(ωs) ==

∫

Qs

∂

∂ξj

(
Nh0∗

h + ξhE
)
Ajq(ξ, ωs)

∂

∂ξq

(
Nh0

k + ξkE
)
dξ =

(
Âh0hk

)
(ωs). (5.10)

Hence, we see that Âh0hk(ωs) = (Âh0kh(ωs))
∗
. Thus we obtain the following equations:

âh0
ijhk(ω

s) = âh0
jikh(ω

s) = âh0
hjik(ω

s). (5.11)

Making use of the relations (5.11), one has

1
M

M∑
s=1

âh0
ijhk(ω

s) =
1
M

M∑
s=1

âh0
jikh(ω

s) =
1
M

M∑
s=1

âh0
hjik(ω

s). (5.12)

That is (5.2) is proved.
In the sequel, we shall prove (5.3). From the inequality (4.6) and Theorem 4.4, there

exists one h0 ≥ 0 that is small enough such that

Ch0|lnh0|
∣∣∣N̂α

∣∣∣
L∞

<
μ1

2
. (5.13)

We have

μ1

2
ηijηij ≤ âh0

ijhkηijηhk ≤
(
μ2 +

μ1

2

)
ηijηij . (5.14)

Setting K̂1 = μ1/2 and K̂2 = μ2 + μ1/2 yields the inequality (5.3).
By the iterated multiscale analysis and Lemma 5.1, the finite element approximation

of the equivalent mechanical parameter tensor of the composite material with multiscale
random grains satisfies the following property.

Theorem 5.2. Let {ârijhk} be the equivalent mechanics parameter tensor of the composite material

with r-scale random grains based on the SMSA algorithm and âr,h0
ijhk

their finite element approximation
by (2.3). Set the size of the last mesh of the finite element in Qs to be h0; if there exists the constant
N̂α1 such that for all, ω

s ∈ P, ‖Nr
αpm(ξ, ω

s)‖
H2(Q)

≤ N̂αpm, then â
r,h0
ijhk satisfy the conditions

âr,h0
ijhk

= âr,h0
jikh

= âr,h0
hjik

,

K1ηijηij ≤ âr,h0
ijhk

ηijηhk ≤ K2ηijηij ,
(5.15)

where η = (ηih)n×n is the symmetry matrix andK1, K2 are the positive constants that are independent
of h0 but dependent on the sizes of the other finite element meshes h0r , (r = m,m− 1, . . . , 2) in the rth
scale cells Qr(r = m,m − 1, . . . , 2, 1).
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Table 1: Probability distributions of grains in composite material.

Small grains Large grains
θ [0, 2π] θ [0, 2π]
a [0.03, 0.08] a [0.1, 1]
b [0.02, a] b [0.1, a]

1.6

1.8

2

2.2
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3.2
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5 10 15 20 25 30
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Middle
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Figure 2: Young’s modulus and Poisson’s ratio for 5, 10, 15,. . ., 30 samples with different scale random
grains by the SMSA-FE procedure.

6. Numerical Experiment

To test the validity of the error result, the convergence, and the symmetric, positive definite
property of the mechanical parameter tensor computed by the SMSA-FE algorithm, two
numerical examples are given as follows.

The first example models a composite material. The grains are divided into two classes
according to the sizes of their long axis shown in Table 1. We use one statistical window
ε1 = 0.1 to predict the mechanical parameters of the equivalent matrix with small random
grains. In each window, small grains occupy approximate 30% of the volume. Their long axis
a, short axis b, and angle θ are subjected to the uniform distributions shown in Table 1. Using
the different finite element sizes h0, based on the data of Table 2, we obtain the equivalent
mechanical parameters tensor {âijhk} that are given in Table 3.

From Table 3, it is easy to see that convergence of the equivalent mechanical parameter
tensor computed by the SMSA-FE algorithm exists. From Table 3, the symmetric, positive
definite property of the equivalent mechanical parameter tensor and the convergence of the
finite element errors with the different mesh sizes h0 are proved.

The second example is a concrete named as C30 with three-scale random rock grains
whose sizes are from 0.3 mm to 19 mm. Its matrix is made up of the cement and the sand.
Their sizes of the three-scale rock grains in the concrete are shown in Table 4. Their elastic
parameters are shown in Table 5. If all grains are generated in a large statistical window of
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Table 2: Mechanical parameters of the matrix and grains.

Matrix Grains
8.415 × 105 7.041 × 105 0 2.99 × 106 1.50 × 106 0
7.041 × 105 8.415 × 105 0 1.50 × 106 2.99 × 106 0
0 0 6.870 × 104 0 0 7.50 × 105

Table 3: Equivalent mechanical parameters {âij(ωs)} for different mesh sizes h0.

h0. a11 a12 a21 a22 a33

0.04 1.083 × 106 8.323 × 105 8.323 × 105 1.092 × 106 1.327 × 105

0.02 1.095 × 106 8.302 × 105 8.302 × 105 1.099 × 106 1.295 × 105

0.01 1.097 × 106 8.377 × 105 8.373 × 105 1.108 × 106 1.319 × 105

0.005 1.098 × 106 8.375 × 105 8.371 × 105 1.112 × 106 1.311 × 105

Table 4: Size of rock random grains and the number in a statistical window.

Class Grain size range Average size Number of rock grains Sizes of statistical windows
Large grains 10–19 mm 14.5 mm 8 ε1 = 100 mm
Middle grains 1–10 mm 5 mm 20 ε2 = 50 mm
Small Grains 0.3–1 mm 0.6 mm 28 ε2 = 5 mm

Table 5: Elasticity mechanical parameters of the matrix, grains, and joint interface materials.

Class Young’s modulus (GPa) Poisson’s ratio
Rock grains 74.5 0.15
Matrix 13.5 0.25
Joint interface 50.5 0.20

Table 6: Equivalent mechanical parameters of a composites with small rock random grains by the SMSA-FE
algorithm (kPa).

20341770.6 6054537.6 6054645.8 −119951.6 164516.8 −12764.7
6054537.6 20128556.8 6060485.8 −106579.5 19649.2 −141765.4
6054645.8 6060485.8 20061719.4 −18765.7 140779.4 −116731.9
0.000000 0.000000 0.000000 6923128.0 0.000000 0.000000
164516.8 19649.25 140779.48 0.000000 6902337.6 −81061.0
−12764.7 −141765.4 0.000000 98172.3 −81061.0 6859146.1

Table 7: Equivalent mechanical parameter tensor for concrete with middle rock random grains by the
SMSA-FE algorithm (kPa).

25464900.2 6882577.0 6881924.2 −135341.116667 111669.7 −2238.3
6882577.0 25410941.8 6916568.5 −123921.9 7075.0 −187899.58
6881924.2 6916568.5 25291123.2 −17145.9 89634.5 −192916.5
0.000000 0.000000 0.000000 9071093.3 0.000000 0.000000
111669.7 7075.0 89634.5 0.000000 9042380.8 −82547.1
−2238.3 -187899.5 0.000000 69773.7 −82547.1 9060481.0
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Table 8: Equivalent mechanical parameter tensor for concrete with large rock random grains by the
SMSA-FE algorithm (kPa).

34510679.4 8073028.8 8076036.2 −75074.2 111127.6 −4769.6
8073025.0 34121732.2 8092588.8 −36814.0 5862.0 −110837.9
8076036.8 8092589.3 34065284.2 −531.7 123664.7 −79363.6
0.000000 0.000000 0.000000 12860237.8 0.000000 0.000000
111127.6 5862.0 123664.7 0.000000 12862877.8 −30079.5
−4769.6 −110837.9 0.000000 78302.2 −30079.5 12783465.6

Table 9: Equivalent mechanical parameter tensor for concrete with large rock random grains by the
SMSA-FE algorithm (GPa).

Iterative number 5 10 15 20 25 30
Esmall 17.4985392 16.9160384 16.9151317 17.0004448 17.0245196 16.9342101
Vsmall 0.231375 0.234653 0.234271 0.233951 0.233942 0.233926
Emiddle 22.5917136 22.2098256 22.2298752 22.1302736 22.1057408 22.0321386
Vmiddle 0.214631 0.215408 0.215342 0.215443 0.215552 0.215537
Elarge 30.644806.4 30.3689408 30.5923968 30.6815936 30.6936934 30.6862218
Vlarge 0.192951 0.193419 0.193065 0.193116 0.193066 0.193082

500 mm, the number of grains is approximately 6360. In each window, small grains, middle
grains, and the large grains occupy approximately 57.7% of the volume and are subjected to
the uniform probability distribution in the range of their sizes. Therefore, we set three kinds
of sizes of the statistical windows: ε3 = 5 mm, ε2 = 50 mm, and ε1 = 100 mm to compute the
equivalent mechanical parameter tensor with the different scale random grains.

Numerical results for the mechanical parameter tensor of a composite with only small,
middle, and large rock grains are listed in Tables 6, 7, and 8 by the SMSA-FE algorithm. Tables
6–8 also show that the equivalent parameter tensor computed by the SMSA-FE algorithm
possess the symmetrical, positive, and definite properties. The expected values of Young’s
modulus and Poisson’s ratio for the different number of samples with three-scale random
grains are shown in Table 9 and in Figure 2. Table 9 and Figure 2 show that the equivalent
Young’s modulus and Poisson’s ratio are convergent.

A comparison of the numerical results for Young’s modulus and Poisson’s ratio by the
SMSA-FE procedure, by the mixed volume method, and by the experiment method in the
lab is also shown in Table 10. Table 10 also shows that Young’s modulus and Poisson’s ratios
produced by SMSA-FE procedure are very close to that by the experiment method. It proves
the SMSA-FE algorithm to be feasible and valid for predicting the effective modulus of the
composites with random grains.

7. Conclusion

In this paper, we proved that the equivalent mechanical parameter tensor for the composite
materials with multiscale random grains is convergent and obtained the error result by the
finite element analysis. At the same time, we also prove that the equivalent parameter tensor
matrix should satisfy the symmetric, positive, and definite property.
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Table 10: Equivalent mechanical parameters for a concrete by the different methods (GPa).

ESMSA-FE 57.7% = 30.686221 VSMSA-FE 57.7% = 0.193082
Etest 60% = 30.700000 Vtest 60% = 0.198000
Eaverage 60% = 50.600000 Vaverage 60% = 0.19000

Various test examples were solved by the SMSA-FE procedure. The numerical results
show that the SMSA-FE procedure is feasible and valid and that these data satisfy the
properties of the equivalent mechanical parameter tensor proved in the pervious sections.

The procedure can also be extended to other composite materials with random
short fibers, random foams, random cavities, and so forth. Although we have given the
specific steps, some theory results and numerical examples to carry out the SMSA-FE
method and to illustrate the validity, the influence of shape, size, component, orientation,
spatial distribution, and volume fraction of inclusions on inhomogeneous macromechanical
properties, analyze the calculated results, and capture the information of microbehaviors
to the macromechanical properties are also our important future work for the composite
materials with random grains.
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